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El Cant del Barça 

Tot el camp 
és un clam 

som la gent blaugrana 
Tant se val d'on venim 
si del sud o del nord 

ara estem d'acord,estem d'acord,  
una bandera ens agermana. 

Blaugrana al vent 
un crit valent 

tenim un nom el sap tothom: 
Barça, Barça, Barça! 

Jugadors, seguidors, 
tots units fem força. 

Són molt anys plens d'afanys, 
són molts gols que hem cridat 

i s'ha demostrat, s'ha demostrat, 
que mai ningú no ens podrà torcer. 

Blaugrana al vent 
un crit valent 

tenim un nom el sap tothom: 
Barça, Barça, Barça! 



ABSTRACT 
Kidney glomeruli function as high-capacity molecular sieves through which 

plasma is filtered into the Bowman’s space as primary urine. The glomerular filtration 
barrier is composed of glomerular endothelial cells, the glomerulus basement 
membrane and the podocyte cell layer. Dysfunction of the glomerulus is a central 
component of renal complications leading to end-stage renal disease. However, the 
molecular composition of the glomerulus and how it changes during disease are still 
mostly unknown. To elucidate the picture of molecules involved in the biology and 
pathology of the glomerulus, large-scale approaches including two-dimensional gel 
electrophoresis (2-DE) coupled with mass spectrometry analysis and microarray 
profiling were applied to normal and diseased glomeruli.  

A proteome analysis of healthy glomeruli in mouse was performed using 2-DE 
with two different staining methods and subsequent mass spectrometric 
identifications. Altogether, 414 protein spots were identified, revealing 232 different 
proteins representing a wide spectrum of activities. Only 53 of the proteins identified 
here were detected in another proteome study, showing the value of analysis utilizing 
different methodologies. 80 of the proteins were not identified in a separate 
transcriptome analysis, while ten of the present proteins were identified as genes 
implicated in glomerulus development and function, allowing direct correlation with 
expression data. 

Characterization of five glomerulus-upregulated transcripts/proteins, ehd3, 
dendrin, sh2d4a, plekhh2, and 2310066E14Rik was performed. The expression pattern 
of these novel glomerular transcripts in various mouse tissues was studied, and the 
distribution of corresponding proteins was examined. All five transcripts/proteins were 
expressed in the kidney exclusively by glomerular cells. Ehd3 was expressed only by 
glomerular endothelial cells. Importantly, ehd3 is the first gene ever shown to be 
expressed exclusively by glomerular endothelial cells and not by other endothelial cells 
in the kidney. Dendrin, sh2d4a, plekhh2, and 2310066E14Rik were transcribed 
specifically in podocytes within the glomerulus. With the use of polyclonal antibodies, 
dendrin, sh2d4a, and plekhh2 proteins were localized to the slit diaphragm and the foot 
process, whereas 2310066E14Rik protein was localized to the podocyte major 
processes and cell body.  

Comparison of the normal glomerular transcriptome with its changes during 
progression of glomerular disease can yield information about molecular 
pathomechanisms. The adriamycin (ADR)-induced proteinuric mouse model allows the 
precise timing of the onset of proteinuria and of morphological changes in glomerulus. 
Overt proteinuria was observed from four days after ADR injection, and reached 
maximum at seven days. Blood urea nitrogen (BUN) gradually elevated indicating the 
failure of renal function. TUNEL staining of kidney section revealed an increase in 
apoptotic positive cells in glomeruli. Transcriptional profiling of kidney glomeruli 
revealed that nine p53 target genes were up-regulated probably due to DNA damage 
caused by ADR at four days and several glomerular enriched genes were differentially 
expressed indicating glomerular injury at seven days.  

These studies provide fresh insights into glomerular biology and reveal new 
possibilities to explore the role of glomerular specific proteins in renal physiology and 
pathophysiology. Furthermore, these studies shed light on the pathomechanisms of 
proteinuria, which eventually results in end-stage kidney disease as a result of 
progressive glomerular damage.  
 
 
 



 



LIST OF PUBLICATIONS 

I. Glomerulus proteome analysis with two-dimensional gel electrophoresis 
and mass spectrometry. 
Tryggvason S*, Nukui M*, Oddsson A, Tryggvason K, Jörnvall H. 
Cell Mol Life Sci. 2007 Dec;64(24):3317-35. 
 

II. Expression and subcellular distribution of novel glomerulus-associated 
proteins dendrin, ehd3, sh2d4a, plekhh2, and 2310066E14Rik. 
Patrakka J, Xiao Z, Nukui M, Takemoto M, He L, Oddsson A, Perisic L, 
Kaukinen A, Szigyarto CA, Uhlén M, Jalanko H, Betsholtz C, Tryggvason K. 
J Am Soc Nephrol. 2007 Mar;18(3):689-97.  

  
III. Stage specific glomerular transcriptome profiling in ADR-induced 

nephropathy mice. 
Nukui M, He L, Patrakka J, Takemoto M, Betsholtz C, Tegnér J, Tryggvason 
K 
Manuscript. 2010 
 

  

  

 
  

  
 



TABLE OF CONTENTS 
1  Introduction: Review of literature ................................................................................ 1 

1.1  The kidney ............................................................................................................ 1 

1.1.1  Glomerulus .................................................................................................... 1 

1.1.2  Podocytes and slit diaphragm ....................................................................... 2 

1.1.3  Glomerular endothelial cells and glomerular basement membrane ............ 3 

1.2  Proteinuria and nephrotic syndrome .................................................................... 4 

1.2.1  Acquired proteinuria syndromes in humans ................................................ 4 

1.2.2  Inherited proteinuria syndromes in humans ................................................. 5 

1.2.3  Experimental proteinuric rodent models ...................................................... 7 

1.2.3.1   Adriamycin induced proteinuric mouse model .................................... 8 

1.2.3.2   Lipopolysaccaride induced proteinuric mouse model ......................... 9 

1.3  Omics in the post genomic era ........................................................................... 11 

1.3.1  Gene expression profiling and microarray analysis ................................... 11 

1.3.2  Proteomics ................................................................................................... 13 

1.3.3  Mass spectrometry ...................................................................................... 14 

1.3.3.1   Ionization techniques .......................................................................... 15 

1.3.3.2   Mass analyzers .................................................................................... 16 

1.3.4  Sample separation techniques for MS ........................................................ 18 

1.3.4.1   Two-dimensional gel electrophoresis (2-DE) .................................... 18 

1.3.4.2   High pressure liquid chromatography (HPLC) .................................. 20 

1.3.5  Analytical techniques for protein identification ........................................ 21 

1.3.6  Relative quantitative proteomics ................................................................ 22 

1.3.6.1   Differential gel electrophoresis (DIGE) ............................................. 22 

1.3.6.2   Stable isotope-labeling methods ......................................................... 23 

1.3.6.3   Label-free methods ............................................................................. 25 

2  Aim of the study ......................................................................................................... 26 

3  Experimental procedures ............................................................................................ 27 

4  Results and discussion ................................................................................................ 32 

5  Conclusions and future perspectives .......................................................................... 38 

6  Acknowledgements .................................................................................................... 39 

7  References .................................................................................................................. 42 

 

 



LIST OF FIGURES 
Figure 1. Schematic picture of the kidney glomerulus ..................................................... 1 

Figure 2. The glomerular filtration barrier ........................................................................ 2 

Figure 3. Comparison of two different cDNA microarray experiments ........................ 13 

Figure 4. Schematic presentation of a mass spectrometer .............................................. 15 

Figure 5. Schematic picture of two kinds of ion sources, matrix assisted laser 

desorption/ionization (MALDI-left) and electrospray ionization (ESI-right) ............... 16 

Figure 6. MS instrumental configurations with different mass analyzers...................... 17 

Figure 7. General principle of 2-DE ................................................................................ 19 

Figure 8. A typical MS spectrum obtained by MALDI .................................................. 21 

Figure 9. A typical MS/MS spectrum obtained by ESI .................................................. 22 

Figure 10. Flow chart of mice glomeruli isolation technique ......................................... 27 

 

LIST OF TABLES 
Table 1. Summary of genetic form of nephrotic syndrome .............................................. 7 

Table 2. Summary of rodent experimental proteinuric models ........................................ 7 

Table 3. Comparison of commonly used mass spectrometers for proteomics .............. 17 

Table 4. Comparison of three methods: SILAC, ICAT and iTRAQ ............................. 25 

Table 5. Summary of three 2-DE experiments ............................................................... 32 

 



LIST OF ABBREVIATIONS 
2-DE 

ADR 

BUN 

CBB 

CID 

CNF 

DIGE 

DN 

ESI 

FSGS 

FTICR 

GECs 

GBM 

HPLC 

HSPGs 

ICAT 

IEF 

IPG 

IT 

iTRAQ 

KO 

LIT 

LPS 

MALDI 

MDLC 

MN 

MS 

m/z 

NS 

PAN 

PECs 

PMF 

PS 

PTMs 

Two-dimensional gel electrophoresis 

Adriamycin 

Blood urea nitrogen 

Coomassie brilliant blue 

Collision-induced dissociation 

Congenital nephrotic syndrome of the Finnish type 

Differential gel electrophoresis  

Diabetic nephropathy 

Electrospray ionization 

Focal segmental glomerulosclerosis 

Fourier transform ion cyclotron resonance 

Glomerular endothelial cells 

Glomerular basement membrane 

High pressure liquid chromatography 

Heparan sulphate proteoglycans 

Isotope-coded affinity tags 

Isoelectric focusing 

Immobilized pH gradient 

Ion trap 

Isobaric tags for relative and absolute quantification 

Knock out 

Linear ion trap 

Lipopolysaccharide 

Matrix assisted laser desorption/ionization 

Multidimensional liquid chromatography 

Membranous nephropathy 

Mass spectrometry 

Mass-to-charge ratio 

Nephrotic syndrome  

Puromycin 

Parietal epithelial cells 

Peptide mass fingerprinting 

Protamine sulphate 

Post-translational modifications 



Q 

RNA-seq 

RPLC 

SAGE 

SD 

SDS-PAGE 

SILAC 

TOF 

TUNEL 

Quadrupole 

RNA sequencing 

Reverse phase liquid chromatography 

Serial analysis of gene expression 

Slit diaphragm 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Stable-isotope labeling by amino acids in cell culture 

Time of flight 

Terminal deoxynucleotidyl transferase dUTP nick end labeling 

 





 

 1

1 Introduction: Review of literature 

1.1  The kidney  

The kidneys are paired, bean-shaped organs, whose primary function is to filter 

metabolic waste products from the blood into urine. In adult humans about 180 liters of 

blood is filtered through the kidneys every day as primary urine, which is devoid of 

macromolecules that are essential for maintaining homeostasis. The primary urine is 

comprehensively modified in the renal tubular system, both in composition and 

volume, and the daily excretion is normally about 1–1.5 liters. In addition, the kidneys 

have multiple other functions such as maintenance of acid-base homeostasis, osmolality 

and blood pressure regulation, vitamin D metabolism and production of hormones like 

erythropoietin and renin. 

 

1.1.1 Glomerulus 

The glomerulus is the filtration unit of the kidney. It is a capillary tuft surrounded 

by the Bowman’s capsule at the proximal end of the nephron. Each adult human kidney 

contains about a million glomeruli, which are located in the cortex. The glomerulus 

contains four resident cell types: parietal epithelial cells (PECs) of the Bowman’s 

capsule, whilst mesangial cells, endothelial cells, and podocytes are within the 

glomerular tuft [1-2]. Figure 1 illustrates the anatomical details of kidney glomerulus. 

 
 

Figure 1. Schematic picture of the kidney glomerulus 
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The glomerular filtration barrier is composed of three layers: the fenestrated 

glomerular endothelial cells (GECs), the glomerular basement membrane (GBM) and 

the slit diaphragm (SD) located between the interdigitating podocyte foot processes 

(Figure 2). Plentiful evidence from biochemical and physiological analysis of the 

glomerular filter barrier has emerged, suggesting that the glomerular filter barrier 

functions in a size- and charge-selective manner [3-4], but its literal character and 

intricate properties have been and still are a matter of debate [5]. 

 

 
 

Figure 2. The glomerular filtration barrier  
The filtration barrier of the capillary wall contains the innermost fenestrated endothelium, the glomerular 
basement membrane (GBM) and the podocyte. The slit diaphragm (SD) is located between the foot 
processes. The arrow indicates the direction of flow of primary urine.  
 

1.1.2 Podocytes and slit diaphragm  

Podocytes, also called glomerular visceral epithelial cells, are located on the outer 

surface of the GBM and contribute the outermost layer of the glomerular filtration 

barrier. They are highly polarized cells with an extremely unique trait; the mature 

podocytes are post-mitotic cells, which cannot proliferate since they arrest in the G2/M 

phase of the cell cycle [6]. With regards to their cytoarchitecture, the podocyte can be 

morphologically segregated into three different portions; cell body, major processes 

and foot processes. A capacious cell body, which lumps into the urinary space, 

possesses a well-developed endoplasmic reticulum, a large Golgi apparatus, and 

abundant mitochondria and lysosomes. This indicates that they have a high capacity for 

protein synthesis and post-translational modifications to maintain the dynamic and 

complex structure and function of the slit diaphragm [7]. The cell body induces long 

primary processes, which divide into secondary processes and eventually form the foot 

processes [8]. Interdigitated foot processes of adjacent podocytes leave narrow slits 



 

 3

between them, and those slits are bridged by a well-organized extracellular structure 

with a constant width of 30-45 nm [7, 9]. This specialized intercellular junction is 

known as the slit diaphragm (SD). 

Previously, the structure of the SD was proposed to be a zipper‐like membrane 

with pores smaller than the size of albumin molecules on both sides of a central 

filament [9-10]. Recently, new information on the structure of the SD has been revealed 

by electron tomography combined with immunogold‐labeling that the SD may be 

composed of a uniformly organized network of convoluted strands [11]. Furthermore, 

accumulating evidence on protein complexes specifically located in the SD has 

supported the notion of the SD as being a genuine macromolecular barrier. CD2AP 

[12], nephrin [13], Neph1 [14] and podocin [15] have been found to be specifically 

localized to the SD region, and abnormal function or absence of any of these proteins 

leads to proteinuria and progression to renal failure in humans or mice. Thus, the 

podocytes and the SD are considered to have a central role in glomerular filtration.  

 

1.1.3 Glomerular endothelial cells and glomerular basement 
membrane 

The glomerular endothelial cells (GECs) form the innermost layer of the 

glomerular capillary wall with a large fenestrated area representing 20–50% of the 

entire endothelial surface [16]. The diameter of the fenestrae is about 60 nm [17]. Thus, 

GECs do not seem to be a direct barrier for the passage of plasma proteins in a size-

selective manner [18-19]. It is possible that the GECs contribute to the physical 

glomerular filtration barrier, but detailed knowledge about its function remains unclear. 

The glomerular basement membrane (GBM) is a 300 nm thick acellular matrix 

membrane located between GECs and podocytes [20]. Its main constituents are type IV 

collagen, laminin, nidogen and proteoglycans. Collagens and laminins form a huge 

structural network by self assembly, and nidogen is believed to be the connector of 

these networks in the GBM [21]. The most abundant proteoglycans in the GBM are 

heparan sulphate proteoglycans (HSPGs), such as agrin and perlecan [22-23]. They 

contribute to the negative charge of the GBM [24]. This trait of the GBM has been 

considered to play an important role in preventing negatively-charged plasma proteins 

from passing through the glomerular filtration barrier [25]. However, the role of 

HSPGs in glomerular filtration has been interrogated as genetically modified HSPGs 

deficient mice do not develop proteinuria [26-28]. 
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1.2   Proteinuria and nephrotic syndrome 

Nephrotic syndrome (NS) is not a disease itself, but the symptom of many 

different proteinuric diseases of the kidney glomerulus, which can be acute and 

transient or chronic and progressive. NS is an exceedingly heterogeneous disorder, 

which is triggered either by acquired or by genetic defects in the glomerular filtration 

barrier. NS is characterized by the triad of overt proteinuria, hypoalbuminemia, and 

edema, and often the conditions related to NS eventually result in end-stage kidney 

failure as a result of progressive glomerular damage [29]. Proteinuria is characterized 

by the presence of excess plasma proteins in the urine, and it is one of the most 

prominent indications of glomerular filtration barrier dysfunction. When protein 

excretion exceeds 3.5 g or more per day, it is considered as nephrotic-range proteinuria 

in human adults [30]. The pathogenic mechanisms of proteinuria have been clarified in 

some rare inherited diseases, but the causes of most human proteinuria cases are still 

unclear. Elucidation of the pathomechanisms and specific treatments for these diseases 

are the most important premises in the nephrology field. Recent discovery and 

identification of genes causing NS and consequent research on the function of the 

proteins encoded by these genes have increased the current understanding of NS [31].  

 

1.2.1 Acquired proteinuria syndromes in humans 

The majority of proteinuria syndromes in humans are acquired, and these are 

divided into immune and non-immune mediated [32]. The most common immune-

mediated forms are membranous nephropathy (MN) and minimal change disease.  MN 

is the most common cause of NS in adults. The traits that characterize MN as a 

histopathological entity are caused by the immune deposits that form at the base of the 

foot processes of podocyte. The name membranous originated from the thickened 

GBM that is often observed by light microscopy in later stages of the disease. The 

immune deposits and the additional matrix material laid down by the injured podocytes 

are responsible for thickening of the GBM as the disease progresses [33]. The target 

antigen podocyte foot processes in patients with MN has been under intense research 

for decades. Very recently, Beck et al. identified protein termed M-type phospholipase 

A2 receptor (PLA2R) as the target antigen in idiopathic membranous nephropathy [34].  

PLA2R is expressed on normal glomerular podocytes and is present in the glomerular 

immune deposits in patients with the disease. Their discovery is a major breakthrough 
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and may have implications for the diagnosis and treatment of the idiopathic 

membranous nephropathy. 

Minimal change disease is considered immune-mediated because it is likely in 

consequence of an abnormality in T cells, although the precise mechanisms are not well 

defined [32]. It is by far the most common cause of NS in children under 10 years of 

age [35]. The name minimal change disease derived from no morphrogical changes in 

kidney observed under light microscopy. However, the hallmarks for this disease, 

podocyte foot processes effacement, vacuolation, and growth of microvilli on podocyte 

were observed with the advent of electron microscopy.  

The most common non-immune mediated proteinuria syndrome is diabetic 

nephropathy (DN). DN, characterized by initial development of progressive 

albuminuria followed by a later decline in glomerular filtration in association with 

glomerulosclerosis, is the most common cause of end-stage renal disease [36], and it is 

also an independent risk factor for cardiovascular disease [37]. Renal extracellular-

matrix accumulation and thickening of the GBM and the tubular basement membrane 

are distinctive traits of DN pathology. It is suggested that inheritance plays an 

important role in the pathogenesis of DN based on a high concordance rate for DN in 

families, and different rates of DN in disparate racial groups [38-39]. The search for 

identification of genetic variants underlying heritable risk of DN by either genome-

wide scans or candidate-gene approaches has been conducted for a long time. Several 

studies have reported that the 3q locus is likely to harbor susceptibility gene(s) for DN 

[40-41]. Recently, He et al. reported the association of genetic variants at 3q22 with an 

increased risk of DN by genotyping highly dense single-nucleotide polymorphisms 

[42]. Despite intensive research efforts actual DN causative genes have not been 

identified yet. 

 

1.2.2 Inherited proteinuria syndromes in humans 

The inherited forms of proteinuria in humans have diverse courses. Some have 

moderate proteinuria and focal segmental glomerulosclerosis (FSGS), while others have 

rigorous proteinuria or congenital nephrotic syndrome. Regardless of the causes for 

those symptoms, the patients often end up with end-stage renal disease, which requires 

hemodialysis treatment or a kidney transplantation [31]. Furthermore, the trait of these 

hereditary proteinuria syndromes can be sorted in a clearly age-dependent manner. 
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Steroid-resistant nephrotic syndrome is an autosomal recessive inherited 

disorder, which is characterized by early childhood onset of proteinuria, rapid 

progression to end-stage renal disease and focal segmental glomerulosclerosis [15]. 

This disease is caused by mutations in NPHS2 gene in about 25% of children and 

nearly 15% of adults [43]. NPHS2 encodes a protein termed podocin [44-45]. Podocin, 

a 42-kDa hairpin-like protein, is localized at the slit diaphragm. It is a raft-associated 

component of the slit diaphragm and interacts directly with nephrin and CD2AP [46]. 

Mutations in podocin disrupt the slit diaphragm as it may serve a scaffolding function 

and serves in the structural organization of the slit diaphragm [47]. 

Congenital nephrotic syndrome of the Finnish type (CNF) is also an autosomal 

recessive inherited disorder, which is characterized by massive proteinuria already in 

utero, premature birth and edema just after the birth [48]. The incidence of this disease 

in Finland is 1 in 8,200 births [49], but has been diagnosed worldwide. CNF is caused 

by the mutations in NPHS1, which encodes a protein termed nephrin [13, 50]. 

Nephrin, a 180 kDa transmembrane protein, is localized at the podocyte SD, and 

functions as structural component that maintains and organizes podocyte cytoskeleton 

[51]. Mutations in the NPHS1 gene hinder the formation of the slit diaphragm and lead 

to massive proteinuria and renal failure. 

Hereditary forms of focal segmental glomerulosclerosis (FSGS) are often 

characterized by the onset of mild proteinuria during adolescence or early adulthood, 

with slow progression to segmental glomerulosclerosis [31]. Mutations in two genes 

have been identified as responsible for two types of FSGS, FSGS1 and FSGS2.  FSGS1 

is caused by mutations in ACTN4, which encodes α-actinin-4 [52]. α-actinin-4, a 105 

kDa cytosolic protein, is located in the podocyte, and it cross-links F-actin filaments in 

the foot processes. Known mutations in the ACTN4 gene increase the affinity of α-

actinin-4 for F-actin, which may interfere with the normal assembly and disassembly of 

actin filaments in the glomerular podocytes [53]. FSGS2 is caused by mutations in 

TRPC6, which encodes transient receptor potential cation channel 6 (TRPC6) [54-55]. 

TRPC6, a 106 kDa transmembrane protein, is localized to the podocyte, and it is a 

member of a family of nonselective cation channel proteins that are involved in the 

increase of intracellular calcium concentration. Mutations in the TRPC6 gene cause 

abnormally high current amplitudes, which may have a role in the pathogenesis of focal 

segmental glomerulosclerosis [56]. Mutations in a few other podocyte genes have been 

reported to cause progressive proteinuria. Table 1 summarizes some of these genes. 
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Table 1. Summary of genetic form of nephrotic syndrome 
Disease  Gene Protein Protein location Ref(s) 
Steroid-resistant NS NPHS2 Podocin Podocyte [44-45] 

Congenital NS of Finnish type NPHS1 Nephrin  Podocyte SD* [48, 57] 

Focal segmental glomerulosclerosis 1 ACTN4 α-Actinin 4 Podocyte [52] 

Focal segmental glomerulosclerosis 2 TRPC6 Transient receptor potential cation channel C6 Podocyte [54-55] 

Denys–Drash syndrome WT1 WT1 protein Podocyte [58-60] 

Pierson syndrome LAMB2 Laminin β2 GBM** [61] 

* Slit diaphragm  ** Glomerular basement membrane     

 

1.2.3 Experimental proteinuric rodent models  

Experimental proteinuric rodent models can be used to explore mechanisms of 

proteinuria induction and progression, and the development and better depiction of 

these models has advanced our understanding of human glomerular diseases. It is ideal 

to employ human sample/tissue to clarify the whole picture of proteinuric diseases, but 

there are some drawbacks with utilizing human tissue. These include limitations with 

sample collection, restriction to the time of disease onset and exceptional routines in 

follow-up [62]. On the other hand, using proteinuric rodent models overcomes these 

impediments, as they are easily accessible to sample collection and examination of 

development and progression of the disease over time. It is also desirable to control the 

onset of proteinuria or to disrupt/overexpress a particular gene that might be involved 

in the pathogenesis of proteinuria [62]. Furthermore, the use of rodent models has 

advantages such as low cost, easy handling and short reproductive periods. 

Experimental rodent proteinuric models induced by numerous nonimmunological 

procedures have been well characterized and include partial nephrectomy [63-64], 

protein overload [65] and administration of puromycin (PAN) [66],  adriamycin (ADR) 

[67-68], protamine sulphate (PS) [69-70], and lipopolysaccaride (LPS) [71-74].  Table 

2 summarizes details of these methods. 

 

Table 2. Summary of rodent experimental proteinuric models 
Models Species Human Disease Type of PU** Onset of PU Ref (s) 
protein overload  Rat/Mouse NS* Transient 6-24 hours [65] 
PAN nephrosis Rat FSGS Transient 5-8 days [66] 
ADR nephrosis Rat/Mouse FSGS Progressive 4-7 days [67-68] 

PS model Rat NS Transient 40-70 minutes [69-70] 
LPS model Mouse NS Transient 24 hours [71-74] 
* No specific human disease, ** Proteinuria  

(Modified from Pippin et al., 2009) 
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1.2.3.1 Adriamycin induced proteinuric mouse model  

Adriamycin (ADR), the trade name of Doxorubicin, is an anthracycline antibiotic 

that works by intercalating DNA. Injecting ADR intravenously to rodents induces 

proteinuria and histological features, which mimic human FSGS. Hence the ADR-

induced proteinuric model is considered an experimental form of human FSGS. This 

model has been well characterized in most rat strains since 1970 [72], however, most 

mouse strains do not show complete susceptibility to ADR. In mice, the first ADR-

induced proteinuric model was described in the BALB/c strain in 1995 [68], and Wang 

et al. established a stable and reproducible model in 2000 [67]. In 2005, Zheng et al. 

figured out that a single gene defect results in ADR susceptibility with recessive 

inheritance by mapping the trait locus to chromosome 16A1-B1 (DOXNPH locus) [75]. 

They identified the gene encoding protein arginine methyltransferase 7 (Prmt7), which 

is located in the region of the DOXNPH locus, following ADR exposure. Their theory 

is that direct methylation of ADR by Prmt7 mediates protection from kidney injury, as 

methylation of ADR has been reported to decrease its cytotoxicity aptitude [76]. Since 

then, it is known that BALB/cJ and 129/SvJ mice have severe susceptibility to ADR, 

while other mouse strains are completely resistant to ADR [77]. 

To induce ADR nephropathy, ADR is administered as a single intravenous 

injection of 10-11 mg/kg body weight. ADR nephropathy is characterized by persistent 

proteinuria, increased serum creatinine and progressive renal injury [67]. A distinctive 

benefit of using the ADR nephropathy model is that it enables specific timing of the 

onset of renal injury. In general, overt proteinuria emerges at 4-5 days after ADR 

injection. Segmental podocyte foot process fusion is observed by electron microscopy 

after a week. Apparent histological changes, including glomerular hypertrophy, 

reabsorption droplets and intratubular protein casts, are observed by light microscopy 

after two weeks. The sizes of glomeruli are reduced with glomerular vacuolization, tuft 

collapse and mesengial expansion after four weeks. FSGS and rigorous interstitial 

fibrosis and inflammation are observed after six weeks [62]. 

Even though the scientific evidence about ADR nephropathy is accumulating, the 

pathogenesis of renal damage by ADR is still not clear. Dai et al. showed that Wnt/β-

catenin signaling might be a decisive player in the pathogenesis of podocyte 

dysfunction and proteinuria in ADR nephrosis [78]. They demonstrated that up-

regulation of the Wnt1 gene in mice by ADR aggravated podocyte injury and 

albuminuria, while blockade of Wnt signaling with its antagonist DKK1 improved 
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podocyte lesions. Also, they illustrated that mice with podocyte-specific ablation of β-

catenin, the principal downstream effecter of Wnt signaling, were protected against the 

development of albuminuria by ADR. Other groups have suggested that 

phosphorylation of certain proteins, in the JAK/STAT signaling pathway [79] or in the 

MAPK pathway [80], may exacerbate experimental acute renal injury. They 

demonstrated that phosphorylation of the protein in either pathway is enhanced in 

glomeruli of clinical nephrotic syndrome and of mice with ADR nephropathy and 

inhibition of phosphorylation of those proteins results in marked suppression of renal 

injury and proteinuria. Therefore, they concluded that activation of the JAK/STAT or 

the MAPK signal pathway is involved in the progression of glomerular diseases with 

proteinuric state. 

Several groups have suggested that the alternative pathway of the complement 

cascade is vital in mediating the early podocyte injury and late onset glomerulosclerosis 

in the ADR nephropathy model. They used KO mice for various complement cascade 

components, including C3, C3 receptor, C1q, factor D, factor B or the complement 

regulatory protein CD59a [81-84], and concluded that renal injury by ADR was 

dependent on the activation of complement through C3. One group has suggested that 

activation of the complement system is implicated in the development of 

tubulointerstitial injury, which has the common pathway leading to renal failure. The 

other group has suggested that lack of component in complement cascade reduces early 

glomerular injury and proteinuria. 

 

1.2.3.2 Lipopolysaccaride induced proteinuric mouse model 

Lipopolysaccaride (LPS), a major component of the outer membrane of gram-

negative bacteria, is an endotoxin that induces a variety of inflammatory responses in 

rodents. LPS binds to the Toll-like receptor 4 (TLR-4) complex, which contains CD-14 

and MD-2, and these interactions trigger the secretion of pro-inflammatory cytokines 

[85-86]. The LPS-induced sepsis model has frequently been studied in rat [87], but 

Reiser et al. have described a transient proteinuric mouse model induced by LPS [74].  

In this model, proteinuria is induced by administering LPS as a single 

intraperitoneal injection of 200 µg of LPS diluted in PBS at a concentration of 1 mg/ml. 

Three mouse strains, BALB/c, WT 129 and C57BL/6, are known to be susceptible to 

LPS [74]. Ordinarily, a milder form of proteinuria than in the ADR-induced model 

appears within 24 hours after LPS injection, but kidney function returns to baseline by 
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72 hours. Podocyte foot process effacement is observed by electron microscopy within 

24 hours.  

Sun et al. have reported global glomerular gene expression profile changes in the 

LPS-induced proteinuric mouse model [88]. A transcriptome analysis revealed 

significant changes in mRNAs encoding proteins involved in the regulation of adherens 

junctions, actin cytoskeleton and survival in podocytes. Also, they showed significant 

downregulation of podocyte-specific genes suggesting that podocytes and the podocyte 

actin cytoskeleton were culprits in the proteinuric response to LPS. Even though 

scientific evidence about this model has been accumulating, the mechanisms of how 

LPS induces proteinuria in mice are still unknown. 

The relevance of the LPS-induced proteinuric model to human kidney disease has 

been questioned. Comper [89] has claimed that the small changes in protein excretion 

in LPS-mediated proteinuria, three-fold in proteinuria and five- to seven-fold in 

albuminuria [90], is not comparable with any human proteinuric diseases, in which 

100-10,000 fold changes in albumin excretion are observed [91]. Furthermore, he has 

claimed that the distinct effect of LPS on glomerular permeability have not been 

supported experimentally [89]. In response to Comper’s statement, Reiser and Mundel 

made an objection that this model was a significant tool to study podocyte biology and 

proteinuria, based on the facts that key effectors of this model, including B7-1 [74], 

cathepsin L [92] and urokinase-type plasminogen activator receptor [93] are induced in 

human proteinuric diseases and those proteins have been detected in podocytes in vivo 

[94].  
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1.3 Omics in the post genomic era 

The importance of determining the entire genome sequence of humans has been 

well acknowledged since the draft human genome sequence was completed ahead of 

schedule in 2001 [95-96]. Genomics provides sequence information on the full 

complement of genes in an organism, and to date, there have been more than 180 

genomes fully sequenced [97]. Therefore, genomics has facilitated the power of high-

throughput and comprehensive analysis of biological systems.  

In the post human genome era, several ''omics'' fields have emerged to facilitate 

our understanding of transcriptional regulation (transcriptomics) and the biochemical 

functions of all the gene products (proteomics). In contrast to traditional biochemical 

methods, omics techniques offer the potential to cross-examine thousands of 

independent variables in a single study, and thereby guarantee accelerated manners in 

identifying novel drug targets and in understanding the underlying mechanisms of 

health and disease [98]. 

 

1.3.1 Gene expression profiling and microarray analysis  

The central genetic doctrine utters that genomic DNA is first transcribed into 

mRNA, after which it is translated into protein. While the genome, the genes and the 

non-coding sequences of the DNA are generally common to all the cells in an 

organism and are normally static over its lifetime, the transcriptome, the collection of 

mRNA, is highly dynamic and changes in response to external stimuli and in disease 

[99]. Therefore, measuring the expression levels of mRNA provides a more accurate 

view of gene expression. 

Gene expression profiling is the term that describes the analysis of the 

transcriptome by simultaneous quantification of mRNAs levels expressed from large 

numbers of genes [99]. A wide range of technologies, both low and high throughput 

techniques, exist for the measurement of gene expression at the level of mRNA, 

including Northern blotting [100], quantitative real time RT-PCR (qRT-PCR)[101], 

real competitive PCR [102] and serial analysis of gene expression (SAGE) [103]. 

In 1995, the technique called DNA microarray was reported [104], and this 

technology has revolutionized research in gene expression analysis. Compared to 

conventional methods for gene expression measurements, which were performed at a 

gene-by-gene level, microarray technology allows simultaneous analysis of the 

expression of thousands of genes. Since the advent of this technology, microarray 
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techniques have been rapidly accepted as one of the most promising methods for gene 

expression profiling, and the application of this technique in molecular biology 

research has grown exponentially.  

By definition, a microarray is a large collection of gene specific DNA fragments 

of known sequences aligned in an orderly fashion on a solid surface to which labeled 

samples are hybridized [105]. In general, DNA microarray platforms are generated by 

cDNAs or short synthetic oligonucleotides (25-nucleotide-long for Affymetrix gene 

chip) onto membranes or glass slides. Before hybridization onto the array chips, the 

cDNA of interest is labeled with a fluorescent or radioactive dye (with biotin for 

Affymetrix oligonucleotide GeneChips). After hybridization, mRNA expression levels 

are measured by means of quantitative detection of fluorescent dye (by the comparison 

of samples hybridized on different chips for Affymetrix oligonucleotide GeneChips). 

The signal intensity for each spot is assumed to be proportional to the amount of each 

specific mRNA in the original sample. For that reason, the intensity difference between 

different samples can be used as the measurement of differential gene expression [106]. 

Figure 3 illustrates detailed comparison of two different microarray methods [107].  

Regardless of their ubiquity and tremendous usefulness, microarrays have certain 

limitations. First, no information can be obtained from microarray studies regarding the 

importance of translational regulation and the role of post-translational modification 

(PTMs) [108]. Second, it has been proven that the correlation between expression 

levels of mRNA and those of protein is not always perfect [109-110]. Therefore, it is 

not always accurate to conclude that changes in gene expression are direct evidence of 

consequent changes in protein expression. 

Recently, a new method called RNA sequencing (RNA-seq) has been developed 

for both mapping and quantifying transcriptomes [111-112]. In this method, cDNAs 

generated from the RNA of interest are directly sequenced using next-generation 

sequencing technologies. Briefly, a library of cDNA fragments with adaptors attached 

to one or both ends is made from a population of RNA, and then each molecule is 

sequenced in a high-throughput manner. There are major advantages of this method 

over microarray-based methods. First, RNA-seq can be used to detect transcripts that 

correspond to non-existing genomic sequence. Second, RNA-seq has better sensitivity 

and larger dynamic range. An increasing number of studies have demonstrated the 

potential for this method [113].  
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Figure 3. Comparison of two different cDNA microarray experiments 
For glass slide experiments, cDNA is prepared from two samples. After in vitro transcription (IVT), the 
two labeled cRNA samples are mixed and hybridized on a glass slide array. This is then scanned with a 
laser, followed by computer analysis of the intensity image. In Affymetrix arrays, the cDNA is used in an 
IVT reaction to generate biotinylated cRNA. After fragmentation, this cRNA is hybridized to 
microarrays, washed and stained with PE-conjugated streptavidin, and subsequently scanned on a laser 
scanner. The different abundance of a specific transcript between two samples can be obtained by 
comparing the signal from one sample to the other. 
 

1.3.2 Proteomics 

Transcriptomics employs DNA microarray technologies to investigate gene 

expression by measuring transcriptional regulation of genes via their mRNA levels. 

However, it is the proteins that act as the cellular building blocks that directly assert the 



 

 14

potential function of genes, such as enzymatic catalysis, molecular signaling, and 

physical interactions [97].  

The term proteome originally emerged to depict “the set of PROTeins encoded by 

the genOME” in 1996 [114]. The study of the proteome, proteomics, differs from 

protein analysis in that it is the characterization of the complete repertoire of individual 

protein species that comprise the proteome rather than focusing on a single protein. 

Proteomics aims to identify not only all the proteins in any given cells, but also the set 

of all protein isoforms and modifications, the interactions between them, the structural 

description of proteins and their higher-order complexes, and for that matter almost 

everything post-genomic [115].  

However, the analysis of a full proteome poses inevitable challenges due to the 

limitation and variability of sample material, sample degradation, vast dynamic range 

and a plethora of post-translational modifications (PTMs). For instance, the number of 

proteins exceeds by far the number of genes in the corresponding genome due to the 

fact that a particular gene can generate multiple distinct proteins as a result of 

alternative splicing of primary transcripts, the presence of sequence polymorphisms, 

PTMs, and other protein-processing mechanisms. Moreover, the proteome covers a 

concentration range that surpasses the dynamic range of any single analytical method or 

instrument. For example, the concentration range of serum proteins has been estimated 

to exceed 10 orders of magnitude [116]. To overcome these significant challenges in 

proteomics, new analytical strategies have been developed in which mass spectrometry 

(MS) is the central element with increased performance and versatility of the 

instrumentation. 

 

1.3.3 Mass spectrometry 

Mass spectrometry (MS)-based proteomics is a discipline made possible by the 

availability of gene and genome sequence databases and technical and conceptual 

advances in many areas, most notably the discovery and development of protein 

ionization methods, as recognized by the 2002 Nobel prize in chemistry. By the mid 

1990s MS had become a fundamental analytical technique for proteomics research. 

Since then, driven by the need to identify, characterize, and quantify proteins at ever 

increasing sensitivity and in ever more complex samples, a wide range of new MS–

based analytical platforms and experimental strategies have emerged [117].  
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Fundamentally, a mass spectrometer measures the mass-to-charge ratio (m/z) of 

gas-phase ions. By definition, it consists of three essential parts; ion source, mass 

analyzer and detector (Figure 4). An ion source converts analytes into gas-phase, a 

mass analyzer separates ionized analytes on the basis of m/z ratio, and a detector 

records the number of ions at each m/z value [118].  

 

 
 

Figure 4. Schematic presentation of a mass spectrometer 
A mass spectrometer has three essential parts, ion source, mass analyzer and detector. The ion source 
produces ions from the sample, the mass analyzer resolves ions based on their mass/charge (m/z) ratio, 
and the detector detects the ions resolved by the mass analyzer. 
 

1.3.3.1 Ionization techniques 

Proteins and peptides are polar, nonvolatile, and thermo-unstable molecules. To 

transfer those species into the gas phase without extensive degradation, a soft ionization 

technique is required. As an ion source, two ionization techniques, matrix assisted laser 

desorption/ionization (MALDI) and electrospray ionization (ESI), are generally utilized 

to volatize and ionize the proteins or peptides [119-120]. MALDI sublimates and 

ionizes the analytes out of a dry, crystalline matrix via a laser pulse, conversely ESI 

ionizes the analytes out of a solution and is typically coupled to liquid chromatography 

(LC) [121] (Figure 5).  

Preference of these two ion sources depends on the complexity of samples; 

MALDI is used for relatively simple peptide mixtures and ESI coupled to LC for 

complex samples. 
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Figure 5. Schematic picture of two kinds of ion sources, matrix assisted laser 
desorption/ionization (MALDI-left) and electrospray ionization (ESI-right) 
MALDI: After the matrix and the analyte (e.g. peptides) are mixed and co-crystallized on a metal plate, 
the laser is fired at the crystals. The matrix absorbs photons from the laser beam, and then excess energy 
is transferred to the analyte, which is ejected from the plate into the gas phase.  ESI: The analyte is mixed 
with a solvent and introduced into a capillary. A very high voltage is applied to this capillary, which 
charges the molecules in the solvent. The charged molecules pass from the capillary into the mass 
analyzer, whereas the solvent is pumped away by the vacuum system.   
 

 

1.3.3.2 Mass analyzers 

The mass analyzer is the essence of MS technology. Four types of mass 

analyzers, time-of-flight (TOF), quadrupole (Q), ion trap (IT) and Fourier transform ion 

cyclotron resonance (FTICR) are regularly employed for proteomics research. Today in 

research, it is fundamental to combine mass analyzers. Figure 6 illustrates common MS 

instruments.  

Fundamentally, a mass analyzer separates ions based on the mass-to-charge (m/z) 

ratios: TOF uses flight time, Q uses m/z stability, IT and FTICR use m/z resonance 

frequency [97]. Each mass analyzer has unique properties, such as analysis speed, 

dynamic range, ion transmission, mass range, resolution and sensitivity. In recent years, 

hybrid instruments, in which two or more mass analyzers are put together in tandem, 

have been designed to combine the capabilities of different mass analyzers to do more 

complicated protein analysis. Table 3 summarizes comparative features of the 

instruments currently most commonly used in proteomics. 
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Figure 6. MS instrumental configurations with different mass analyzers 
(A) Reflector time-of-flight (TOF): it accelerates ions by high kinetic energy, and it separates along a 
flight tube as a result of their different velocities. (B) TOF-TOF: it incorporates a collision cell between 
two TOF sections. In the first TOF section ions of one mass-to-charge (m/z) ratio are selected, fragmented 
in the collision cell, and the masses of the fragments are separated in the second TOF section. (C) 
Quadrupole: it selects ions by time-varying electric fields between four rods, which permit a stable 
trajectory only for ions of a particular desired m/z. Again, ions of a particular m/z are selected in a first 
section (Q1), fragmented in a collision cell (q2), and the fragments separated in Q3. (D) Quadrupole TOF: 
it combines the front part of a triple quadruple instrument with a reflector TOF section for measuring the 
mass of the ions. (E) Ion trap: it captures the ions as in the case of the linear ion trap, fragments ions of a 
particular m/z, and then scans out the fragments to generate the tandem mass spectrum. (F) Fourier 
transform ion cyclotron resonance: it traps the ions with the help of strong magnetic fields.  
 

 

Table 3. Comparison of commonly used mass spectrometers for proteomics 
Instrument Mass accuracy 

(ppm) 
Sensitivity m/z range MS/MS 

capability 
Ion source 

TOF 10-20 Femtomole NUL* n/a MALDI 
TOF-TOF 10-20 Femtomole NUL* MS/MS MALDI 
Q-q-TOF 10-20 Femtomole NUL* MS/MS MALDI/ESI 
Q-q-Q 100-1000 Attomole to 

Femtomole 
10-4000 MS/MS ESI 

QIT a  100-1000 Picomole 50-2000; 
200-4000 

MSn ** ESI 

Q-q-LIT b 100-500 Femtomole 5-2800 MSn ** ESI 

FTICR <2 Femtomole 50-2000; 
200-4000 

MSn ** MALDI/ESI 

* No upper limit, ** n>2, up to 13, a quadrupole ion trap, b linear ion trap 
(Modified from Han et al., 2008) 

 

The Q-q-TOF instruments demonstrate high resolution and mass accuracy in MS 

and MS/MS mode. In the MS mode, the quadrupole acts as an ion guide to the TOF 
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analyzer where the mass analysis takes place. In the MS/MS mode, on the contrary, the 

precursor ions, which are typically a multiple charged ion in ESI, are picked up in the 

first quadrupole and go into fragmentation through collision-induced dissociation (CID) 

in the second quadrupole. The product ions are analyzed in the TOF analyzer [117].  

The IT analyzers trap ions, and ions can therefore be accumulated and stored over 

time. The linear ion trap (LIT) analyzers have been replacing Q trapping devices 

because they cover a wider dynamic range and have better overall sensitivity. 

Characteristically, LIT instruments have an optional slow scanning function to increase 

resolution, and have multiple-stage sequential MS/MS capabilities, in which fragment 

ions are repeatedly isolated and further fragmented. This approach has proved to be 

very useful for the analysis of posttranslational modifications such as phosphorylation 

[122].  

 

1.3.4 Sample separation techniques for MS 

Protein MS highly depends on sample separation technologies that are needed to 

simplify complex biological samples prior to MS analysis. It should be emphasized that 

sample separation is the key to success for identification of proteins. For instance, low-

abundance species cannot be detected without appropriate sample separation, otherwise 

they will be overshadowed by higher abundance signals [97].  

There are two major approaches to separate proteins prior to MS analysis, gel-

based and gel-free separation methods. Traditionally gel-based methods have been used 

in analysis with MALDI instruments. In this method the protein band can be excised, 

digested, and off-line sampled with MALDI source [123]. High-pressure liquid 

chromatography (HPLC) is the most common gel-free method, and is usually directly 

coupled to instruments with an ESI source. In this method protein samples can be 

digested, and on-line sampled with ESI source.  

 

1.3.4.1 Two-dimensional gel electrophoresis (2-DE) 

In 1975, the basic technology for two-dimensional gel electrophoresis (2-DE) was 

illustrated by O'Farrell [124]. Since then, 2-DE has become a powerful and commonly 

used methodology to study proteomic expression followed by mass spectrometry (MS) 

for protein identification [125]. 2-DE is based on the separation of proteins in two 

dimensions. In the first dimension, proteins are separated according to their charge 

(isoelectric point, pI: the pH at which a protein carries no net electrical charge) using a 
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technique called isoelectric focusing (IEF). In the second dimension, proteins are 

separated according to their size (molecular weight) using sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) [126]. Figure 7 illustrates the general 

principle of 2-DE [108].  

 

 
 

Figure 7. General principle of 2-DE 
Proteins solubilized in buffer, typically containing high concentration of urea and detergent, are applied 
to an immobilized pH gradient strip for IEF (1st dimension). IEF separates proteins by their isoelectric 
points (pIs). SDS-PAGE (2nd dimension) separates proteins by their molecular weights.  
 

 

A major advantage of separation of proteins by 2-DE is its ability to visualize 

proteins that have undergone post translational modifications (PTM) or mutation. 

Those proteins appear as spot trains in the horizontal and/or vertical axis of the gel 

(e.g., phosphorylation, glycosylation and limited proteolysis or point mutations). 

Another advantage is that 2-DE can separate a high amount of proteins due to the 

commercial availability of a whole range of different pH strips for first dimension 

separation [108]. Therefore, 2-DE can simultaneously separate about 2,000 proteins in 

a single gel depending on the chosen pH gradient and gel size [125]. In contrast, one of 

major drawbacks of 2-DE is the spot visualization of low abundant proteins since 

proteins have a wide dynamic range in abundance [127]. Another major drawback of 2-

DE is the resolution of membrane and large hydrophobic proteins since most of them 
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are not soluble in aqueous solution and thus do not enter the pH strips during the first 

dimension [128-129].  

 

1.3.4.2 High pressure liquid chromatography (HPLC) 

High pressure liquid chromatography (HPLC) separates analytes based on their 

idiosyncratic polarities and interactions with the column's stationary phase. In MS-

based proteomics, the following types of HPLC chromatographic materials are most 

commonly used: reverse phase (RP), ion exchange (IEX), hydrophilic-interaction 

chromatography (HILIC), affinity, and hybrid materials [97].  

The reverse phase liquid chromatography (RPLC) is as indispensable to gel-free 

LC/MS as 2-DE is to gel-based proteomics [130]. RPLC separates peptides based on 

their hydrophobicity. The significant advantages of RPLC are that the buffers used are 

compatible with ESI and that RPLC desalts the sample [131-132]. The disadvantage is 

that it seldom provides enough resolution. However, by decreasing the diameter of the 

packing materials or by using narrow-bore, long columns under ultra-high pressure 

conditions, this issue has been overcome and separation performance has been 

improved dramatically [133]. 

Multidimensional separation, which combines several separation techniques 

coupled to improve the resolving power, is employed to tackle high sample complexity. 

In reality, analytical samples like tissue lysate or bio-fluid contain thousands of proteins 

that can range upward of five orders of magnitude in their abundance [127]. Moreover, 

the complexity of protein samples becomes even higher after being digested by trypsin, 

which, in turn, yields multiple peptide products [134]. It is essential for 

multidimensional separation to consider the orthogonality of the individual separation 

methods in which each dimension uses different properties of molecules as a basis for 

separation [135]. 
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1.3.5 Analytical techniques for protein identification 

Typically, two different analytical techniques are used to identify proteins in MS 

analysis. One is Peptide Mass Fingerprinting (PMF) in which the experimental 

spectrum obtained by MALDI (Figure 8) is compared with theoretical ones. These are 

computed from protein sequences stored in databases and in silico digested using the 

same cleavage specificity of the protease employed in the experiment [136]. The 

PMF method is suitable for identification of isolated proteins. Complicated mixtures 

of proteins typically require the use of tandem mass spectrometry (MS/MS) based 

protein identification to achieve sufficient specificity of identification [137].  

 

 
 

Figure 8. A typical MS spectrum obtained by MALDI 
After a MALDI spectrum has been de-isotoped, a list of peaks, each of which represents a peptide, is 
created. A list of peaks is submitted to the database for analysis using a library of protein sequences. 

 

MS/MS is another technique for protein identification by sequencing peptides 

(Figure 9). To fragment peptides, the technique called collision-induced dissociation 

(CID) [138] has been widely used. In general with this method, the precursor ions are 

picked up first, and go through peptide backbone fragmentation of C-N bonds resulting 

in a series of b-fragment and y-fragment ions [118]. However, the usage of CID is not 

suitable for sequencing peptides containing more than fifteen amino acids and intact 

proteins.  
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Figure 9. A typical MS/MS spectrum obtained by ESI 
The MS/MS spectrum of mouse “EH-domain containing 4” peptide "AMQEQLENYDFTK". The 
sequenced peptide is blasted in the database to identify the protein.  
 
 

1.3.6 Relative quantitative proteomics 

In the past decade, the trend of proteomics research has shifted from simple 

identifications to complex quantitation of proteins for the understanding of cellular 

activities, disease developments and physiological responses to therapeutic 

interventions and environmental perturbations. Relative quantitative proteomics allows 

for simultaneous identification of hundreds of proteins and reveals differences in 

protein abundance between distinct samples [139] With the aim of investigating 

differential protein expression in complex biological samples, there are two approaches 

employed in MS-based proteomics; a gel-based method for intact proteins and a non 

gel-based method for enzymatically digested peptides. 

 

1.3.6.1 Differential gel electrophoresis (DIGE) 

Optical detection of proteins with a fluorescent label has an excellent dynamic 

range, and 2-DE is well-suited to separate and analyze proteins and their isoforms. 

Combining these two methods, Differential Gel Electrophoresis (DIGE) was invented 

for quantitative analysis of intact proteins [140]. DIGE is a technique allowing 

quantitative proteomics of two or more samples by optical fluorescence detection of 

differentially labeled proteins that are electrophoretically separated on the same gel 

[141]. This methodology involves pre-labeling several samples with spectrally distinct 
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fluorescent dyes (e.g. Cy2, Cy3, and Cy5) coupled to primary amines such as the N-

terminus and lysine residues, followed by sample multiplexing and co-resolution on the 

same 2-DE gel to eliminate gel to gel variations [142]. Moreover, multi-variant analysis 

can be inter-compared with a relatively small number of coordinated DIGE gels using 

internal standards and experimental repetition. 

DIGE is an extremely sensitive method for detection of proteins. It can detect less 

than 1 fmol of protein, and allows linear detection of over more than 104 fold protein 

abundance range [143-144]. Conversely, this methodology has some limitations 

including low-throughput and labor-intensive operation with high dependence on the 

expertise of the operator. In addition, 2-DE does not perform well for hydrophobic and 

very acidic or basic proteins [145]. 

 

1.3.6.2 Stable isotope-labeling methods  

Two general approaches are utilized to incorporate stable isotopes into 

proteins/peptides for relative quantitation, metabolic labeling and chemical 

derivatization. For metabolic labeling, cells are cultured in isotopically defined and 

distinct medium containing unique isotope-labeled amino acids (heavy Arg, Lys, Leu 

and Ile). The relative-abundance ratio of peptides with identical primary sequence from 

mixed cell lysates is measured by comparing heavy/light peptide pairs by MS [97, 146]. 

One of the commonly used approaches is stable-isotope labeling by amino acids in cell 

culture (SILAC).  

In an experiment employing SILAC, the labeled SILAC amino acids, for instance 
13C labeled L-lysine, are supplied to cells in culture instead of the natural amino acids, 

and the SILAC amino acids are incorporated into all newly synthesized proteins. After 

at least five cell divisions, replacement of amino acids will be completed [147]. In view 

of the fact that there is hardly any chemical difference between the labeled amino acid 

and the natural amino acid isotopes, the two cell populations should behave exactly the 

same in the presence of normal or labeled amino acid. In general, much less sample 

preparation for quantitative studies is required for metabolic labeling experiments, 

although tissue samples or body fluids cannot be used [145]. 

Chemical derivatization strategies, including isotope-coded affinity tags (ICAT) 

[148] and isobaric tags for relative and absolute quantification (iTRAQ) [149] allow 

measurement of changes in expression levels between two proteomes in a single MS-

based experiment. Concisely, for the relative quantitation of peptides from proteolytic 
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digestion of complex protein mixtures, an isotopically unique functional group is added 

chemically to a peptide to distinguish separate samples by their unique mass [145].  

In the ICAT method, proteins from two different biological samples are labeled 

with a biotin-containing heavy (typically 2H or 13C) or light (native) version of a reagent 

that selectively couples to the side chain of a reduced cysteine residues [148]. 

Subsequently, the labeled proteins are combined and proteolytically digested into 

peptides, and affinity purification using streptavidin is applied for enrichment of 

labeled peptides. Utilizing the ratio of the signal intensities from the ‘heavy’ and ‘light’ 

forms of each peptide, the relative abundance of peptides is determined by MS analysis. 

Subsequently individual peptide ratios from the same protein are combined to produce 

abundance ratios of identified proteins in the sample [150]. A major advantage with 

ICAT is that it enhances the detection of low-abundance proteins due to the enrichment 

of the modified peptides via affinity purification of the biotin moiety. Nonetheless, 

because of selectiveness of the ICAT reagent, which only labels proteins/peptides 

containing cysteine residues, quantitation of proteins not containing a cysteine residue 

will not occur [146]. 

In the iTRAQ method, amine-specific isobaric reagents are used to label the 

primary amines of peptides for the concurrent quantitative comparison of up to eight 

different biological samples [151-152]. This method was developed to solve some of 

the limitations of ICAT. Compared to the ICAT method which produces multiple MS 

peaks per peptide, the MS spectrum of each peptide in this method does not increase in 

complexity owing to the isobaric nature of the tagging reagents. Relative peptide 

abundance measurements between the samples are made based on the relative intensity 

of each reporter ion with distinct m/z, which is released during peptide fragmentation. 

In contrast to ICAT, iTRAQ theoretically labels all peptides in a mixture. However, 

labeling after protease digestion in the iTRAQ method limits the use of reporter ions as 

internal standards since experimental variations at prior sample preparation steps are 

not accounted for [146]. Table 4 summarizes three stable isotope-labeling methods 

[153]. 
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Table 4. Comparison of three methods: SILAC, ICAT and iTRAQ 

 how to label suitable sample when to digest where to label 
SILAC metabolically cell culture after labeling depends* 

ICAT chemically anything after labeling cysteine residues 

iTRAQ chemically anything before labeling primary amine 

*One or several amino acids depends on the media used 
 
 
  advantages disadvantages 
SILAC • replacement of AA** occurring in the 

biological system  
• flexible sample preparation  

• applicable only to cell cultures 

ICAT • any biological materials can be used 
• detection of low-abundance proteins 

• relatively extreme chemical conditions 
• only labeling proteins/peptides containing 

cysteine residues  
iTRAQ • completion of the tagging reaction without 

major side reactions 
• up to eight different samples can be used 

• expensive in large-scale experiments 
• variation of sample preparation 

**Amino acids                                                                                                    (modified from Wilm, 2009) 
 
 
1.3.6.3 Label-free methods 

Label-free quantification requires only minimal modification of the sample and is 

therefore the most compatible method for quantifying the expression changes of 

proteins in large-scale proteomics studies [153]. The foundation of label-free 

approaches is the comparison of distinct regions of m/z and retention time which 

represent the same analyte across multiple analyses. This method functions based on 

the observation that signal intensity from ESI correlates with ion concentration [154] 

and that an ion with a particular m/z is detected at a particular time.  

There are some practical constraints to this method for the quantitation of protein 

abundances in several complex biological samples. One drawback is the difference in 

the peak intensities of the peptides from the same sample between runs, caused by 

experimental variation such as sample injection. The other hurdle is chromatographic 

shifts in retention time which occur as a result of multiple sample injections onto the 

same reverse-phase LC column [155]. Therefore, the thorough strategy, including 

meticulous experimental design, cutting-edge computational method, and highly 

reproducible technology, is vital in this comparative approach to normalize and correct 

experimental variances which affect MS intensity and retention time [146]. 
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2 Aim of the study 
 

The overall aim of this study was to investigate the kidney glomerulus at mRNA 

and protein level and to provide new insights into the biological and pathological 

processes of the glomerulus. To accomplish this goal, glomeruli were isolated from 

both healthy and diseased kidneys and studied by expression profiling and protein 

analyses. The specific aims were to: 

 

I:  Identify glomerular proteins from mouse kidneys using two dimensional gel 

electrophoresis and mass spectrometry. 

 

II: Characterize novel proteins in the kidney, which are highly expressed in mouse 

glomeruli. 

 

III: Perform glomerulus specific transcriptome profiling in the adriamycin-induced 

proteinuric mouse model.  
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3 Experimental procedures 
 

In this section, various methodologies employed throughout this study are briefly 

described. Detailed descriptions can be found in the “Materials & Methods” sections of 

the corresponding papers (I, II and III). 

 

Isolation of mouse kidney glomeruli (I and III) 

 

Glomeruli were isolated by the Dynabeads® perfusion method [156] using female 

C57BL/6 mice for paper I and female BALB/c mice for paper III. Figure 10 illustrates 

the procedure of isolation of glomeruli.  

 

 
Figure 10. Flow chart of mice glomeruli isolation technique 
 

Briefly, an anesthetized mouse was perfused through the left ventricle with 

HBSS containing 8x107 Dynabeads® (Invitrogen, CA). The kidneys were removed, 

minced and digested with collagenase A and DNase I for 30 min at 37 °C for RNA 

isolation (III). For extraction of the whole proteome from the glomeruli, collagenase 
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treatment was eliminated to avoid digestion of extracellular proteins (I). Minced 

kidney tissue was then sieved through a 100 µm cell strainer, and the glomeruli-

containing magnetic Dynabeads were collected with a magnetic particle concentrator. 

The glomeruli were counted and checked for purity under a light microscope. 

 

Extraction of proteins from isolated mouse glomeruli (I and II) 

 

Isolated glomeruli were suspended in water, and the suspension underwent four 

freeze-thaw cycles using liquid nitrogen to disrupt the cells. The samples were then 

freeze-dried under vacuum. Dried samples were solubilized in a buffer containing 

urea, DTT, and detergents in a shaker at 20 °C for 4 h. After centrifugation, 

supernatants were collected and protein concentrations measured with the Bradford 

assay. 

 

Two-dimensional gel electrophoresis (I) 

 

Protein extracts, 75 µg for silver-stained gels and 500 µg for the CBB-stained 

gels, were applied onto 17 cm IPG strips, and IEF was carried out with total voltage 

hours (Vh) of 51000 for the pI 4–7 strips and 35000 Vh for the pI 3–10 strips. The 

second dimension was performed on homemade 8–16% gradient SDS-PAGE gels. 

The gels were stained with silver or CBB. Molecular weights of proteins were 

determined by comparisons with positions of protein standards.  

 

Sample preparation for mass spectrometry (I) 

 

Protein spots were excised manually from both the CBB-stained and the silver-

stained gels. Gel pieces were cut into small pieces and digested with trypsin using a 

protocol previously published [157]. Peptides were extracted from gel spots with 

acetonitrile solution containing formic acid. Acetonitrile was removed, and then 

samples were desalted manually with ZipTips® (Millipore, MA). For MALDI 

analysis, desalted samples were mixed 1:1 with a matrix solution containing α-cyano-

4-hydroxycinnamic acid. For reduced matrix adduct formation in spectra, ammonium 

phosphate was added to the matrix [158]. 
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Mass spectrometry analysis of trypsin digested proteins (I) 

 

A MALDI instrument, Q-TOF Ultima (Waters, MA), was employed for peptide 

mass fingerprinting (PMF). The instrument was calibrated with a polyethylene glycol 

standard between 80–2500 m/z, and was operated in single reflector mode and with 

positive ion data. The MS software, MassLynx Version 3.4, was used to create a peak 

list, and MaxEnt3 was applied for each list before submitting into the Mascot search 

engine (http://www.matrixscience.com/).  

A LC-API instrument, Q-TOF Ultima tandem mass spectrometer was utilized 

for amino acid sequences of relevant peptide samples for the identification of 

samples, which could not be confirmed by PMF experiment. Data-dependent 

acquisition (DDA) was used at 300–1600 m/z in MS mode and 50–1600 in MS/MS 

mode with a scan rate of 1 s and automatic switching from MS to MS/MS mode on 

multiple charged ions. PLGS 2.2.3 was used to a pkl-file for protein data searches. 

 

Production of Polyclonal Antibodies (II) 

 

Antibodies were made using tagged recombinant proteins as antigens. Briefly, 

after antigens were expressed as tagged recombinant proteins (His-tag for dendrin, 

GST-tagged for ehd3) in bacteria, they were purified by affinity chromatography, 

followed by ion-exchange chromatography. Purified antigens were utilized for 

production of antibodies by immunization of NZW rabbits using standard protocols.  

 

Western Blotting (II) 

 

 Western blotting was carried out following standard procedures using polyvinyl 

difluoride (PVDF) membranes. Briefly, 10 µg of proteins were separated by SDS-

PAGE and transferred to a PVDF membrane. Then, the membrane was blocked, and 

incubated with a primary antibody. After being washed for 2 hrs, the membrane was 

incubated with horseradish peroxidase–conjugated secondary antibody. The protein of 

interest was detected by chemiluminescence.   
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Immunohistochemistry (II) 

 

Adult mouse kidney was used for immunofluorescence staining. Kidneys were 

snap-frozen, and the cryosections (10 µm) were postfixed with cold acetone, followed 

by blocking in 5% normal goat serum. The primary antibodies were incubated overnight 

at 4 °C, followed by the incubation with fluorescent secondary antibody. 

 

Induction of ADR nephropathy in mice (III) 

 

Six-week-old female BALB/c mice, weighing 16-20 g, were used. Adriamycin 

(ADR, doxorubicin hydrochloride) was diluted with isotonic saline solution (0.9% 

NaCl) to 2 mg/ml, and was injected as a single dose via the tail vain at a dosage of 10.5 

mg/kg body weight.  

 

Urine and blood analysis of ADR-induced proteinuric mice (III) 

 

Spot urine was collected from mice. To confirm proteinuria, 1 µl of urine was 

applied to an SDS-PAGE gel, and the gel was stained with PageBlue™. Total 

urinary protein concentration was quantified using Coomassie Plus. Urinary 

creatinine was quantified using the QuantiChrom™ Creatinine Assay Kit to 

calculate protein/creatinine ratio. Blood samples for blood urea nitrogen (BUN) 

measurements were collected under anesthesia by cardiac puncture. BUN was 

quantified using the QuantiChrom™ Urea Assay Kit.  

 

Histological assessment (light- and electron-microscopy) (III) 

 
For light microscopy, kidneys were fixed in 4% paraformaldehyde (PFA) at 4 °C 

for 24 h and then dehydrated in graded alcohols and embedded in paraffin. Sections (4 

µm) were stained with hematoxylin and eosin (HE). For electron microscopy, small 

kidney pieces were fixed in 0.05 M sodium cacodylate buffer with 2% PFA and 2.5% 

glutaraldehyde. 
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TUNEL staining and positive cell counting inside glomerulus (III) 

 

Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) 

staining was performed to assess the presence of apoptotic cells. Anti-podocalyxin 

antibody was used for labeling the secondary foot processes of the podocytes. In each 

sample, 100 glomeruli were counted randomly, and glomeruli containing TUNEL 

positive cells were analyzed using Volocity software. The counting was repeated three 

times for each sample.      

 

Microarray analysis (III) 

 

Total RNA from glomeruli was extracted using RNeasy Mini kit (Qiagen, Hilden, 

Germany). Extracted RNA was labeled and hybridized on Affymetrix Mouse Genome 

430 2.0 chip. Affymetrix data were processed using the R software (version 2.9.0) and 

the Bioconductor packages. Affymetrix raw data were normalized with the gcrma 

method (R package version 2.16.0). After normalization, samples were subjected to 

hierarchical clustering (Euclidian distance, average linkage).  

To identify differentially expressed genes between samples, all probe sets with 

expression changes more than two-fold at any time point were selected. The student t-

test (two sided) was applied to examine the significance. Multiple test correction was 

done using the False Discovery Rate (FDR) method and a FDR <0.1 was used to select 

the differentially expressed genes. 
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4 Results and discussion 
In Paper I, we described the use of 2-DE gel electrophoresis and mass 

spectrometry analysis to generate new information about the healthy glomerular 

proteome in mouse as a basis for later studies on the glomerular proteome from 

diseased kidneys.  

After the isolation of glomeruli, the purity and number were checked under a 

light microscope. The glomeruli appeared to be highly pure and devoid of Bowman’s 

capsule. The number of glomeruli obtained from one mouse was approximately 

20,000. The amount of glomerular protein extracted from one mouse was 

approximately 100 µg. 

Total glomerular, denatured protein extracts were subjected to two different pH 

ranges of immobilized pH gradient (IPG) strips for IEF, and two different methods 

were used to stain the gels (Table 5).  

 

Table 5. Summary of three 2-DE experiments 
 

pH range of IPG 
strip 

Gel-staining 
method 

number of spots 
detected 

number of 
spots excised 

3 to 10 CBB* 342 96 
4 to 7 CBB* 625 192 
4 to 7 silver 922 480 

* Coomassie Brilliant Blue 

Each excised spot was digested with trypsin and analyzed individually first by 

MALDI-TOF MS for peptide mass fingerprinting (PMF), using a minimum of four 

matching peptides, a coverage of 12% of the protein, minimal scores and maximal 

expected values as given for approval of the identification of protein. Furthermore, 

relevant protein spot identifications were checked by amino acid sequence analysis 

using LC-MS/MS. Eventually, 414 protein spots, representing 232 different proteins, 

were identified. 72 out of 232 proteins were identified by silver staining.  

Most of the identified proteins are ubiquitous, housekeeping proteins whereas 

several are cytoskeletal structural proteins highly expressed in podocytes (actin, F-

actin, vimentin, α-tubulin, β-tubulin), as reported previously [159]. Even though 

previous 2-DE studies of the kidney glomeruli have not been able to identify any 

proteins expressed specifically in the kidney podocyte slit diaphragm, we did identify 
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α-actinin-4 and nephrin, which are known to play important roles in the glomerular 

filtration barrier and its diseases. 

Surprisingly, only 53 out of the 232 identified proteins had been detected in 

other glomerular proteome studies [159-160]. This result could be due to many 

factors, including the use of several identification methods and the quality of tissue 

preparations. Altogether, our result demonstrates the value of repeated proteome 

analyses using different methodologies.  

Comparison of proteome analyses of endothelial and mesangial cells to that of 

ours revealed that these proteome studies detect many of the housekeeping proteins 

shared by similar tissues [160-161]. In addition, comparison of the results of these 

direct proteome studies with those of separate transcriptome analyses exposed that an 

independent glomerular-specific cDNA library analysis [56] could not identify all of 

these proteins. This shows that multiple approaches are indispensable to complement 

each other in final interpretations of functional relationships.  

Miyamoto et al. analyzed the human glomerular proteome using a different 

approach from ours [162] . They separated proteins using 1-D (SDS-PAGE) and 2-D 

(solution-phase IEF in combination with SDS-PAGE) prefractionation prior to the 

shotgun analysis with LC−MS/MS. As a result, they identified around 3,000 unique 

proteins. This fact proves that prefrationation of the sample before applying to MS 

analyses is vital. Due to drawbacks of 2-DE, a limited dynamic range for detection, and 

a poor resolution of membrane and large hydrophobic proteins, more effective and 

sensitive methods have emerged and are now replacing 2-DE. Multidimensional liquid 

chromatography (MDLC) is one of these. An HPLC based MDLC platform can reduce 

the sample complexity prior to the MS analysis, and can therefore maximize the 

chances that the MS will detect peptides present in tryptic digest of a proteome [163]. 

 

In Paper II, we characterized five novel transcripts/proteins that were identified 

among more than 300 glomerulus-upregulated transcripts in a large-scale sequencing 

and microarray profiling analysis of the glomerular transcriptome [56]. The 

transcripts/proteins, ehd3, dendrin, sh2d4a, plekhh2, and 2310066E14Rik were 

characterized with respect to their expression profiles in detail. RT-PCR and Northern 

blotting experiments demonstrate the presence of four transcripts, except plekhh2, in 

kidney, and the size of each transcript was in agreement with the predicted cDNA size 

described in the NCBI database. In addition, Western blotting experiments revealed the 

presence of five proteins in glomerular lysate but not in the rest of kidney, and the size 
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of each protein was in agreement with its predicted protein size. The glomerulus 

specificity of three mRNAs, dendrin, ehd3 and2310066E14Rik, was verified using in 

situ hybridization, and the localization of five proteins was revealed to be specific to the 

glomerulus based on immunofluorescence staining. Dendrin, Sh2d4a, and Plekhh2 

proteins were localized to the slit diaphragm and the foot process, 2310066E14Rik 

protein was localized to the podocyte major processes and cell body, and the Ehd3 

protein was localized to glomerular endothelial cells (GECs). 

It is known that several critical glomerular proteins, such as nephrin, podocin and 

NEPH1 have very restricted expression patterns, and these crucial proteins are 

expressed exclusively by podocytes in the kidney glomerulus [13, 15, 164]. Therefore, 

the limited expression pattern of the proteins discovered in this study advocates that 

they may have a highly specific role in the glomerulus.  

We hypothesize that dendrin may act as a linker molecule between the slit 

diaphragm and the actin cytoskeleton based on our finding that dendrin is located at the 

cytoplasmic face of the slit diaphragm. This hypothesis is supported by recent data  

showing that dendrin interacts in vivo with two cytoskeletal components, α-actinin and 

membrane-associated guanylate kinase inverted (MAGI) [165]. We found that ehd3 

was expressed specifically in GECs, and to our knowledge Ehd3 is, thus, the first 

protein shown to be expressed only in GECs and not by other endothelial cells. This 

discovery is intriguing because the use of the ehd3 promoter may enable the generation 

of a GEC-specific Cre mouse line, and such a mouse line could be a vital tool for future 

research. We discovered that both cytosolic proteins, Sh2d4a and Plekhh2, are 

expressed only in podocytes, and at the subcellular level, we localized these proteins 

specifically to the foot processes. Our hypothesis is that Sh2d4a protein may be 

involved in slit diaphragm signaling and that the Plekhh2 protein may be involved in 

connecting the slit diaphragm to the actin cytoskeleton. 

 

In the work described in paper III, we compared the glomerular transcriptome in 

normal and disease states, as well as its changes during progression or recovery of 

glomerular disease utilizing the adriamycin (ADR)-induced proteinuric mouse model. 

This model is highly reproducible and allows the precise timing of the onset of 

proteinuria and the change of morphology in glomerulus, therefore, is excellent to study 

expression profiles during disease progression. 

All animals injected with a single dose of ADR developed nephrotic syndrome 

characterized by body weight loss, massive proteinuria, and elevated BUN. Overt 
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proteinuria was observed four days after ADR injection, and the leakage of serum 

albumin reached its maximum at seven days.  Electrophoresis of urinary proteins using 

SDS-PAGE revealed that proteinuria in ADR-injected mice consisted mainly of 

albumin with a molecular weight of about 70 kDa.  

Apparent morphological changes in ADR-injected mice kidney were observed at 

day seven in electron microscopy as segmental podocyte foot process effacement was 

detected. Light microcopy revealed first pathological changes at day 14 as resorption 

droplets and intraluminal casts were detected in the tubular compartment. TUNEL 

staining revealed an increase in apoptotic positive cells in glomeruli of ADR-injected 

mice, and the number of apoptotic positive cells gradually increased after ADR 

injection, reaching a maximum at 14 days after ADR injection.  

Affymetrix microarray experiments were performed using mRNA from isolated 

kidney glomeruli at four time points (0, 4, 7 and 14 days). Four days after ADR 

injection a total of 698 genes were differentially expressed in the acute injury phase. 

Nine p53 target genes were found to be up-regulated probably due to DNA damage 

caused by ADR.  Five inflammatory response genes were found to be up-regulated and 

one gene, Socs3, was found to be down-regulated due to ADR toxicity. Two apoptosis 

related genes, Serpina3g and Tnfrsf12a, were found to be up-regulated. Three AP-1 

(active protein-1) genes, belonging to the family of dimeric transcription factors 

binding to the AP-1 binding site of DNA, Atf3, Fos and Fosb, were all found to be 

down-regulated.  

 Since ADR is known to cause oxidative DNA damage [166], it was not 

surprising to observe a major increase in the levels of transcripts related with the p53 

protein pathway in the acute injury stage at 4 days after ADR injection [167-168]. 

Although the expression of p53 itself did not significantly change, the expression of 

nine p53 target genes was changed at 4 days after ADR injection. The change of these 

genes expressions and the number of apoptotic cells inside glomeruli suggest that DNA 

damage due to injection of ADR has occurred and led to apoptosis of glomerular cells. 

However, since the number of apoptotic cells inside the glomeruli is still relatively 

small four days after ADR injection, and the proteinuria has not reached maximum, the 

podocytes and the glomerular filter have probably not yet become extensively 

damaged. 

275 genes were differentially expressed at the seven days stage. Several genes 

indicating glomerular injury were differentially expressed seven days after ADR 

injection. Three genes related to human kidney diseases and proteinuria, Ankrd1[169], 
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Cyr61[170] and Serpine1 [171], were found to be up-regulated. Two DNA damage 

response genes were found to be up-regulated. Four podocyte enriched/specific genes 

were found to be down-regulated, suggesting podocyte injury caused by ADR [172].  

At 7 days after ADR injection, the ratio of urine protein/creatinine had reached 

its maximum and there was extensive effacement of podocyte foot processes. At that 

time one could observe a marked change in the expression of several podocyte 

specific genes. As could have been expected, several genes expressed specifically in 

podocytes were down-regulated at this stage. Ddn (dendrin) is one of them, and is a 

specialized cell junction component present at the slit diagram (SD), where 

interdigitating foot processes of podocytes are connected [173]. As dendrin is known 

to bind directly to nephrin and CD2AP in the slit diaphragm [174], we examined the 

expression levels of those genes. Dendrin is relocated from the slit diaphragm to the 

nucleus of injured podocytes in experimental glomerulonephritis [174], but we could 

not detect the protein in the nuclei of podocytes in ADR-induced nephropathy. 

Considering the present data that show changes in the expression of podocyte specific 

genes at seven days after ADR injection, it is clear that ADR causes extensive 

podocyte injury, which leads to end stage renal failure.  

A total of 600 genes were differentially expressed 14 days after ADR injection, at 

a stage when slight recovery of glomerular injury and the proteinuria had initiated. Two 

genes, Fgfbp1 and Acvrl1, were found to be up-regulated only at this time point. The 

majority of genes up-regulated at this point were found to be up-regulated from day 4 

or day 7 after ADR injection.  

At 14 days after ADR injection, overt proteinuria was still present and the 

number of apoptotic cells in glomeruli had further increased. Also, morphological 

changes were still observed in the kidney cortex by light microscopy. The proteinuria 

caused by ADR-induction is not transient and reversible like it is in LPS-induced 

proteinuria mice model [88].  

Several genes were significantly expressed at all three time points, days 4, 7 and 

14. Cdkn1a was one of those genes, which interestingly is known to play dual roles. 

Cdkn1a protein has prosurvival or proapoptotic function depending on its relative 

protein levels, subcellular localization and protein–protein interactions [175-178]. To 

verify which role Cdkn1a plays in the ADR-induced nephropathy model, we examined 

the expression of genes that are directly or indirectly linked with Cdkn1a. 57 genes 

were categorized into two groups; 20 genes to be positively correlated to and 37 genes 

to be negatively correlated to Cdkn1a expression profiles. Among them, five p53-
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related genes were found to be positively correlated to Cdkn1a expression profile 

indicating that p53 was induced by ADR injection followed by DNA damage. Two 

anti-apoptotic genes were also positively correlated with Cdkn1a expression profile 

indicating these genes restrained the number of apoptotic cells in glomeruli. On the 

other hand, eight podocyte specific genes were found to correlate negatively with the 

Cdkn1a expression profile indicating that the podocyte was the direct target of ADR-

induced DNA damage.  

We conclude that ADR causes DNA damage inside glomeruli and it may lead 

to podocyte injury. It is not exactly clear which part of glomeruli is primarily affected 

by ADR, or which pathways are involved to induce overt proteinuria. Further 

investigations are needed to reveal which genes and pathways play important roles in 

the development of proteinuria in the ADR-induced proteinuric model.   
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5 Conclusions and future perspectives 
Identification of proteins in mouse glomeruli using 2-DE gel electrophoresis 

and mass spectrometry with two different staining methods provided new knowledge 

about proteomes in glomeruli, but the amount of identified proteins was highly 

limited. Characterization of five novel genes, specifically expressed in glomeruli, 

rendered new information on novel proteins. They will be interesting to study further 

for function in mouse models and expression in glomerular diseases. Comparison of the 

glomerular transcriptome in normal and disease states, as well as its changes during 

progression or recovery of glomerular disease utilizing the ADR-induced proteinuric 

model in mouse gave us additional intuition toward understanding the pathogenesis of 

proteinuria. It is apparent that extensive transcriptome analysis of isolated glomeruli 

will yield immense new information on various glomerular diseases. Such analyses 

may have diagnostic value in the future.  

Our knowledge about the gene and protein expression complexity in the 

glomerulus has been accumulating steadily over the years. At the same time, new 

technologies are arising to explore new information concerning the structure and 

development of the renal filter and its cellular and extracellular components. 

Furthermore, transcriptome and proteome analysis of human diseases affecting 

glomerular function, and of animal models of these diseases, will lead to the 

identification of critical developmental and maintenance processes, and unique and 

common pathogenic pathways involved in glomerular disease. 

In conclusion, it is crucial to combine large-scale expression profiling platforms 

(RNA-seq), quantitative proteomics using mass spectrometry, transgenic mouse lines, 

and other in vivo gene delivery methods. That will further expand our understanding of 

the physiology and pathphysiology of the glomerular filtration barrier, and reveal novel 

target molecules for the therapy of kidney diseases. 
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