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ABSTRACT 
Estrogens have multiple effects on the body. Most studied are the effects on female 
reproduction. In this thesis, we have focused on the metabolic effects of estrogens. Estrogen 
treatment decreases adipose tissue mass and has anti-diabetic effects in humans and mice. 
Changes in food intake and voluntary activity occur upon estrogen treatment but are considered 
to be of minor importance for the observed effects. Studies on knockout mice have revealed a 
number of metabolic phenotypes such as obesity, glucose intolerance and insulin resistance as a 
consequence of disrupted signaling through one of the estrogen receptors (ER), ERα. 
  
The aim of this thesis was to characterize the molecular mechanisms that mediate protective 
effects of estrogens against obesity and diabetes. We have used gene expression profiling to 
analyze changes in transcription after estrogen treatment in adipose tissue and liver, 
respectively. A number of target genes have been identified that could be possible mediators of 
the effects of estrogens on adiposity and glucose metabolism. In Paper I, we identified the 
nuclear receptor liver X receptor (LXRα) as an estrogen-regulated gene. The expression of 
LXRα and several of its target genes was decreased in mouse white adipose tissue following 10 
h of estrogen treatment. One of the target genes, sterol regulatory element binding protein 1c 
(Srebp1c), is a master regulator of fatty acid synthesis. We also studied changes in gene 
expression in fat biopsies from postmenopausal women upon estrogen treatment for three 
months (Paper II). Several genes encoding enzymes in the fatty acid synthesis pathway were 
decreased by estrogen treatment in a subset of women. This was the first report showing 
estrogen regulation of stearoyl-CoA desaturase (Scd1), fatty acid synthase (Fas) and acetyl-
CoA carboxylase α (Acc1) in human subcutaneous abdominal adipose tissue. 
 
In Paper III, we investigated effects on estrogen administration on potential central and 
peripheral target tissues. Gene expression profiling revealed a small number of regulated genes 
in hypothalamus compared to white adipose tissue after three weeks of estrogen treatment. We 
focused on glutathione peroxidase (Gpx3) and cell death-inducing DNA fragmentation factor, 
alpha subunit-like effector A (Cidea) that were increased and decreased, respectively, in 
white adipose tissue upon estrogen treatment. Gpx3 protects against oxidative stress and its 
expression is low in obesity and high after weight loss. Obesity and diabetes are correlated to 
oxidative stress, which lead us to hypothezise that Gpx3 has a potential role in the effects of 
estrogen on adiposity. Cidea might have a role in the regulation of energy expenditure. In 
Paper IV, we confirmed that the anti-diabetic effects of estrogens are mediated via ERα. 
Diabetic ob/ob mice were treated with estrogen or the ERα-selective agonist PPT. Both 
compounds improve glucose tolerance, insulin sensitivity and the insulin response to glucose in 
vivo, with suggested action via the liver in this model. The mechanisms behind these effects are 
likely to be linked to an increased expression of signal transducer and activator of transcription 
3 (Stat3) and a decreased expression of glucose-6-phosphatase (G6pc) as the regulation of these 
genes coincided with the observed phenotypes.  
 
In conclusion, our studies, based around gene expression profiling, has contributed with a 
significant knowledge about the molecular mechanisms responsible for the effects of estrogen 
in relation to obesity and diabetes.  
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1 INTRODUCTION 
 
1.1 NUCLEAR RECEPTORS 

Hormone signaling is important for the maintenance of body homeostasis, involving 
processes such as development, growth, metabolism and reproduction (1). Hydrophilic 
peptide hormones and some amine hormones (including insulin and epinephrine, 
respectively) bind to receptors on the plasma membrane, while small lipophilic steroid 
hormones (including vitamins) and thyroid hormone can diffuse through the membrane 
and directly bind receptors that function as transcription factors in the cell nucleus, so 
called nuclear receptors (1).  
 
Nuclear receptors have a common overall structure with a variable amino (N-) terminal 
domain containing a hormone-independent activation function (AF-1), a highly 
conserved DNA-binding domain that recognizes the specific response element on DNA 
and a carboxy (C-) terminal ligand binding domain which contains a hormone-
dependent activation function (AF-2) and silencing regions (2). Both the DNA-binding 
and ligand-binding domains contain regions for dimerization and nuclear localization 
(2). The DNA-binding domain contains so called zinc finger motifs (3). These consist 
of two zinc atoms surrounded by four cysteins. The integrity of this structure is required 
for proper DNA binding (3, 4). The receptors bind to DNA as monomers or 
homodimers, or as heterodimers with the retinoid X receptor (5). The hormone 
response elements are composed of one or two hexamer half-sites separated by a 
various number of base pairs (5). Dimers can bind to either direct repeats, or inverted or 
everted repeats (palindromes) (2).  
 
48 nuclear receptors have been identified in humans (Table 1) (5). About half of these 
are activated by hormone (ligand) and correspond to the classic nuclear receptors or the 
so called adopted orphans (5). The others are true orphan receptors without ligand (non-
existing or not known), although a few orphan receptors exist that may be affected by 
ligands (5). Most of the adopted orphans bind larger and more diverse ligands than the 
classic receptors, and their candidate ligands were identified more recently (5). The 
members of the nuclear receptor superfamily are also classified into subgroups based 
on dimerization and DNA-binding properties (6).  
 
The steroid hormone receptors bind to inverted repeats as homodimers and include 
estrogen, androgen, progesterone, glucocorticoid and mineralocorticoid receptors (6). 
Their ligands are endogenously synthesized and bind with high affinity to the receptors 
(7). All other ligand-binding receptors form heterodimers with retinoid X receptor and 
bind mainly to direct repeats (6). The adopted receptors respond to dietary lipids that 
bind with relatively low affinities, such as oxysterols for liver X receptors (LXR) and 
fatty acids for peroxisome proliferator activated receptors (PPAR). The thyroid 
hormone receptors, retinoic acid receptors and vitamin D receptors have intermediate 
properties (7). Their ligands are, similar to adopted orphans, synthesized using 
exogenous elements that are provided via the diet (iodine, vitamin A) or the skin 
(sunshine) (7). On the other hand, the transcriptional pathways they regulate and their 
ligand binding affinities resemble those of the steroid hormone receptors (5, 7). 
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Names Nomenclature Ligands 
Endocrine receptors  High-affinity, hormonal lipids 
ERα  NR3A1  17β-estradiol, 4-hydroxytamoxifen, raloxifene
ERβ  NR3A2  17β-estradiol, various synthetic compounds
GR  NR3C1  Cortisol, dexamethasone, RU486
MR  NR3C2  Aldosterone, spirolactone
PR  NR3C3  Progesterone, medroxyprogesterone acetate, RU486 
AR  NR3C4  Testosterone, flutamide
TRα  NR1A1  Thyroid hormones
TRβ  NR1A2  Thyroid hormones
RARα  NR1B1  Retinoic acid
RARβ  NR1B2 Retinoic acid
RARγ  NR1B3  Retinoic acid
VDR  NR1I1  Vitamin D, 1,25-dihydroxyvitamin D3
Adopted orphan receptors Low-affinity, dietary lipids 
RXRα  NR2B1  Retinoic acid
RXRβ  NR2B2  Retinoic acid
RXRγ  NR2B3  Retinoic acid
PPARα  NR1C1  Fatty acids, leukotriene B4, fibrates
PPARβ  NR1C2  Fatty acids
PPARγ  NR1C3  Fatty acids, prostaglandin J2, thiazolidinediones
LXRα  NR1H3  Oxysterols, T0901317, GW3965
LXRβ  NR1H2  Oxysterols, T0901317, GW3965
FXRα NR1H4  Bile acids, fexaramine
PXR  NR1I2  Xenobiotics, 16α-cyanopregnenolone
CAR  NR1I3  Xenobiotics, phenobarbital
Orphan receptors Unknown
DAX-1  NR0B1  Orphan 
SHP  NR0B2  Orphan 
Rev-erbα  NR1D1  Orphan 
Rev-erbβ  NR1D2  Orphan 
RORα  NR1F1  Cholesterol, cholesteryl sulfate
RORβ  NR1F2  Retinoic acid
RORγ  NR1F3  Orphan 
HNF4α  NR2A1  Orphan 
HNF4γ  NR2A2  Orphan 
TR2  NR2C1  Orphan 
TR4  NR2C2  Orphan 
TLL  NR2E2  Orphan 
PNR  NR2E3  Orphan 
COUP-TFI  NR2F1  Orphan 
COUP-TFII NR2F2 Orphan 
EAR2  NR2F6  Orphan 
ERRα  NR3B1  Orphan 
ERRβ NR3B2  Diethylstilbestrol, 4-hydroxytamoxifen
ERRγ  NR3B3  Diethylstilbestrol, 4-hydroxytamoxifen
NGFI-B  NR4A1  Orphan 
NURR1  NR4A2  Orphan 
NOR1  NR4A3  Orphan 
SF1  NR5A1  Orphan 
LRH-1  NR5A2  Orphan 
GCNF  NR6A1  Orphan 
Table 1. Human nuclear receptors. Adapted from (5, 7) 
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Most orphan receptors bind either to direct repeats as homodimers, or to extended core 
sites as monomers (6). Many of the orphan receptors are constitutively active (8). 
However, for example estrogen-related receptor (ERR) γ can be repressed by ER-
antagonists like 4-hydroxytamoxifen (8). A few other orphans such as retinoid-related 
orphan receptors, steroidogenic factor 1 and liver receptor homolog might have 
potential to be pharmaceutical targets (8). 
 
In addition to regulation by ligand, nuclear receptor signaling can be regulated by the 
level of receptor expression, by coregulator proteins or by post-translational 
modifications (8). Coregulators, which is the general term for coactivators and 
corepressors, are receptor interacting proteins that modulate the transcriptional activity 
of nuclear receptors on target genes (9). Nuclear receptor target genes produce proteins 
that are the ultimate mediators of the observed biological effects. 
 
 
1.2 ESTROGEN RECEPTORS 

One of the first nuclear receptors to be cloned was an estrogen receptor (ER), now 
known as ERα, in 1986 (10, 11). However, estrogen receptors were identified using 
biochemical approaches many years prior to their eventual cloning (5). A second 
estrogen receptor, ERβ, was identified in 1996 (12). When comparing amino acid 
sequences, ERα and ERβ are 97% homologous in the DNA-binding domain, 56% in 
the ligand-binding domain and 24% in the N-terminal domain (13). As the homologies 
indicate, both receptors can bind to a classic estrogen response element (ERE) (13). 
Moreover, both receptors bind the endogenous ligand 17β-estradiol (E2) with high 
affinity (14). However, the differences in the ligand-binding domain are sufficient as 
basis for development of subtype-selective ligands (15, 16). Differences in the N-
terminal part include a weaker AF-1 in ERβ than in ERα (17). 
 
In the regulatory regions of ER target genes, the consensus ERE (GGTCAnnn 
TGACC), or variants of it, are present in a number of estrogen responsive sites (13). 
ERs can also bind indirectly to activator protein (AP)-1-, cyclic adenosine 
monophosphate (cAMP)-, or Sp1-response elements, via AP-1 or Sp1 transcription 
factor complexes (9). 
 
ERα and ERβ are expressed in diverse tissues and cells in the body. ERα is mainly 
expressed in tissues such as the uterus, ovary (theca cells), testes (Leydig cells), 
epididymis, breast, kidney, bone, white adipose tissue, liver, skeletal muscle and 
various regions of the brain, including pituitary and hypothalamus (13, 14, 18). ERβ 
is mainly expressed in tissues such as the ovary (granulosa cells), prostate 
(epithelium), testis, epididymis, colon, lung, bladder, bone marrow, salivary gland, 
vascular endothelium and regions of the brain, including hypothalamus and cortex 
(13, 14, 18). 
 
1.2.1 Estrogen receptor ligands 

All steroid hormones are derived from cholesterol (5). The enzyme aromatase catalyzes 
the last step in the formation of estrogens from androgens (19). Estrogens are mainly 
produced by granulosa cells in the ovaries, with E2 being the most potent ligand 
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(Figure 1), followed by estrone (E1) and estriol (E3) (20, 21). Estrogens are however 
also produced by aromatase at extragonadal sites such as the adipose tissue (21). In 
men and postmenopausal women, this production of estrogens (mainly E1) can 
constitute a significant fraction of the total production (21). The aromatization to 
estrogens is increased by obesity and with age (21). Bone and brain are other 
extragonadal sites where conversion occurs but there the hormone mainly acts locally 
(19).  
 
Synthetic ER ligands include tamoxifen, which has been used for more than 30 years 
for the treatment of breast cancer (22). Tamoxifen is metabolized in the liver to the 
active metabolite 4-hydroxytamoxifen (23). It acts as an antagonist in breast, but as an 
agonist in other tissues such as the uterus (endometrium) and bone (22).  
 
The ERα-selective ligand propyl pyrazole triol (PPT) has 410-fold selectivity for ERα 
versus ERβ (16). An in vivo study using this compound shows effects similar to those 
of E2, including increased uterine weight and prevention of the increased body weight 
and reduced bone mineral density normally associated with ovariectomy (24). The 
ERβ-selective ligand diarylpropionitrile (DPN) has 70-fold selectivity for ERβ versus 
ERα (15). DPN has, similar to E2, in vivo anti-anxiety effects (25, 26), enhances 
spatial memory (27), attenuates lung injury (28) and is cardioprotective (29, 30). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Estrogen receptor ligands. 
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1.2.2 Estrogen receptor signaling 

Unliganded estrogen receptors are, like other steroid receptors, bound to a complex of 
heat shock proteins, which are believed to repress receptor function (31). When E2 
binds to its receptor, conformational changes occur in the receptor protein and the heat 
shock proteins dissociate (31). The position of an α-helix, helix 12, in the ligand 
binding domain is altered and this exposes a surface for interaction with coactivators in 
AF-2 (32). Binding of partial agonists/antagonists like 4-hydroxytamoxifen, on the 
other hand, displaces helix 12 to a position blocking the coactivator interaction surface, 
therefore inhibiting transcriptional activation in some tissues (32). In tissues where 4-
hydroxytamoxifen acts as an agonist, ERα AF-1 but not ERβ AF-1 is used instead of 
AF-2 (32). 
 
The ligand-activated ERs dimerize and bind directly c or indirectly d to response 
elements, as described above (Figure 2). Depending on the relative abundance and 
binding affinities of coregulators, ERs can associate with different complexes that turn 
on or inhibit target gene transcription (32). This is the classic action of estrogen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Mechanisms for estrogen signaling. 1: 17β-estradiol (E2) binds the estrogen receptors (ERs) 
which associate with an estrogen response element (ERE). 2: E2 binds the ERs which associate with a 
response element (RE) via another transcription factor (TF). 3: E2 activates signaling cascades in a non-
genomic mode. 4: ERs are activated by modifications such as phosphorylation (P) and bind to an ERE. 
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hormone signaling and is referred to as the genomic action. Non-genomic actions of 
estrogen e are very rapid hormone responses, occurring within seconds or minutes, 
and therefore not involving new synthesis of mRNA or protein (32). However, the non-
genomic actions could require the receptor (32). Examples of non-genomic actions are 
effects on endothelial cells where E2 could induce nitric oxide release by activating 
protein kinase cascades, or activation of neuroprotection in neurons using similar 
cascades (32). The transcriptional activity of nuclear receptors and coregulators can be 
modulated by posttranslational modifications such as phosphorylation f, acetylation, 
SUMOylation, ubiquitinylation and methylation (5). 
 
1.2.3 Estrogen receptors as therapeutic targets 

Estrogens have multiple effects on the body and are typically known for their 
importance in the development and maintenance of reproductive functions (33). 
However, estrogens have biological effects in both men and women, including effects 
on metabolic tissues, bone and the cardiovascular, immune and central nervous systems 
(34). 
  
Estrogens are widely used as hormone replacement therapy (HRT) in postmenopausal 
women and as contraceptives in fertile women (34). The estrogen dose is typically 
about 1-2 mg/day for HRT and 30 µg/day for contraceptives. Estrogen treatment has 
many beneficial effects, however adverse effects may include an increased risk of 
breast cancer, endometrial cancer and venous thrombosis (34). Estrogen receptor 
antagonists and inhibitors of estrogen synthesis are used for treatment of breast cancer 
(34).  
 
 
1.3 ADIPOSE TISSUE 

Triglycerides (TGs) constitute ≥85% of the white adipose tissue (WAT) weight (35). 
The white adipocytes are characterized by a thin cytoplasm containing the nucleus and 
other organelles, surrounding the lipid droplet (35). Brown adipocytes have a large 
number of mitochondria that can produce heat by uncoupling oxidative 
phosphorylation (36). Brown adipose tissue has typically been shown to be present in 
rodents (particularly in interscapular regions) and in newborns in humans (37). It may 
however also be present in human adults in for instance supraclavicular and neck 
regions according to a recent study (37).  
 
WAT is generally present in subcutaneous layers between muscle and dermis or around 
internal organs (38). In rodents, the gonadal adipose tissue represents a typical WAT 
depot (38). Depot-specific properties exist; subcutaneous and visceral (intra-abdominal) 
depots have for instance different susceptibility to obesity (38).  
 
WAT was long considered as merely a storage tissue, where fatty acids are 
accumulated as TGs after a meal and released when needed as fuel (36). The discovery 
of the cytokine-like hormone leptin in 1994 initiated the current view of WAT as an 
endocrine organ, secreting a large number of adipokines such as adiponectin, resistin, 
tumor necrosis factor α, interleukin 6, transforming growth factor β, angiotensinogen 
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and haptoglobin (35). Adiponectin is low in obesity and promotes lipogenesis while 
resistin in high in obesity and stimulates lipolysis (38). 
 
In addition to adipocytes, WAT contains other cell types separated out as a stroma-
vascular fraction when performing a basic cell separation (38). These are endothelial 
cells, monocytes, macrophages and pluripotent stem cells, including preadipocytes. The 
differentiation of preadipocytes into adipocytes engages a cascade of sequentially 
activated transcription factors, the most important ones being PPARγ and 
CCAAT/enhancer binding protein (C/EBP) α (38). 
 
 
1.4 REGULATION OF ADIPOSE TISSUE MASS 
 
1.4.1 Lipogenesis 

The balance between lipid synthesis (lipogenesis) and lipid breakdown (lipolysis) 
determines adipocyte size (39). Lipogenesis involves fatty acid synthesis and 
subsequent TG synthesis, and is mediated by key lipogenic enzymes as shown in 
Figure 3 (38). Synthesis of fatty acids from carbohydrates, de novo lipogenesis, occurs 
both in adipose tissue and liver (40). The synthesis in liver contributes to about 10% of 
the circulating and stored TGs; in obese humans this fraction is raised to about 25% 
(41). When the intake of carbohydrates exceeds the glycogen storage capacity of liver 
and muscle, they are converted to TGs and stored in adipose tissue (1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Pathways that mediate fatty acid synthesis and subsequent triglyceride (TG) synthesis as well 
as mitochondrial fatty acid oxidation are outlined. Abbreviations: acetyl-CoA carboxylase (Acc), fatty 
acid synthase (Fas), stearoyl CoA desaturase 1 (Scd1), carnitine palmitoyl transferase 1 (Cpt1) and long-
chain elongase (Lce). Adapted from (41). 
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1.4.1.1 Enzymes and transcription factors relevant for lipogenesis 

Enzymes and certain transcription factors relevant for lipogenesis are potentially 
promising drug targets for metabolic disease (41). 
 
Acetyl-CoA carboxylase catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, a 
key molecule controlling intracellular fatty acid metabolism (41). Except being critical 
for fatty acid synthesis, malonyl-CoA plays an important role in inhibiting carnitine 
palmitoyl transferase 1, an enzyme regulating the first step in the transfer of long-
chain fatty acids into mitochondria for their oxidation (42). Acetyl-CoA carboxylase 
α (Acc1) is expressed in many tissues but at higher levels in adipose tissue and liver 
(41). Blocking Acc1 is predicted to reduce the de novo fatty acid synthesis in lipogenic 
tissues and to decrease adiposity (41). The complete knockout of Acc1 is embryonically 
lethal (43). However, mice with a liver-specific deletion survive and have reduced 
triglyceride accumulation in the liver (42). Acetyl-CoA carboxylase β (Acc2) is 
expressed predominantly in muscle and heart (41). A few dual Acc1 and 2 inhibitors 
have been tested and were reported to have favorable effects on multiple aspects of the 
metabolic syndrome in rodents (41). 
 
Fatty acid synthase (Fas) catalyzes the de novo synthesis of long-chain fatty acids, 
palmitoyl-CoA, from acetyl-CoA and malonyl-CoA (44). It is highly expressed in 
liver, adipose tissue and lactating mammary gland, and plays an important role in the 
conversion of excess energy intake into lipids for storage (45). Fas inhibitors decrease 
body weight in mice, primarily due to reduced food intake (44). This has been 
connected to altered expression of hypothalamic neuropeptides (46). Present Fas 
inhibitors also activate certain other targets and are thus not suitable for further 
studies (46). Fas knockout mice are not available since they die in utero (45). 
Therefore it has been problematic to pinpoint the precise effects of Fas modulation 
until more specific inhibitors or tissue-specific knockouts are developed (45). 
 
Stearoyl-CoA desaturase 1 (Scd1) catalyzes the critical step in the biosynthesis of 
monounsaturated fatty acids from saturated fatty acids (40). Palmitoyl- and stearoyl-
CoA are preferred substrates that are converted to palmitoleoyl- and oleoyl-CoA, 
respectively (47). These monounsaturated fatty acids are the major components of 
various lipids, including TGs, but they also function as mediators of signal transduction 
and cellular differentiation (47). Scd1 is most abundant in adipose tissue and liver. Scd1 
knockout mice have increased energy expenditure, reduced adiposity, increased insulin 
sensitivity and are resistant to diet-induced obesity (48). In addition, Scd1-deficiency in 
leptin-deficient ob/ob mice completely corrects their hypometabolic phenotype and 
hepatic steatosis (49). 
 
The transcription factor sterol regulatory element binding protein 1c (Srebp1c) is a 
master regulator of fatty acid synthesis pathways and activates the lipogenic enzymes 
mentioned above (50). Overexpression of Srebp1c in mouse liver increases fatty acid 
synthesis and the expression of lipogenic enzymes, producing a fatty liver, while 
Srebp1 knockout animals have reduced fatty acids synthesis and expression of these 
enzymes (50).  
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The adopted orphan receptor LXRα induces transcription of Srebp1c (51). LXRα 
regulates genes involved in lipogenesis and cholesterol efflux and clearance (52). 
LXRα is expressed in liver, adipose tissue, intestine and macrophages (53). Mice 
lacking LXRα have lower expression of Srebp1c, Fas and Scd1 (54) and LXRα/β 
double knockout mice have decreased adipose tissue mass (55). Conversely, animals 
fed synthetic LXR agonists or a high cholesterol diet have increased Srebp1c 
expression, induced expression of lipogenic target genes and elevated rates of fatty 
acid synthesis (56). LXRs can also regulate Fas directly, independently of Srebp1c 
(57).  
 
1.4.2 Lipolysis 
Lipolysis occurs when energy requirements increase. Hormone sensitive lipase in 
adipocytes hydrolyzes TGs to free fatty acids (FFA) and glycerol that are transported 
to liver, muscle and heart and used for fatty acid oxidation (β-oxidation) (38). 
Carnitine palmitoyl transferase 1, followed by carnitine palmitoyl transferase 2, 
catalyzes the first steps in the β-oxidation pathway which is a series of enzymatic 
reactions (58). In liver, the end product of β-oxidation are ketone bodies that are used 
in the brain, which has very low β-oxidation capacity (58). The end product in 
muscle, acetyl-CoA, can be used directly in the citric acid cycle as an energy source 
(58).  
 
1.4.3 Hypothalamic regulation of appetite and satiety 
Neural circuits in the hypothalamus regulate energy homeostasis by signaling using 
specific neuropeptides. The arcuate nucleus is thought to be important in the integration 
of signals regulating appetite (59). One population of neurons, anorectic, inhibits food 
intake via expression of pro-opiomelanocortin and cocaine- and amphetamine-
regulated transcript, while the other important neural circuit, orexigenic, stimulates 
food intake via expression of neuropeptide Y and agouti-related peptide (59). 
Downstream effects involve other hypothalamic nuclei containing secondary neurons 
that process the signals (59). 
 
Peripheral hormones can also signal to the hypothalamus. Insulin exerts anorectic 
effects in the hypothalamus (60). Leptin, expressed from the ob gene, is secreted from 
adipose tissue at levels correlating to adipose tissue mass (60). When the adipose 
tissue amount increases, leptin acts on leptin receptors in the hypothalamus (59). 
Leptin activates the anorectic neurons and inhibits the orexigenic neurons (59). 
Hormones released from the gut include ghrelin, which has hunger promoting effects 
and is secreted in response to fasting, and cholecystokinin and peptide YY, secreted 
from the intestine after food intake and with anorectic actions on the hypothalamus 
(60).  
 
 
1.5 METABOLIC DISEASE 
1.5.1 Obesity 

Changes in environment and lifestyle have raised the incidence of obesity and type 2 
diabetes considerably (61). Overweight and obesity are defined as excessive fat 
accumulation originating from an energy imbalance between consumed and expended 
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calories (62). The present global increase in obesity with an accompanying increase in 
type 2 diabetes is caused by a combination of an increased intake of food rich in fat and 
sugar and decreased physical activity because of transportation and less energy-
consuming work (62). 50% or more of the variation in body weight between 
individuals has a genetic basis, mainly of polygenic nature (63). 
 
Obesity is associated with an increased risk for several diseases including 
cardiovascular disease, type 2 diabetes and cancer in colon, endometrium, breast and 
prostate (63, 64). Obesity is the result of increases in adipocyte number and size (65). 
However, when a critical adipocyte size is reached, further fat accumulation only 
occurs by increases in adipocyte number (65). 
 
The body mass index (BMI), body weight in kg divided by the square of the height in 
m, is commonly used to assess overweight (BMI>25 kg/m2) and obesity (BMI>30 
kg/m2) (62). In Sweden, about 10-15% of the population is obese (66) and more than 
half of the men and over one third of the women are overweight or obese (67). 
Globally, 400 million adults are obese and 1.6 billion adults are overweight or obese 
(62). BMI is a useful measure for populations and has the same scale for both sexes 
(62). However, it is a somewhat rough measure and individuals with a large muscle 
mass can, incorrectly, be graded as overweight (62). Additional measures such as waist 
circumference and waist-hip-ratio are also useful measures of obesity which are used in 
the clinic (63).   
 
Available treatments for obesity are lifestyle interventions, including changes in food 
intake and physical activity, drugs and surgery. A comparison of randomized trials with 
a follow-up period of at least two years showed moderate but sustained reductions in 
body weight using lifestyle interventions (68). Although the average net difference in 
body weight was only 3 kg compared to a control group, it induced a remarkable 
reduction in incidence of diabetes and high blood pressure (68). A similar net weight 
difference was seen after treatment with anti-obesity drugs (68). Orlistat (Xenical®) 
reduces fat uptake by inhibiting pancreatic and gastric lipases. The other anti-obesity 
therapies available in Sweden act centrally, rimonabant (Acomplia®) is a cannabinoid-l 
receptor blocker and sibutramin (Reductil®) inhibits the reuptake of serotonin and 
norepinephrine (68, 69).  
 
Surgery is an option for individuals with BMI>35-40 where other methods have failed 
(68). This intervention produces large weight losses, typically 20-50 kg (70). However, 
the method may include risks for blood clotting in vessels, pulmonary complications, 
wound infections and death (70). 
 
1.5.2 The metabolic syndrome 

The term metabolic syndrome first appeared in 1923, describing a cluster of symptoms 
(61). The symptoms have been reevaluated several times and today the definition 
comprises a cluster of clinical observations including central obesity, hyperglycaemia, 
decreased high-density lipoprotein (HDL) cholesterol, elevated TGs and blood pressure 
(61). The metabolic syndrome is associated with a 3-fold increase in type 2 diabetes  
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Central obesity 
(assumed if BMI>30 kg/m2) 

Waist circumference ≥80 cm in women, ≥94 cm in men (of European 

origin, it is ethnicity-specific ) 

Plus any two other factors:  

Raised triglycerides >1.7 mmol/l (150 mg/dl)* 

Reduced HDL-cholesterol <1.29 mmol/l (50 mg/dl) in women* 

<1.03 mmol/l (40 mg/dl) in men* 

Raised blood pressure Systolic ≥130 mmHg, diastolic ≥85 mmHg* 

Raised fasting plasma glucose Fasting plasma glucose ≥5.6 mmol/l (100 mg/dl)* 
*or previous treatment or diagnosis 

Table 2. Criteria used to identify the presence of the metabolic syndrome. Adapted from (71).  
 
and a 2-fold increase in cardiovascular disease, and clearly constitutes a major public 
health concern worldwide (61). 
 
1.5.3 Type 2 diabetes 

Diabetes is diagnosed by fasting glucose levels ≥7 mmol/l or glucose levels 2 h after a 
glucose load ≥11.1 mmol/l (72). About 90% of people with diabetes have type 2 
diabetes, where the body cannot use the insulin efficiently (73). Type 1 diabetes is 
instead characterized by a lack of insulin production (73). Insulin, together with 
glucagon and epinephrine, act to keep the glucose level near 4.5 mmol/l (1). Elevated 
blood glucose levels trigger insulin release from pancreatic β-cells, which stimulates 
glucose uptake in muscle and liver (glycogen synthesis) and TG synthesis in adipose 
tissue (1). In addition, insulin reduces the hepatic glucose output and reduces the TG 
release from WAT (72). The stimulatory effect of insulin on fatty acid synthesis is 
proposed to be mediated via an increase in Srebp1c (50).  
 
In times of starvation, de novo synthesis of glucose from lactate, amino acids or 
glycerol can occur in the liver, termed gluconeogenesis (74). The regulation of hepatic 
gluconeogenesis is an important process in the adjustment of blood glucose levels, and 
the process is regulated by the key gluconeogenic enzymes phosphoenolpyruvate 
carboxykinase (Pepck) and glucose-6-phosphatase (G6pc). In addition, G6pc catalyzes 
the terminal step in the catabolism of glycogen to glucose, glycogenolysis (75). 
Pathological changes in hepatic glucose production are central characteristics of type 2 
diabetes (74).  
 
Type 2 diabetes was previously only seen in adults but is now also occurring in obese 
children (73). The prevalence of type 2 diabetes in the Swedish population is 4.4% 
(76). An intermediate condition between diabetes and the normal state is impaired 
glucose tolerance (IGT), defined by fasting glucose levels <7 mmol/l and levels 2 h 
post-glucose load ≥7.8 and <11.1 mmol/l (72, 73). Subjects with IGT are at high risk 
for developing type 2 diabetes (73).  
 
Type 2 diabetes is characterized by insulin resistance, which is an inadequate ability of 
insulin to mediate glucose disposal and suppression of endogenous glucose production, 
and insufficient insulin secretion from the pancreatic β-cells to counteract the insulin 
resistance (72, 77). The cause of type 2 diabetes is still elusive. However, as obesity, it 
is a polygenic disease (77). Regarding the basis for type 2 diabetes, increased plasma 
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FFAs, which is common in overweight and obese people, and accumulation of TGs in 
muscle and liver (hepatic steatosis) are likely to be mechanisms for development of 
insulin resistance, and are referred to as “lipotoxicity” (41). The elevated FFAs could 
impair insulin-signaling pathways in the muscle (via metabolites), increase oxidative 
stress and affect insulin action in the liver (78). On the other hand, FFAs can stimulate 
insulin secretion from pancreas. When insulin resistance has developed, pancreatic β-
cells compensate by increasing insulin production. However, eventually the β-cells 
become dysfunctional and type 2 diabetes develops. A genetic predisposition to 
pancreatic β-cell failure might explain why not all obese, insulin-resistant people 
develop diabetes (78). 
 
To reduce the incidence of diabetes in high-risk patients, life style changes are effective 
(79). Exercise significantly decreases diabetes incidence also in subjects that do not 
lose weight (80). Pharmacological treatments for type 2 diabetes include exogenous 
insulin administration, metformin (decreases hepatic glucose output), 
thiazolidinediones (increase insulin sensitivity by stimulating PPARγ), α-glucosidase 
inhibitors (prevent the digestion of carbohydrates) and sulfonylurea derivatives 
(including nateglinides that enhance insulin secretion from the pancreas) (72, 79). 
 
For both obesity and type 2 diabetes, however, the available treatments are insufficient, 
and there is a great need for improved therapies. 
  
 
1.6 OXIDATIVE STRESS AND METABOLIC DISEASE 

Normally, mitochondrial respiration produces superoxide (O2
-) and peroxide (O2

2-) that 
are necessary for cellular functions, and excess superoxide is neutralized by 
endogenous antioxidants and antioxidant enzymes (81). Superoxide can be converted to 
hydrogen peroxide, which can produce extremely reactive hydroxyl radicals (82). 
Protective antioxidant enzymes include glutathione peroxidase and catalase (scavenges 
hydrogen peroxide) and superoxide dismutase (scavenges superoxide) (82). 
 
In the metabolic syndrome and its associated diseases, one of the defects is excess 
cellular oxidative stress with an overproduction of reactive oxygen species (ROS), 
which causes cellular damage (81). Conversely, a marker of oxidative stress was 
decreased in two smaller studies using weight loss programs with diet and physical 
activity (83, 84). A potential approach for treatment of for example obesity and 
diabetes could be the use of antioxidants, and improvement in metabolic parameters 
have been seen in a number of clinical studies (85). 
 
 
1.7 METABOLIC EFFECTS OF ESTROGENS 

There are gender differences in the distribution of adipose tissue. Women generally 
have more body fat than men and a gynoid fat distribution, with fat located mainly 
around hips and thighs (86). Men typically have an android fat distribution with more 
body fat in the abdominal (central, visceral) region (86). At menopause when 
estrogen levels decrease, the adipose tissue mass usually increases in women and fat 
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accumulates intra-abdominally (87). A central fat distribution is associated with 
increased health risks (87).  
 
HRT is a combination of estrogen and synthetic progesterone treatment used to 
alleviate menopausal symptoms. HRT decreases abdominal adipose tissue mass (88, 
89), improves insulin sensitivity and lowers blood glucose levels (90) in 
postmenopausal women. The Women's Health Initiative study involving over 10 000 
women demonstrated reduced incidence of diabetes in postmenopausal women on HRT 
or on estrogen treatment alone (91, 92). A meta-analysis of HRT effects using pooled 
data from 107 randomized controlled trials with a duration of at least 8 weeks showed 
an average reduction in abdominal fat of 6.8%, a reduced incidence of insulin 
resistance of 12.9% and a reduction in onset of type 2 diabetes of 30% (93). In 
women with diabetes, the fasting blood glucose was reported to be reduced by 11.5% 
and the insulin resistance by 35.8% upon HRT treatment (93).  
 
Studies in rodents confirm the effects of estrogen on adipose tissue. Ovariectomy 
(surgical removal of the ovaries) increases adipose tissue mass and estrogen treatment 
decreases adipose tissue mass (94). This is associated with changes in food intake and 
voluntary activity (94). However, peripheral metabolic effects appear to be of primary 
importance for estrogen effects on adiposity, while the effects of food intake and 
voluntary activity are minor (94, 95). In addition, ovariectomy in rodents increases 
basal blood glucose levels and causes impaired glucose tolerance (96). Estrogen 
treatment has strong anti-diabetic effects in rodent models of type 2 diabetes (90, 97).  
 
1.7.1 Lessons from knockout mice and human mutations 

Phenotypes of knockout mice devoid of endogenous estrogen synthesis or lacking 
estrogen receptors provide further evidence for an important role of estrogen signaling 
in relation to body fat mass and glucose metabolism. Aromatase knockout mice (ArKO 
mice), with a genetic impairment of endogenous estrogen synthesis, exhibit increased 
adiposity, decreased glucose tolerance and insulin resistance (98, 99). Similar 
metabolic effects are seen in ERα but not in ERβ knockout mice (ERKO and BERKO, 
respectively), suggesting a critical role of ERα in the metabolic effects of estrogen 
(100, 101). The obesity in ERKO mice is due to both increased adipocyte size and 
adipocyte number (100). The phenotype was not related to increased food intake (100). 
 
In humans, a mutation in ERα has been reported in one male. The observed phenotype 
was impaired glucose tolerance and hyperinsulinemia and a body weight of 127 kg 
(102). It also included osteoporosis and an abnormal linear growth continuing after 
puberty with a final height of 204 cm (102). A few cases are present with mutations in 
the Cyp19 gene encoding aromatase, the enzyme critical for endogenous estrogen 
synthesis. These individuals present a phenotype of high serum levels of insulin and 
triglycerides that can be corrected by estrogen treatment (103, 104). 
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1.7.2 Mechanisms of estrogen action 
1.7.2.1 Obesity 

The tissues responsible for estrogen action in relation to metabolic disease are still 
under investigation. Possible target tissues for effects on adiposity are hypothalamus 
and adipose tissue. In a recent study, ERα was specifically silenced in the ventromedial 
nucleus of the hypothalamus (105). Obesity was observed as a phenotype. This was 
preceded by increased food intake but also a reduced energy expenditure (105). 
However, as discussed above, differences in food intake and voluntary activity are not 
sufficient to explain the effects of estrogens on body fat mass. 
 
Estrogen increases hormone sensitive lipase, the rate-limiting enzyme in adipocyte 
lipolysis (106). In addition, estrogen decreases lipoprotein lipase, which is a lipogenic 
enzyme that provides substrate for deposition of TGs in adipocytes by hydrolyzing 
plasma TGs to FFAs and glycerol (107). The maintenance of the typical female fat 
distribution in premenopausal women can be attributed to an estrogen-regulated 
increase in the anti-lipolytic α2A-adrenergic receptors in subcutaneous adipocytes 
(108). More recently, estrogen treatment of pair-fed ovariectomized mice was shown to 
decrease the expression of Srebp1c, Fas and Acc1 in adipose tissue, liver and muscle 
(95). These genes control fatty acid synthesis and reducing this pathway would 
decrease adipose tissue mass. 
 
1.7.2.2 Type 2 diabetes  

The anti-diabetic action of estrogens might be exerted at multiple sites, such as liver, 
muscle, adipose tissue and the pancreatic β-cells (90). It has been shown that glucose 
intolerance in ERKO mice is mainly due to hepatic insulin resistance, resulting from a 
defective insulin-mediated suppression of hepatic glucose production (109). This 
suggests that the liver is an important target organ for the anti-diabetic effects of 
estrogen. In addition, ArKO mice develop insulin resistance in the liver, assessed by an 
insulin tolerance test, which explores suppression of hepatic glucose production rather 
than stimulation of muscle glucose uptake (90, 99). Activation of lipogenic genes with 
accumulation of lipids in the liver has been proposed as a molecular mechanism for 
insulin resistance in ERKO and ArKO mice (109, 110). In ob/ob and ArKO mice, 
estrogen treatment reverses lipid accumulation and downregulates lipogenic genes, 
supporting a connection between liver lipid accumulation and insulin resistance (97, 
110). 
  
However, there is evidence for a role of additional tissues in the effects of estrogen on 
glucose metabolism. A reduction in the insulin-responsive glucose transporter 4 in 
ERKO mice could contribute to impaired glucose uptake in muscle (111). Insulin-
stimulated glucose uptake in muscle has been reported to be stimulated by estrogen and 
decreased by ovariectomy (90). However, this might reflect indirect effects via other 
tissues (90). Furthermore, estrogenic effects on adipose tissue mass can indirectly affect 
insulin sensitivity, as obesity is associated with insulin resistance and subsequently the 
risk of type 2 diabetes (90). Estrogen protects pancreatic β-cells in conditions of 
oxidative stress in a number of rodent models of type 2 diabetes (90) and consistent 
with this, ArKO and ERKO mice are vulnerable to β-cell apoptosis (112). 
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2 AIMS OF THE STUDY 
 
The general aim of this thesis was to characterize the molecular mechanisms that 
mediate the protective effects of estrogen against obesity and diabetes. Specifically, our 
objectives were: 
 

• To identify novel estrogen-regulated genes in adipose tissue of mice treated 
with estrogen short-term (Paper I) or long-term (Paper III) in order to 
elucidate possible mechanisms behind the effects of estrogen on adipose tissue 
mass. 

 
• To study gene expression changes occurring in human adipose tissue biopsies 

from estrogen-treated women and to investigate potential correlations to clinical 
data (Paper II). 

 
• To validate the role of ERα signaling for the anti-diabetic action of estrogens 

and to compare the molecular events occurring upon treatment with the 
estrogen receptor alpha-selective agonist PPT and E2, respectively, in ob/ob 
mice (Paper IV). 
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3 METHODOLOGICAL CONSIDERATIONS 
 
3.1 MICROARRAY TECHNOLOGY 

In this thesis, the Affymetrix microarray technology platform was used to determine 
gene expression profiles. Microarrays were introduced in the late 1990s, mainly for 
gene expression analysis (113). However, later on applications such as genotyping, 
chromatin immunoprecipitation on chip (ChIP-on-chip), exon-based expression arrays 
and tiling arrays were developed (113).  
 
There are several platforms for gene expression profiling. The most common ones are 
spotted arrays and Affymetrix GeneChips® (114). Spotted microarrays consist of 
cDNA sequences (in the early days) or smaller 25-70-mer oligonuclotide sequences 
(most common today) spotted onto glass slides (114). Two differently labeled samples 
are commonly hybridized to one array. These arrays can be produced in academic 
laboratories but this requires a lot of equipment and extensive optimization (114). The 
spotted arrays can also be purchased from commercial producers such as Agilent 
Technologies. The spotted slides will still have lower density of features than 
Affymetrix microarrays due to limitations in the number of spots that can be printed on 
a slide (114). Illumina is a relatively new technology. Advantages are lower costs 
compared to Affymetrix. Disadvantages are fewer data analysis and annotation options 
and that arrays for only a limited number of organisms are available (114). 
 
3.1.1 Affymetrix microarrays 

Affymetrix microarrays use standardized and pre-validated protocols and analysis tools 
(114). One sample is hybridized to one array and the technology allows a much greater 
number of features than with the spotted arrays (114). Affymetrix high-density 
manufacturing technology uses photochemical synthesis to build 25-mers on a quartz 
surface (113). A gene can be represented by one or several probe sets on the 
microarray. In the studies presented in this thesis, probe set sequences are located in the 
3’ region of transcripts. For each probe set, the probes are dispersed on the array, and 
the signal of those that hybridize perfectly to the target (perfect match probe) is 
compared to those with a single mismatch centrally in the sequence (mismatch probe) 
to determine the specific binding (113). 
 
3.1.1.1 Experimental design and preprocessing of data 

The experimental design is one of the most important parts of a microarray experiment 
(114). It includes deciding the number of biological replicates and the RNA source. 
Generally, the more replicates the better, but it has been shown that stable results can be 
obtained when at least five biological replicates are used (115). The animal studies in 
this thesis are generally performed on three biological replicates. However, the results 
for key genes have always been confirmed by real-time PCR for all individual samples 
included in the studies (n=5-9). 
 
Using the standard protocol for target preparation, total RNA is amplified and labeled 
using in vitro transcription, fragmented and hybridized to arrays (113). The arrays used 
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in this thesis contain over 12 000 (Paper I), 22 000 (Paper II and III) or 45 000 
transcripts (Paper IV).  
 
Preprocessing of microarray data include background correction, normalization and 
processing of raw data into expression values (116). The main methods for the latter are 
Affymetrix MAS5, dChip and the robust multichip/array average (RMA) method (116). 
We have used the MAS5 for all data except in Table 2 in Paper IV where RMA was 
used. Filtering of genes can be performed on the basis of expression levels or the 
presence and absence calls according to Affymetrix algorithms (116) There is no 
general consensus on how, or if, one should filter data prior to analysis (116). We did 
not perform filtering prior to data analysis for Paper I, II and IV. For Paper III, we 
excluded genes with absence calls on all arrays. 
 
3.1.1.2 Identification of differentially expressed genes 

The identification of differentially expressed genes can be performed using a number of 
approaches. The t-test which is commonly used for many biological applications is not 
recommended for microarray analysis due to the problem of multiple testing that occur 
when studying tens of thousands of genes (117). If using a cutoff of p < 0.05, 5% (500 
genes per 10 000 genes) correspond theoretically to false positives, or are wrongly 
identified as significantly changed genes (117). When using more sophisticated 
methods, the problem of multiple testing is commonly controlled for using the adjusted 
Bonferroni correction (117).      
 
In Papers I and III we applied the concordance call, using pair-wise comparisons, to 
identify estrogen-regulated genes. Although this method is not statistically independent, 
in our experience, it reliably identifies differentially expressed genes in experimental 
designs with few biological replicates. In Paper II, a paired experimental design was 
used, with measurements of the same individual before and after treatment. In Paper IV 
we applied the affylmGUI analysis method which is a freely available graphical user 
interface with powerful statistical tools, also for dealing with small sample sizes (118). 
 
 
3.2 REAL-TIME PCR ANALYSIS 

Real-time PCR analysis is a very sensitive method for quantification of specific 
mRNAs. Instead of using end-point measurement as in conventional PCR, 
amplification start for each transcript is detected in “real time”. Total RNA from tissues 
or cells of interest is reversely transcribed into cDNA and analyzed using gene-specific 
primers.  
 
Two methods are available for detection of amplified DNA, gene-specific TaqMan-
probes or the general DNA-binding SYBR Green dye. TaqMan-probes allow a highly 
specific recognition of the target cDNA. The SYBR Green method reduces the costs for 
real-time PCR analysis but requires that the primers are carefully designed for optimal 
selectivity and that melting curves are run for new primers to confirm a single PCR 
product. The dyes used generate fluorescence, which is relative to the amount of PCR 
product produced. Both TaqMan and SYBR Green based assays were used in the work 
described in this thesis. A reference gene is used to control for differences in input 
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amount. We have normalized the data to 18S, hypoxanthine ribosyltransferase or beta-2 
microglobulin. 
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4 RESULTS AND DISCUSSION 
 
4.1 GENE EXPRESSION PROFILING IDENTIFIES LIVER X RECEPTOR 

ALPHA AS AN ESTROGEN-REGULATED GENE IN MOUSE ADIPOSE 
TISSUE (PAPER I) 

At first, we characterized the relative levels of ERs in mouse WAT, since it was not 
previously described. We found that ERα is the main ER expressed in mouse WAT 
with mRNA levels several hundred times higher than those of ERβ. The relatively high 
expression level of ERα in WAT should enable estrogen to act directly on adipose 
tissue. 
  
We aimed initially at characterizing the more direct effects of estrogen on adipose 
tissue gene expression. Thus, gene expression profiles were determined after short-term 
estrogen exposure. Female ovariectomized mice were treated with estrogen for 10, 24 
or 48 h and RNA from WAT was analyzed using gene expression profiling (Affymetrix 
microarrays). This single treatment dose produced high E2-levels after 10 h, which 
decreased by time and were almost back to basal levels after 48 h. The number of 
regulated genes was highest at 24 h. In this study, we report data for about 90 genes 
involved in different aspects of lipid metabolism. 
 
One of the regulated genes was LXRα, a nuclear receptor involved in cholesterol and 
fatty acid metabolism (7). Estrogen decreased the mRNA levels of LXRα after 10 h of 
treatment compared to vehicle control. Further studies showed that a 1.5 kb LXRα 
promoter fragment was negatively regulated by estrogen via ERα, suggesting that 
LXRα is a direct estrogen target gene. Evidence for regulation of the LXRα pathway 
was provided by decreased expression of several LXRα target genes, such as Srebp1c, 
apolipoprotein E, phospholipid transfer protein, ATP-binding cassette A1 and ATP-
binding cassette G1 after 10 h of estrogen treatment. The regulation of Srebp1c was of 
particular interest, since it is a key regulator of the fatty acid synthesis pathway. We 
hypothesize that the observed changes in gene expression could be important for the 
effects of estrogen on adiposity.  
 
In this experiment we used two pools of RNA (n=3/4) for each treatment group. The 
number of microarrays was restricted by their high cost at the time. However, the 
direction of regulation and approximate fold change could be confirmed by real-time 
PCR of tested genes, using individual samples. In later microarray studies, we analyzed 
individual samples to facilitate the identification of outliers and most importantly to 
allow proper statistical analysis. 
 
To determine if regulation of LXRα was critical for the estrogen-mediated effects, we 
treated wild type and LXRα-knockout mice with estrogen for 3 weeks and analyzed 
adipose tissue weight (Figure 4). The reduction in gonadal WAT weight upon estrogen 
treatment was larger in wild type than in LXRα-knockout mice, which implicates a 
function for LXRα in estrogen-induced fat loss. However, the WAT weight for vehicle-
treated mice was lower in LXRα-knockout mice than in wild type mice. Since the 
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experiment was difficult to interpret, we did not include it in the paper. In retrospect, 
perhaps the LXRαβ double knockout mice would have given more conclusive results 
since the two LXRs can compensate for each other. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Gonadal WAT weight in wild type (WT) and LXRα-knockout mice (LXRa -/-) treated with 
17β-estradiol (E2) and vehicle. 
 
 
4.2 KEY LIPOGENIC GENE EXPRESSION CAN BE DECREASED BY 

ESTROGEN IN HUMAN ADIPOSE TISSUE (PAPER II) 

In this paper, we studied changes in gene expression in subcutaneous abdominal 
adipose tissue biopsies from ten naturally postmenopausal women before and after 3 
months of treatment with estradiol valerate. RNA was prepared and analyzed using 
gene expression profiling (Affymetrix microarrays). Genes involved in fatty acid 
synthesis, such as stearoyl-CoA desaturase (Scd1), fatty acid synthase (Fas), acetyl-
CoA carboxylase α (Acc1) and fatty acid desaturase 1, were decreased by estrogen 
treatment in a subgroup of women. Several of these genes are target genes for LXRα 
and Srebp1c, which were identified as estrogen-regulated in mouse adipose tissue in 
Paper I. Regulation of Scd1, Fas and Acc1 have been reported in mice after long-term 
estrogen treatment (95, 97). The decreased expression of Scd1, Fas and Acc1 after 
estrogen treatment was also verified in a human cell line. This indicates that regulation 
is not due to adaptive alterations in the subjects. This is the first report showing 
estrogen regulation of these genes in human abdominal adipose tissue. 
 
This study clearly demonstrated that individuals respond differently with regard to 
estrogen-regulated changes in gene expression in human subcutaneous adipose tissue. 
Changes in the expression of key lipogenic genes were restricted to a subgroup of 
women. The changes were inversely correlated to baseline values of in particular 
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plasma TGs. This might indicate that the response to estrogens is determined by the 
individual metabolic status. We speculate that estrogen is more effective in decreasing 
lipogenic genes when the individual has a higher burden of TGs. Furthermore, changes 
in the expression of key lipogenic genes were positively correlated to changes in 
clinical parameters, in particular plasma TGs. 
 
PPARγ, involved in adipogenesis, was decreased in a subgroup of individuals. PPARγ 
is required to coordinate the expression of adipogenic genes that characterize the 
terminal differentiation of adipocytes (38). Its down-regulation by estrogen would 
suggest that not only the lipid content but also the number of adipocytes could be 
decreased by estrogen administration. 
  
 
4.3 EFFECTS OF ESTROGEN ON GENE EXPRESSION PROFILES IN 

MOUSE HYPOTHALAMUS AND WHITE ADIPOSE TISSUE; TARGET 
GENES INCLUDE GPX3 AND CIDEA (PAPER III) 

The relative tissue contribution for the effects of estrogens on adiposity remains 
unclear. We approached this issue by investigating the effects of estrogen on gene 
expression profiles for two possible target tissues, hypothalamus and WAT. We studied 
long-term effects (3 weeks) of estrogen treatment on hypothalamus and WAT gene 
expression profiles in mice using Affymetrix microarrays. The number of regulated 
genes was small in hypothalamus compared to WAT, which could be indicative of the 
relative roles of these tissues with regard to the effects of estrogen on adipose tissue 
mass. Consistent with this, the total mRNA levels for ERs were also higher in WAT 
than in hypothalamus. 
 
No genes regulating appetite or satiety were found to be regulated after 3 weeks of 
estrogen treatment in hypothalamus. Surprisingly, we did not identify LXRα, Srebp1c, 
Scd1, Fas or Acc1 as regulated after long term treatment in mice. As the adipose tissue 
weight was nevertheless decreased, this implies that there are additional mechanisms 
mediating the effects of estrogen on fat mass. One such gene could be glutathione 
peroxidase 3 (Gpx3), encoding an enzyme that protects against oxidative stress. 
 
In WAT, Gpx3 was induced by 3 weeks of estrogen treatment. Its regulation by 
estrogen was characterized in detail. Gpx3 was regulated by E2 treatment already after 
2 h of treatment in WAT, suggesting that it is a direct estrogen target gene. It was also 
demonstrated to be regulated in other tissues, thus its regulation by estrogen is not 
confined to WAT. A 2 kb Gpx3 promoter construct was induced by ERα and ERβ in 
the mouse preadipocyte 3T3L1K cell line. This suggests that Gpx3 can be regulated by 
both ERα and ERβ.  
 
Obesity is positively correlated with oxidative stress, which is true also for diabetes, 
cardiovascular disease and smoking (119). Gpx3 expression is low in obesity and high 
after weight loss (120, 121), and we hypothesize that the observed changes in Gpx3 
expression could be important for the effects of estrogen on adiposity. 
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Another gene, cell death-inducing DNA fragmentation factor, alpha subunit-like 
effector A (Cidea), which is related to body fat in mice, was identified as decreased by 
estrogen treatment. Cidea-deficient mice are resistant to diet-induced obesity and 
diabetes (122). Cidea might have a role in regulation of energy expenditure, perhaps 
via inhibition of uncoupling protein 1 (123). We hypothesize that Cidea could be a 
possible mediator of the effects of estrogen on fat mass. 
 
 
4.4 THE ESTROGEN RECEPTOR ALPHA-SELECTIVE AGONIST PPT 

IMPROVES GLUCOSE TOLERANCE IN OB/OB MICE; POTENTIAL 
MOLECULAR MECHANISMS (PAPER IV) 

Previous studies by our group showed that glucose intolerance in ERKO mice is mainly 
due to hepatic insulin resistance (109), and that clear anti-diabetic effects of estrogen 
are demonstrated in ob/ob mice after treatment with E2 for one month (97). The 
glucose intolerance observed in ERKO mice would suggest that signaling via ERα is 
responsible for the anti-diabetic effects of estrogen. To directly validate the role of ERα 
signaling in regulation of glucose metabolism, mice were treated with the ERα-
selective agonist PPT. In addition, we compared the molecular events occurring upon 
treatment with PPT and E2, respectively, in female ob/ob mice. PPT and E2 treatment 
improved glucose tolerance, insulin sensitivity and the insulin response to glucose in 
vivo. Fasting blood glucose levels and basal insulin levels were decreased, while there 
was no effect on insulin secretion from isolated islets. Basal and insulin-stimulated 
glucose uptake in skeletal muscle and adipose tissue was similar between PPT and 
vehicle-treated mice. The lack of effects of estrogen on non-hepatic tissues supports the 
notion that the anti-diabetic effects of estrogen and selective ERα modulators are due to 
improved hepatic insulin sensitivity in these animals.  
 
We conclude that the effects of E2 on glucose metabolism are mediated via ERα, since 
PPT and E2 have similar effects on glucose metabolism. However, hepatic lipids were 
decreased only after E2 treatment. This was unexpected, since data from earlier studies 
showed an up-regulation of lipogenic genes in ERKO mice (109) and conversely a 
down-regulation of lipogenic genes and a reduction in liver TG levels after E2 
treatment of ob/ob mice (97). Furthermore, the lipogenic genes Scd1 and Fas were not 
significantly decreased in PPT-treated ob/ob mouse liver. This suggests that regulation 
of hepatic lipid metabolism is not critical for PPT-mediated improvements in glucose 
tolerance and insulin sensitivity. 
 
We performed microarray experiments (Affymetrix) on RNA from liver samples and 
compared the genes changed by PPT and E2 treatment in ob/ob mice. Genes that are 
critical to the observed phenotype of improved glucose tolerance were supposed to be 
similarly regulated by these compounds. We identified the transcription factor signal 
transducer and activator of transcription 3 (Stat3) (increased) and the enzyme G6pc 
(decreased) as genes regulated by both compounds and thus candidate genes for 
mediating the effects of estrogen in relation to glucose tolerance. Stat3 and G6pc are 
candidates for being primary ERα-target genes in the liver, as they are regulated 
already after 4-6 h of PPT treatment. Both genes are potentially interesting as mediators 
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of the effects of estrogen agonists on glucose metabolism. Liver-specific knockout and 
reexpression of Stat3 provide strong evidence for its role in improving glucose 
tolerance and insulin resistance (124). Humans with mutations in G6pc display 
hypoglycemia. G6pc regulates crucial steps in glucose production and inhibitors of 
G6pc are potential targets for treatment of type 2 diabetes (75).  
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5 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

 
During my thesis studies I have extensively applied microarray technology for gene 
expression profiling. The technology and analysis methods have naturally developed 
during these years but it was clear that it was going to become a very powerful 
technology already when I started my thesis work. The microarray technology has its 
limitations; one always has to remember that the results represent a snapshot of the 
processes occurring at a given time. After for example long-term treatments, the timing 
since the last dose might be important. Important aspects in relation to long-term 
treatments are that changes can occur as either a cause or a consequence. In addition, a 
major challenge is the interpretation of the data. Usually it is not easy to judge the 
relative importance of one gene within a long list of regulated genes. Pathway analysis 
can sometimes assist in focusing on important altered pathways. Still, published 
literature provides most of the background information about previously known 
functions. 
 
Nevertheless, we have gained significant new knowledge about estrogen receptor 
signaling in metabolic tissues during the course of this thesis. Prior to these studies, 
relatively few investigations on the metabolic effects of estrogens, especially in adipose 
tissue, had been reported.  
 
The genes changed in our studies are generally different from those affected by either 
activation or knockout of other nuclear receptors than estrogen receptors or 
coregulators with clear metabolic functions. For example, ERRα, PPARβ and PPARγ 
coactivator (PGC) 1α all typically regulate genes involved in mitochondrial biogenesis, 
adaptive thermogenesis and fatty acid oxidation (125-127). 
 
One interesting observation in our studies is that estrogenic effects on gene expression, 
and potentially other parameters, are more pronounced when physiologically “needed”. 
Our studies in ob/ob mice (Paper IV) and ongoing studies in mice on high fat diet 
(unpublished results) suggest a stronger effect of estrogen on gene expression in mouse 
models of obesity and diabetes than in lean mice. In addition, in the human study 
(Paper II), individuals with higher TG levels had more decreased expression of 
lipogenic genes in adipose tissue than those with lower TG levels. This is supported by 
published data on HRT, where clinical trials revealed a larger reduction in insulin 
resistance in women with diabetes than without diabetes (93) and in women with 
coronary heart disease (predisposed to oxidative stress) (128). In addition, HRT had 
more pronounced effects on decreasing central adiposity in women with a waist 
circumference > 88 cm than < 88 cm (89). 
 
Tissue-specific ERα knockouts will in the future aid in the determination of the roles of 
different tissues for the development of obesity and glucose intolerance. 
 
Hopefully, this thesis will provide novel ideas for treatment strategies for metabolic 
disease. For example some of the target genes identified in this study might provide 
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novel therapeutic strategies for this indication. Furthermore, specific ERα-agonists 
acting only in relevant tissues could be pharmaceutically attractive. The crucial part 
includes avoiding stimulation of growth in breast and uterus. Novel strategies might 
include local hormone patches for treatment of abdominal obesity or use of liver-
specific drugs. 
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