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If the doors of perception were cleansed, everything
would appear to man as it is. ..

William Blake, The Marriage of Heaven and Hell, 1793






Abstract

Leukotrienes (LTs) are proinflammatory lipid mediators derived from polyunsaturated
arachidonic acid, which is ester-bound at the sn-2 position of glycerol in cellular phos-
pholipid bilayers. In LTs biosynthesis, 5-lipoxygenase (5-LO) represents the key enzyme,
which catalyzes two initial steps. The aim of present thesis was to investigate the effects
of a small 5-LO binding protein named Coactosin-like Protein (CLP) on the 5-LO activa-
tion and stability in order to define the potential role of CLP in mechanisms involved in
formation of LTs.

First, we found that NMR structure of human CLP is composed of a five-stranded (-sheet
surrounded by four a-helices. The structure also revealed high flexibility of the C-terminus
of CLP molecule and the loop connecting 33 and (4. Surface-exposed Lys-75, a critical
binding residue for F-actin, and Lys-131, essential residue for CLP binding to 5-LO are
shown to be close to each other, precluding simultaneous binding of F-actin and 5-LO to
CLP.

The effects of CLP on the 5-LO activation and modulation of its enzymatic product pro-
file were assessed in 5-LO activity assays in wvitro. We have found three major CLP-
stimulated effects on the 5-LO catalytic reaction. First, CLP upregulates Ca?*/Mg?*-
induced 5-LO activity in the absence of phosphatidylcholine (membrane). In such incu-
bations, formation of 5-HETE is found to be highly increased, while the production of
leukotriene Ay (LTA4) is minute. These data suggest that CLP can function as a scaffold
for 5-L.O similar to membranes. Second, CLP increases the amount of LTA, formed, by
approximately 3-fold, when present together with phosphatidylcholine. Third, CLP pro-
motes formation of 5-hydroxyeicosatetraenoic acid (5-HETE) by substantial reduction of
5-hydroperoxyeicosatetraenoic acid (5-HPETE), which results in an increased ratio of 5-
HETE/5-HPETE independently of the presence of a membrane.

CLP also stabilizes 5-LO and prevents its non-turnover inactivation, which together with
the effects on the 5-LO activity, suggests that CLP might be functioning as a chaperone of
5-LO.

Trp-102, positioned in the G-sandwich of the 5-LO structure, is required for binding of
CLP to 5-LO and for all the above mentioned CLP-induced effects on 5-LO activity and its
structural stabilization. Therefore, the (-sandwich appears to be the essential part of the
CLP binding surface on the 5-LO molecule.

The same pattern of subcellular trafficking (nuclear/nonnuclear association) was found for
5-LO and CLP upon activation of human polymorphonuclear leukocytes and Mono Mac
6 cells induced by different cell stimuli. This finding indicates an association between 5-
LO and CLP in the cell, and combined with the results from the 5-LO activity assays, it
also implies an important role of CLP in upregulation of LT biosynthesis at the nuclear
membrane.

Hyperforin, an anti-inflammatory compound isolated from St. John’s wort and previously
reported to inhibit 5-LO activity both in wvitro and in cellular systems, successfully inter-
rupted formation of functional 5-LO:CLP complex. Hyperforin reduced the binding of 5-LO
to CLP at concentrations shown to suppress synthesis of the 5-LLO products, implying its
mode of action by interfering with the 5-LO g-sandwich.

Taken together, the findings presented in this thesis have pinpointed CLP as a novel player
in the 5-LO signaling pathway, capable of activating 5-LO enzyme and modulating its prod-
uct pattern. Thus, these results have also potentially opened an interesting window for
therapeutic intervention on LT biosynthesis.
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Chapter 1

Introduction

The specific intracellular events that govern cellular responses to stimula-
tory extracellular signals, are of wide interest in order to understand pivotal
intracellular pathways in diseases characterized by enhanced inflammatory
responses. In that matter, protein-protein interactions, which often serve
as key regulatory points for signal propagation in cell response to different
stimuli, apart from representing a common mechanism responsible for the
functioning of numerous physiological processes in the cell, may also have
an essential role in pathogenesis of different diseases. The interaction be-
tween 5-lipoxygenase, as the key enzyme in formation of leukotrienes, a fam-
ily of potent pro-inflammatory lipid mediators derived from cell membrane
phospholipids, with the small cytosolic protein named coactosin-like protein
(CLP) is the main theme of this thesis.

1.1 Inflammation - A tale of two roles

Infection and injuries, whether physical, chemical or infectious, always trigger
a sequence of events that constitute the inflammatory response as an essential
process for maintenance of homeostasis and recovery from tissue injuries
(pathogens).

The hallmarks of inflammation are classically known as redness (rubor),
swelling (tumor), heat (calor), pain (dolor) and loss of function (functio
laesa), the first four of which were originally described around 40 A.D. by
Celsius, a Roman physician and medical writer. These signs are consequences
of vasodilation, extravasation of plasma and infiltration of leukocytes into
the inflammatory site, with the objective of eradication of the irritant and
repair of surrounding tissue. For the survival of the host, inflammation is
a necessary and beneficial process that constitutes the part of normal host



2 Introduction

defence. However, excessive and inappropriate inflammation contributes to
a range of acute and chronic human diseases, including cardiovascular and
neurodegenerative conditions, autoimmune disorders, and cancer.

The development, maintenance and resolution, as stages of the natural
course of inflammation, are controlled by a complex network of plasma factors
and chemical mediators released from cells. Among these are the eicosanoids,
a family of structurally related autocrine and paracrine mediators derived
from the oxidative metabolism of fatty acids containing 20 carbon atoms, in
particular arachidonic acid. Eicosanoids produce a wide range of biological
effects on specific cellular responses of importance for inflammation and im-
munity, but they have also been implicated in pathogenesis of a number of
proinflammatory diseases.

1.2 Eicosanoids

1.2.1 Arachidonic acid a membrane bound precursor
of eicosanoids

Our understanding of the roles that lipids play in the cell has changed dra-
matically since, in addition to their accepted structural importance as the
building blocks of cellular membranes, an extensive body of evidence has
demonstrated that fatty acids, glycero- and phospholipids, ceramides and
many other lipid-derived compounds participate as hormon-like mediators
in a variety of signaling cascades, including cell differentiation, replication
and apoptosis. The arachidonic acid signaling pathway serves as a premier
illustration of the role that lipid-derived mediators play in the normal cell
function and also under pathological conditions. One and the same signal-
ing lipid can provoke different cellular responses, depending on the cell type
and underlying signaling network present in the target cell. Arachidonic acid
(AA), also known as 5,8,11,14-eicosatetraenoic acid belongs to a group of
polyunsaturated fatty acids with twenty carbons and four cis double bonds,
with the final at the w-6 position (20:4, w-6). As a constituent of biological
membranes in the resting cells, AA is ester-bound at sn-2 position of glyc-
erol in cellular phospholipid bilayers. Only trace levels of free AA may be
found in the cells, since the steady state of free AA is small, prohibiting any
storage of preformed molecules [120]. It can be obtained directly from a diet
or synthesized endogenously from the essential linoleic acid (18:2, w-6).
Upon cellular stimulation, activated cytosolic phospholipase A, translo-
cates towards perinuclear region, where it cleaves AA from the membrane
phospholipids. Once liberated AA can be oxidized by three major metabolic
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pathways:

1. cyclooxygenase (COX) pathway resulting in production of various
prostaglandins (PGs), prostacyclin (PGIy) and thromboxanes (TXA,
and TXB,)

2. the lipoxygenase (LO) pathway, which forms leukotrienes (LTs), hy-
droxytetraenoic acids (5-, 12-; and 15-HETESs) and lipoxins (LXs)

3. the cytochrome P450 pathway, which generates epoxy-eicosatrienoic
acids (EETS)

The compounds synthesized from these metabolic pathways comprise
the major part of a family of structurally related lipid mediators that are
collectively referred to as eicosanoids.

Brief history of the eicosanoid field

Early work at the Karolinska Institute showed that prostaglandins were
formed by oxygenation and further transformation of AA and other polyun-
saturated fatty acids [12]. In 1974, the first intermediate in prostaglandin
biosynthesis was identified and the enzyme cycloozygenase was termed [97].
The mode of action of non-steroidal antiinflammatory drugs (NSAIDs),
was shown to be inhibition of prostaglandin biosynthesis [268]. In 1975,
steroids were proposed to inhibit prostaglandin formation by reducing the
availability of AA, by blocking its release from intracellular stores [90], i.e.
distinct from the action of NSAIDs. This discovery led to the search for
a COX-independent biosynthesis route of proinflammatory metabolites of
AA, which resulted in identification of leukotrienes [237].

The first identified lipoxygenase product was 12-hydroxyeicosatetraenoic
acid (12-HETE), formed by the action of 12-LO in platelets [96]. In the fol-
lowing year, 12-LO was shown to exhibit weak chemotactic properties [263].
In 1976, the 5-LO pathway of AA metabolism was discovered by Borgeat,
Hamberg and Samuelsson [14], and a few years later several AA derivatives,
such as LTB, and the pivotal epoxide intermediate LTA,, were identified
[16, 15]. In addition, Slow Reacting Substance of Anaphylaxis (SRS-A), first
described by Feldberg and Kellaway in 1938 [70], and further investigated
by Brocklehurst [23], was identified and structurally determined as a group
of cysteinyl-containing LTs, i.e. LTC,, LTD4 and LTE,, derived from the
same intermediate as LTB, [102, 175]. In 1980, LTB, was found to act as a
strong chemokinetic and aggregating compound for neutrophils in vitro [77]
and to induce neutrophil-dependent increased microvascular permeability in
vivo [273).
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1.2.2 Formation of Eicosanoids - in time and space

Eicosanoids (as a common term used for derivatives of 20-carbon polyun-
saturated fatty acids), when de novo synthesized from phospholipids upon
stimulation, act locally in the cells in which they are formed or in adjacent
cells, exerting a wide range of biological effects through receptor mediated
G-protein linked signaling pathways. They can also be subjected to transcel-
lular metabolism i.e. secreted from one and further metabolized in another
cell [235, 76].

Apart from AA, other 20-carbon fatty acids, including dihomo-v-linolenic
(20:3, w-6) and eicosapentaenoic acid (20:5, w-3), can also serve as precur-
sor of eicosanoids. Fatty acids with double bond beyond position 9 of the
carbon backbone can not be endogenously synthesized in human cells, and
will therefore depend on the dietary supply of their precursors linoleic and
linolenic acids. Differences in the intake of these essential lipids can thus
determine the profile of the eicosanoids formed, with consequences for the
biological activity of the final compounds.

Different types of cells produce different types of eicosanoids, reflecting
specific expression pattern of synthesizing or metabolizing enzymes among
diverse cell types. Typically, human inflammatory cells contain high pro-
portions of the w-6 PUFA such as AA and low proportions of w-3 PUFA,
eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) [32]. The signif-
icance of this difference is that AA is the precursor of the 2-series PGs and
the 4-series LTs, which are highly active mediators of inflammation, while
EPA gives arise to PGs of the 3-series and LTs of the 5-series known to have
much less potent activities than their AA-derived counterparts e.i. LTB, and
TXA, [181, 140]. This thesis is focusing on 5-lipoxygenase enzyme, as a key
determinant in formation of a potent, proinflammatory group of eicosanoids
named Leukotrienes.

1.2.3 Biological actions of Leukotrienes

LTB4 has long been known as a strong chimoattractant in the innate immune
response, active on neutrophils, monocytes/macrophages, and eosinophils
249, 33, 158]. LTB, recruits leukocytes to site of inflammation by directing
their migration and converting leukocytes from rolling on endothelium to firm
adhesion, but also promoting transendothelial migration [53, 258]. Recently,
it has been shown that LTB, also functions as a potent chemoattractant for
dendritic cells [245] and activated CD4" and CD8" T lymphocytes, medi-
ating their early recruitment to inflammed tissues [257, 86, 195], therefore
providing an essential link between the innate and adaptive effector responses
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to inflammation. In addition to its chemotactic effects, LTB, also stimulates
leukocyte activation and variety of effector functions, such as generation of
reactive oxygen species, ROS [256], release of granular enzymes [218], and
phagocytosis of bacteria [154]. LTB, has also been demonstrated to play a
critical role in anti-microbial defense, since it augments phagocyte microbial
killing by stimulating lysosomal enzyme release, and generation of defensins,
ROS and nitric oxide [206]. Summary of the LTB, biological actions is pre-
sented on Figurel.l.

Figure 1.1: Cellular sources of leukotrienes and summary of their effects on airway
and inflammatory cells.

On the other hand, LTB,4 has also an important role in the pathogenesis
of many inflammatory and immune diseases. Elevated levels of LTB, have
been detected in sputum, bronchoalveolar lavage fluid (BAL), exhaled breath
condensate from patients with asthma [170], cystic fibrosis [134], and chronic
obstructive pulmonary disease [51]. In addition, LTB4 has been suggested to
be involved in development of rheumatoid arthritis [3], inflammatory bowel
disease [241], psoriasis [63], multiple sclerosis [182] and atherosclerosis [300,
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214].

The cysteinyl-LTs (cys-LTs) are potent broncho- and vascularconstric-
tors, active at nanomolar concetrations. In human subjects, cys-LTs were
shown to be approximately 1000-fold more potent than histamine in eliciting
airway constriction[10, 274]. They also increase microvascular permeability
that allows extravasation of inflammatory cells and leakage of plasma compo-
nents which for the consequence has development of edema [129, 53, 249]. In
addition, cys-L'T's enhance mucous secretion, eosinophil infiltration in human
airways, as well as bronchial smooth muscle cell proliferation [157, 137, 65].
They also promote recruitment of neutrophils, T lymphocytes, maturation
and migration of dendritic cells [206]. Cys-LTs were also shown to enhance
production of Th2 cytokines (e.g. I1-4, -5 and -13), which in turn stimulate
the production of cys-LTs themselves [206, 192]

1.3 Leukotriene biosynthesis in the cell

The first two reactions in biosynthesis of proinflammatory LTs are catalyzed
by the 5-LO enzyme, which represents a dioxygenase with two enzymatic
activities (oxygenase and LTA, synthase activity) [236]. In both activities,
stereo-selective abstraction of hydrogen is an early step (Figure 1.3). Free
AA is first oxygenated by the action of 5-LO into the 5-hydroperoxy eicosate-
traenoic acid (5-HPETE), and subsequently dehydrated into the allylic un-
stable epoxide intermediate LTA, [230]. Depending on a cell type and the
enzymes present, LTA, can be either metabolized to LTB4 by the action of
LTA, hydrolase (LTA4H) or conjugated with glutathione to form LTC, by
the action of LTC, synthase (LTC,4S), as shown in Figure 1.2 A. Release of
LTC, to the extracellular microenvironment and its further metabolism by
sequential peptide cleavage by ~v-glutamyl transpeptidase and the membrane
bound dipeptidase yields in formation of LTD, and LTEy, respectively [238].

Upon cell activation with different cell stimuli and in response to an in-
creased intracellular concentration of Ca?*, 5-LO translocates to the nuclear
envelope where it functionally associates to 5-LO-activating protein (FLAP)
(Figure 1.2 B), which presence appears to be required for cellular LT biosyn-
thesis from endogenous AA [229, 288].

1.3.1 Calcium as an inducer of cellular formation of
Leukotrienes

The concentration of cytosolic free calcium is critically important for the con-
trol of many cellular responses, including biosynthesis of leukotrienes [236].
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Figure 1.2: 5-LO reaction and activation in the cell. A. 5-LO catalyzed reaction.
B. Activation of the 5-LLO pathway in the cell.

In the resting cells, intracellular Ca?* is maintained at about 10" M, and
can increase to 5x10® M upon stimulation. Two pathways responsible for
the increase in intracellular Ca?* have been indentified. In electrically ac-
tive cells, such as neurons, voltage-gated Ca?*-channels are opened upon
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membrane depolarization by the action potential, allowing diffusion of extra-
cellular Ca?" into the cell.

Another, more ubiquitous pathway common to almost all cells is me-
diated by the binding of extracellular signaling molecules to their re-
spective membrane-bound receptors, which consequently leads to a re-
lease of Ca?* from the intracellular stores, located primarily in the endo-
plasmic/sarcoplasmic reticulum compartments. Signaling further activates
phosphoinositide-specific phospholipase C (PLC) in either G-protein depen-
dent or independent manner, resulting in production of inositol-triphosphate
(IP3) and diacylglycerol (DAG).

Binding of IP3 to IP3 receptor on the cytoplasmic side of ER/SR opens
Ca?" channels in the membrane, leading to transient increase in intracellular
Ca?*, since IP3 is rapidly dephosphorylated by a specific kinase in parallel
with Ca?t being rapidly pumped out of the cell. This pump mechanism is
inhibited by ionomycin, which is usually used to increase intracellular Ca?*
in cellular experimental settings.

On the other side, DAG exerts quite different effect. It can either be
cleaved to yield AA for eicosanoid synthesis or, it activates Ca?*-dependent
protein kinase C (PKC), which phosphorylates specific Ser and Thr residues
of targeted proteins. The effects of DAG can be mimicked by phorbol esters,
plant products that bind and activate PKC directly.

For the purpose of experiments carried out in cells, Ca?"-influx can be
stimulated by ionophores, which are either mobile ion carriers within mem-
branes (e.g. A23187) capable of forming cage-like structures around ions
shielding their charge from the surrounding environment and thus facilitat-
ing crossing through hydrophobic interior of the lipid membrane, or channels,
which form hydrophilic pores through which ions diffuse. Rather low concen-
trations of calcium (200nM) seem sufficient for the 5-LO activation in intact
cell [239, 72]. In the biosynthesis of LTs, Ca?" regulates activities of two
enzymes, cytosolic phospholipase Ay (cPLA3) and 5-lipoxygenase, inducing
translocation of both enzymes in parallel from cytosol towards the perinu-
clear region. Higher concentration was reported to be required for activation
of cPLA, compared to 5-LO [239].

Interestingly, liberated AA and one of its metabolites, LTB,, seem to
modulate intracellular Ca?* levels in an opposing manner. The IP3 receptor
is inhibited by AA, while the ryanodine receptor (another type of calcium re-
lease channel) was found to be unaffected. In contrast to this, LTB4 (100nM)
activated the ryanodine receptor, without affecting IP3 receptor imply that
AA and LTB4 modulate intracellular calcium levels, possibly by acting on
different Ca?* stores [255].
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1.3.2 Enzymes and Proteins in LT Biosynthesis
Cytosolic Phospholipase A,

Mammalian cells contain structurally different forms of PLAs including cy-
tosolic (c), secreted (s), calcium-independent (i), the platelet activating fac-
tor (PAF) acetylhydrolases and the lysosomal PLAj [26]. These enzymes are
characterized by their ability to specifically hydrolyze the sn-2 ester bond of
phospholipids and are subdivided into groups based on sequence, molecular
weight, disulfide bonding patterns and requirement of Ca?*. The products of
hydrolysis of the sn-2 ester bond of a phospholipid are a free fatty acid and a
lysophospholipid. Both products represent the first step in generating second
messengers that play important physiological roles. Among the PLAss, the
85 kDa cytosolic PLAy (« isoform) preferentially catalyzes the release of AA
from the sn-2 position of phospholipid and is therefore believed to play a
pivotal role in providing this free polyunsaturated fatty acid for eicosanoid
biosynthesis [109, 143]. In addition to liberating AA, cPLA, also exhibits
Ca?*-independent lysophospholipase activity and weak transacylase activity
[104, 142, 222]. The coordinated release of sn-2 AA followed by the sn-
1, usually saturated, fatty acid of diacylphospholipids provides an efficient
mechanism for controlling the levels of potentially cytotoxic lysophospho-
lipids in the cell.

Cellular distribution. cPLA, is widely distributed at a relatively con-
stant level in almost all human tissues. This is in line with the features of the
promotor region, typical of a house-keeping gene with no TATA or CAAT
box, although atypical in not being GC rich and lacking Spl binding sites
[289, 242].

Activity. Stimulation of the cells with agents that mobilize intracellular
calcium and/or promote the phosphorylation of cPLAs-«v leads to translo-
cation of the enzyme from cytosol to endoplasmatic reticulum, Golgi appa-
ratus and perinuclear membranes, and also induces changes in configuration
of cPLAs which increases the phospholipid binding affinity and arachidonic
acid release [27, 186]. The Ca*"-dependancy of the cPLA, activity originates
in the presence of a calcium-dependent phospholipid binding domain, similar
to C2 domains in enzymes such as protein kinase C (PKC) and PLC-v [46].

In addition to an increase of intracellular calcium, activation of cPLAs-«
is also regulated by phosphorylation of Ser resides (Ser-505, Ser-515 and Ser-
727) by the action of mitogen activated protein kinases (MAPKSs), mitogen
activated protein kinase interacting kinase (MNK1) and calmodulin kinase 11
(CamK II) respectively [17, 106, 177, 146]. Other phosphorylation sites have
been reported at Ser-454 and Ser-437 in Sf cells [56], but there is currently
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no information of the effects of phosphorylation at these residues. Addition-
ally, ceramide-1-phospasphate (C1P) has also been shown to be an allosteric
activator of cPLAs-«, since down-regulation of ceramide kinase, the enzyme
that forms C1P, with short RNAi blocked agonist-induced AA release and
prostaglandin production [251].

Full activation of cPLAs-a requires both increased cytosolic Ca?t and
phosphorylation of Ser residues of the enzyme, although the impact of phos-
phorylation appears to be dependent on Ca?" concentration. Phosphoryla-
tion of cPLAs-a on Ser-505 increased the phospholipid binding affinity at
low concentration of calcium but was found to be less important at higher
Ca?* levels.

Structure. The structure of cPLAs-a protein contains an N-terminal C2
domain, involved in calcium-dependent lipid binding and a catalytic domain.
Both of these domains are required for full activity [115]. There are three
regions in the C2 domain responsible for calcium binding of cPLAs-« through
Asp and Asn residues. This in turn promotes association of hydrophobic
residues in the catalytic domain with membrane phosphatidylcholine, causing
penetration of the enzyme into membrane bilayer and further release of AA
27].

Cellular regulation. Extracellular stimuli can alter the mRNA and
protein levels of cPLAs-ar. Numerous cytokines such as interleukin-la (IL-
lar), tumor necrosis factor-a (TNF-«), and interferon-y (INF-v) have been
reported to up-regulate gene expression of cPLAs-a, thereby contributing to
the cytokine stimulated AA release [46, 145, 291, 290].

cPLA, knock-out mice. Recent knock-out studies of cPLAs-«v in mice
have proven the pivotal role of this enzyme in eicosanoid generation (i.e.
stimulated peritoneal macrophages of these mice exhibited a marked decrease
in the production of PGs and LTs [265] and related diseases, in particular
chronic inflammation and intestinal tumorigenesis [244, 110].

1.3.3 5-Lipoxygenase
Cellular localization and subcellular distribution

In line with the function of LTs as mediators of inflammation, 5-LLO protein
expression under normal conditions is found to be largely restricted to cells
of mainly myeloid lineage, including granulocytes, monocytes/macrophages,
mast cells, dendritic cell and B lymphocytes. Strong expression of this en-
zyme was also found in Langerhans cells of epidermis, suggesting a role of
5-LO in early events of the immune response in the skin. Recently, 5-LO
expression has also been confirmed in non-myeloid cells, such as endothe-
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lial cells [299], fibroblasts [125] and smooth muscle cells, where human cy-
tomegalovirus infection strongly induced expression of 5-LO protein [215].
In contrast, platelets, T lymphocytes and erythrocytes are devoid of 5-L.O
presence.

Subcellular localization of 5-LO in resting cells has been found to be spe-
cific. The 5-LO enzyme has cytosolic localization in neutrophils, eosinophils,
monocytes and peritoneal macrophages. Intranuclear pools of 5-LO associ-
ated with chromatin are observed in cultured mast cells, Langerhans cells and
rat basophilic leukemia cells [280], while dual localization of 5-LO, represent-
ing a unique example of 5-L.LO import into the nucleoplasm during differenti-
ation, was found in resting alveolar macrophages [49]. These data imply that
the possibility of migration through the nuclear envelope, presumably via the
nuclear pore complex, does not have to be associated with the activation of
5-LO and subsequent LT synthesis.

Regulation of 5-LO activity in the cell

Effects of Ca®* and AA. Alteration of the ability of the cells that ex-
press 5-LO to synthesize leukotrienes occurs by several mechanisms. As
described above, elevation of intracellular concentration of Ca?*, upon dif-
ferent cell stimuli e.g. fMLP, PAF, opsonized zymosan, LTB,, Cba, IL-8 and
ionophores, has a fundamental effect on the hydrophobicity of cytosolic PLA,
and 5-LO and their parallel translocation to the perinuclear region that con-
tains glycerophospolipids with esterified AA. However, recent evidence has
suggested that the substrate, AA, may play an important role in altering the
fundamental hydrophobic properties of cytosolic 5-LO separately from these
Ca?" effects. Binding of AA to cytosolic 5-LO, appears to substantially al-
ter the affinity of 5-LO for the nuclear bilayer [74]. In addition to this, the
amount of free AA available as a substrate for 5-LO [295] and its accessibil-
ity to 5-LO [149] were shown to be important determinants of leukotriene
biosynthesis.

Effects of phosphorylation. Phosphorylation of 5-LO has also an
essential role in regulating enzymatic activity. Three separate sites have
been identified: a p38 MAPK-regulated MAPKAPK (mitogen-activated pro-
tein kinase-activated protein kinase)-2/3-dependent site at Ser-271[277, 278],
an ERK2 (extracellular signal-regulated kinase 2)-dependent site at Ser-663
[281] and a cAMP/PKA (proetin kinase A)-dependent site at Ser-523 [150].
Phosphorylation at the first two Ser residues results in activation of 5-L.O
(only in the cellular systems), whereas phosphorylation of Ser-523 leads to
inactivation of the enzyme and inhibition of LTs biosyntehsis (both in wvitro
and in the cell). Phosphorylation of Ser-523 has also been shown to prevent
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nuclear localization of 5-LLO by inhibiting the nuclear import function of a
nuclear import sequence close to the kinase motif [148]. This inhibition seems
to be the molecular basis for the suppressive effects on 5-LO of exogenous
adenosine and increased cAMP, which activate PKA [75]. Interestingly, AA
which promotes phosphorylation on Ser-273 and Ser-663, prevented cAMP-
mediated inhibition of 5-LO translocation from cytosol towards perinuclear
region, and therefore also product synthesis in activated neutrophils [74].

Effects of 5-LO interacting proteins. The localization of 5-LO
within the nucleus introduces an interesting level of complexity to the 5-
LO synthetic pathway, since it is clear that 5-LO must assemble with other
proteins in particular FLAP, as well as encounter AA derived from from
cPLA,. Since the nuclear envelope is a dual-membrane bilayer separated by
a luminal space, this has led to speculation that the assembly of the proteins
might be different between the nuclear localization on the outer nuclear bi-
layer relative to the inner nuclear bilayer [21]. However, regardless of 5-LO
localization in resting cell, in either cytoplasm or nucleoplasm, activation of
the cell initiates translocation of 5-LO to the nuclear envelope, where pres-
ence of FLAP facilitates formation of LTs. FLAP appears to be absolutely
required for the cellular biosynthesis of LTs from endogenous AA [59, 166].

Our study on CLP interaction with 5-LO, led to suggestion that CLP
might act as a potential scaffold for 5-LO, on the basis of the profound
increase in the quantity of LTA, formed by 5-LO in the presence of this small
cytosolic protein, and its translocation from the cytosol to the perinuclear
region of neutrophils upon stimulation [219].

Impact of the cellular redox status on 5-LO. Since catalysis of
5-LO requires oxidation of ferrous (Fe?") to the active ferric( Fe*™) state by
lipid hydroperoxides, the redox tone comes up as another important regula-
tory mechanism of cellular 5-LO activity. Therefore conditions that promote
lipid peroxidation, such as formation of reactive oxygen species by: phor-
bol 12-myristate 13-acetate (PMA), addition of peroxides, inhibition of GPx
enzymes and depletion of glutathione, upregulate 5-LO product synthesis,
while reduction of peroxides by GPx-1 and GPx-4 suppresses formation of
the 5-LO products[280]. Apart from promoting conversion of the iron into an
active state, increased peroxide tone upon oxidative stress might also trigger
activation of 5-LO in the cells by promoting phosphorylation, since oxidative
stress was shown to activate p38 MAPK in B-lymphocytes [277, 282].

Cellular Degradation of 5-LO. Recently, an example of 5-LO regu-
lation by caspase-mediated degradation has been reported. Splitting of the
Epstein-Barr virus (EBV)-transformed B-lymphocyte cell line BL41-E95-A
caused a pronounced, but transient reduction of functional 5-LO protein,
accompanied by the appearance of a 62-kDa 5-LO cleavage product, in
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parallel with activation of caspase-6 and caspase-8 [285]. Treatment with
peptide-inhibitors of caspases prevented degradation of 5-L.O. Furthermore,
in vitro studies confirmed cleavage of purified 5-LO by caspase-6 after Asp-
170 residue, which in a homology-based 3D model of 5-LLO structure was
found to be located on the enzyme periphery.

Inhibition of 5-LO activity by pharmacological intervention.
Because of the importance of 5-LO-derived LTs in the pathogenesis of in-
flammatory diseases, there has been a great interest in identifying inhibitors
of 5-LO activity. Compounds that directly interfere with the 5-LO enzyme
are classified, according to their molecular mode of actions, into four groups:
(1) redox inhibitors, which act by reducing active Fe* form to inactive Fe?*
state; (2) iron ligand inhibitors, with chelating ability of active iron site;
(3) non-redox competitive inhibitors; (4) compounds that act on 5-LO by so
far unrecognized mechanism. Hyperforin, a 5-LO inhibitor isolated from the
plant Hypericum perforatum, used in our latest study (paper IV), has been
characterized as a non-competitive inhibitor, devoid of reducing properties
and with unique mode of action.

Structural and catalytic properties

As one of six human lipoxygenases, 5-LO is a soluble, monomeric enzyme
of about 78 kDa [231]. It contains 673 amino acids. The structure of 5-LO
has not been reported yet, even though it was first purified and cloned more
than 20 years ago [161].

The amino acid sequence of human 5-LO exhibits high similarity to other
mammalian 5-LOs, but also to other classes of LOs [60, 161]. A model struc-
ture of 5-LLO, based on the three dimensional structure of rabbit reticulocyte
15-LO, as the first and the only determined crystal structure of mammalian
LOs [84], consists of an N-terminal #-sandwich (residues 1-114) and the he-
lical C-terminal catalytic domain (residues 121-673) containing a non-heme
iron in the active site. Mutagenetic analysis has demonstrated that His-372
and His-550 are iron ligands, while the iron-binding function of His-367 re-
mains uncertain [183, 298, 121, 297, 203]. From the 3D structure of soybean
LO-1 [167], it was found that C-terminal isoleucine, Ile-673 in human 5-LO,
also functions as an iron ligand [217, 101].

Electron paramagnetic resonance (EPR) studies have shown that the iron
of purified recombinant, inactive enzyme is in the ferrous state (Fe?"), and
that the treatment with 5>-HPETE and other fatty acid hydroperoxides (15-
HPETE and 13-HPODE) could restore the active, ferric (Fe3™) form of iron
(37, 98].

Iron at the catalytic site is essential for 5-LO activity, since in the gen-
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Figure 1.3: Catalytic cycle of 5-LO A. The role for iron in the generally ac-
cepted scheme for the lipoxygenase reaction (the radical reaction mechanism) B.
Mechanism of oxygenase and LTA,4 activities of 5-L.O

erally accepted scheme for the lipoxygenase reaction (the radical reaction
mechanism, Figure 1.3 A), it acts as an electron acceptor or donor during
hydrogen abstraction and peroxide formation [266]. When AA is converted to
5-HPETE, the pro-5S hydrogen is abstracted from C-7 leading to production
of 5(S)-HPETE [135, 266]. Subsequent conversion of 5(S)-HPETE to LTA,4
involves the abstraction of the pro-R hydrogen from C-10 and allylic shift of
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the radical to C-6, resulting in formation of the 5,6 epoxide [243], as shown
in Figure 1.3 B. Alternatively, 5-HPETE is reduced to 5-HETE. The ratio of
LTA, to 5-HPETE formed depends on the in vitro assay conditions, e.g. the
relative concentrations of free AA, membrane associations, amount of 5-LO,
but also the presence of FLAP in the cellular systems [287, 108, 227, 1].

The smaller N-terminal domain is a C2-like f-sandwich with typical
ligand-binding loops. Residues in these loops of 5-LLO have been shown to
bind Ca*" and cellular membranes [99], which consequently led to enzyme
activation. Furthermore, residues 1-80 of the (-sandwich of 5-LO, directed
an import of a green fluorescent protein (GFP) fusion protein to the nucleus
of transfected HEK-293 cells [42], suggesting that nuclear localization signal
is located in this region. Three nuclear import sequences have been identi-
fied for 5-LO, at Arg-112, Lys-158 and Arg-518 [127, 128]. The combined
mutation of these three import sequences inhibits nuclear localizations and
reduces LTBy synthesis by 90 %, demonstrating that 5-LO positioning within
nucleus is crucial for LTs production upon activation [149].

The 5-LO gene and regulation of 5-LO protein expression

The gene encoding human 5-LO is located on chromosome 10 and consists
of 14 exons and 13 introns encompassing over 82 kb of genomic DNA [81].
The promoter region is GC-rich and lacks typical TATA and CAAT boxes,
resembling promoter regions of house-keeping genes. Naturally occurring
mutations in the 5-LO promoter and variable numbers of binding sites for
transcriptional factors Sp1/Erg-1 has been identified in the population. How-
ever, these mutations had varying effects on reporter-gene activity [118, 246].
Asthmatics with promoter variants mediating reduced 5-LO expression may
not benefit from pharmacological anti-LT treatment [62]. By contrast, in rela-
tion to atherosclerosis, mutations of the tandem GC-boxes are connected with
an increase in intima-media thickness and higher plasma level of C-reactive
protein [64]. This observation seems to be compatible with an increased
production of pro-inflammatory LTs, due to upregulated 5-LO expression.
Apparently, the effect of mutations in this crucial part of the human 5-LO
gene promoter is unclear and possibly it could differ between cell types.
Promoter analysis using reporter gene assays in HeLa cells (which do not
express endogenous 5-LO) revealed two positive and two negative regulatory
regions and a modest enhancement in transcriptional activity by phorbol es-
ter [113]. More recent promoter analysis, using Mono Mac 6 cells (which
express 5-LO), revealed a positive regulatory region that was not detected
in HeLa cells. This region contains several vitamin D response elements
(VDRE) and its binding of the vitamin D receptor was demonstrated by
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several methods [248].

The 5-LO promoter activity is reduced by DNA methylation [264], and
induced by histone-deacetylase inhibitors [132]. Interestingly, DNA mety-
lation also regulates expression of the LTB, receptor BLT1, which has an
expression profile similar to that of 5-LO [130]. It seems possible that DNA
methylation is responsible for suppression of 5-LLO expression in most of non-
myeloid cell types, and that aberrant methylation could lead to upregulated
5-LO expression in tumor cells.

Upregulation of the 5-LLO expression at the protein level has been shown
during differentiation of leukemic cell lines of granulocytic or monocytic ori-
gin [11, 254, 47]. Differential inducers, such as retinoic acid, dimethyl sulfox-
ide (DMSO), vitamin D3 and transforming growth factor 8 (TGF-f) were
observed to have a prominent effect on 5-LO mRNA and protein [47, 24, 25].
This increase is thought to reflect the upregulation of 5-LO expression during
leukocytes differentiation in the bone marrow. Strong (~100 fold) induction
of 5-LO mRNA, protein and activity was found after differentiation of HL-
60 and human monocytic Mono Mac 6 (MM-6) cells upon treatment with
TGF-# and vitamin D3. However, no induction of 5-LLO promoter activity
by the same stimuli, has been found in the reporter gene assays nor changes
in 5-LO mRNA half-life have been observed, all together indicating that ef-
fect of vitamin D3 and TGF-3 does not seem to be related to changes in
transcription initiation, but rather posttranscriptional events, such as elon-
gation and maturations [253]. Granulocyte/macrophage colony-stimulating
factor (GM-CSF) has also been shown to increase 5-LLO gene transcription
and protein expression (~2-3 fold) in mature blood leukocytes, such as hu-
man neutrophils [252, 209]. The expression of 5-L.O was upregulated by IL-3
in mouse mast cells [174]. IL-4 is shown to reduce 5-LO expression in mono-
cytes and maturing dendritic cells (DC), but also upregulate 15-LO type
I [250]. TGF-f counteracted this down-regulatory effect of IL-4 in matur-
ing DCs, indicating discordant effects of TGF-3 on maturing versus mature
macrophages [79]. Interestingly, dexamethasone has been found to increase
5-LO expression in both monocytes and the acute monocytic leukemia cell
line THP-1 [223]. Opposing data have appeared in the case of human mast
cell line HMC-1 [8].

5-LO expression in cancer cells

Aberrant expression of 5-LO has been observed in variety of cancer cells
(82, 284]. The untransformed cells of the respective healthy tissues usually
do not express the same levels of 5-LO mRNA or protein. Prostate and
esophageal cancers are good example of such cases, since 5-LO was found to



1.3 Leukotriene biosynthesis in the cell 17

be overexpressed in malignant compared with matched benign tissues of the
same origin [92], and the treatment with 5-LO inhibitors induced massive
apoptosis in human breast, pancreatic, prostate and bladder cancer cells
[111, 207, 185, 105].

It was also reported that addition of 5-L.O products, particularly 5-HETE,
prevents selenium-induced apoptosis in prostate cancer cell line LNCaP [83],
and that treatment with LY293111, acting as an LTB, receptor antagonist,
induces apoptosis of pancreatic cancer cells [261]. An interesting connec-
tion between 5-L.O and p53 has been shown in a lung carcinoma-derived cell
line A549 and malignant mesothelioma (MM) cells, where genotoxic stress
induced by adriamycin caused upregulation of 5-LO, which in turn antago-
nized apoptosis by 5-LO-dependent altering of p53 nuclear trafficking [35].
In addition, 5-LO was described as a key regulator of MM cell proliferation
and survival via a VEGF-related circuit [228].

Recently, the 5-LO gene has been identified as a critical regulator for
leukemia stem cells (LSCs) in BCR-ABL-induced chronic myeloid leukemia,
since the loss of 5-LLO gene caused impairment of the function of LSCs but
not normal hematopoietic stem cells and that consequently prevented devel-
opment of chronic myeloid leukemia [43].

Cancer cells often have increased generation of reactive oxygen species
and an altered redox status compared to normal cells [262]. Excessive levels
of ROS stress may be relevant for activation of lipoxygenases in cancer cells,

since it is known that LOs for their activity require oxidation of ferrous form
of iron (Fe?") into ferric (Fe*").

5-LO knock-out mice

The 5-LO-deficient mice showed enhanced lethality from Klebsiella pneu-
moniae in association with decreased alveolar macrophage phagocytic and
bacterial activities [8]. On the other hand, 5-LO knock-out mice exhib-
ited reduced airway reactivity followed by the antigen exposure [119], and
were more resistant lethal anaphylaxis induced by platelet-activating factor
[87, 41]. Resistance to development of variety of inflammatory diseases in
5-LO KO mice was confirmed for different experimental settings.

1.3.4 Coactosin-Like Protein as a 5-LO- and actin-
binding protein

CLP was first identified in immunoprecipitation assays where it was found
to co-precipitate with an actin myosin complex. It was named in a view if
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its similarity with coactosin, an actin binding protein isolated from the slime
mold Dictyostelium discoideum.

Structure. Given the amino acid sequence similarity between CLP and
coactosin (33% identity and 75% similarity), CLP likely represents the human
homologue of coactosin, which belongs to the family of actin-depolymerizing
factor/cofilin group of actin binding proteins [57]. In addition, CLP and
coactosin show similarities to the N-terminal domains of two other members
of this family, actin-binding protein 1 and drebrin [139, 122]. Several solution
(NMR) and crystal structure of CLP have been determined. These results
will be discussed in detail in 'Result and Discussion’ of the thesis.

Activity and interaction with other proteins. It is not known if
CLP possesses any enzymatic activity. However, under physiological condi-
tions, monomeric globular actin (G-actin) is in equilibrium with filamentous
actin (F-actin), which forms the actin cytoskeleton and is responsible for
maintaining and modifying cell shape in motility, phagocytosis, and cytokine-
sis. The actin cytoskeleton is regulated by numerous actin-binding proteins,
which interact with actin and regulate the cytoskeleton in cells. Several actin
binding proteins in the actin-depolymerizing factor/cofilin family have been
demonstrated to associate with actin via electrostatic interactions involv-
ing basic and acidic amino acid residues [34, 165]. As shown for the other
members of its group, CLP was also found to directly interact with the fila-
mentous, F-actin but does not form a stable complex with globular, G-actin
211, 122, 139]. This interaction was pH-insensitive and Ca**-independent.
In addition, CLP was found to bind actin filaments with a stoichiometry of
1:2 (CLP:actin subunits) and was shown to have no direct effect on actin
poly- or depolymerization.

Site-direct mutagenesis revealed the involvement of Lys-75 of CLP in
actin binding, a residue highly conserved in related proteins and exposed on
the surface of the CLP protein [211, 144]. Also in transfected mammalian
cells, CLP was found to co-localize with actin stress fibers [211].

In the yeast two-hybrid system when using 5-LO as bait, CLP was
identified as one of three different 5-LO associating proteins [212]. Co-
immunoprecipitation experiments using epitope-tagged 5-LLO and CLP pro-
teins transiently expressed in human embryonic kidney 293 cells, revealed
the presence of CLP in 5-LO immunoprecipitates confirming binding be-
tween these two proteins. In reciprocal experiments, 5-LO was detected in
CLP immunoprecipitates [211], indicating that 5-LO forms a complex with
CLP in mammalian cells. Non-denaturing polyacrylamide gel electrophoresis
and cross-linking experiments showed that 5-LO binds CLP in a 1:1 molar
stoichiometry in a Ca?*-independent manner. In addition, also mouse CLP
was found to bind 5-L.O with the same 1:1 stoichiometry [61].
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Site-directed mutagenesis suggested an important role for surface-exposed
Lys-131 of CLP in mediating 5-LO binding. In addition to binding, the
importance of this CLP residue for 5-LO activation in vitro was confirmed
in the 5-LO activity assays [219].

Considering the ability of CLP to bind 5-LO and F-actin, several stud-
ies have addressed the possibility of CLP being physically linked to 5-LO
and actin filaments at the same time. However, formation of ternary com-
plex of 5-LO-F-actin-CLP has not been found. Structural studies of CLP
have indicated overlapping binding sites positioned spatially very close on
the surface of CLP, which could explain why a ternary complex could not be
experimentally validated [212, 144, 147]. Moreover, 5-L.O was found to inter-
fere with actin polymerization in co-sedimentation assays and cross-linking
experiments. 5-LO-CLP and CLP-F-actin interactions appeared to be mu-
tually exclusive and suggest a modulatory role for 5-L.LO in actin dynamics
[212].

CLP gene and cellular distribution of CLP protein. The CLP
gene, initially found as a sequence flanking a deletion on a human chromo-
some 17 characterizing the Smith-Magenis syndrome [38], encodes a protein
composed of 142 amino acid residues with a molecular mass of 16 kDa. En-
dogenous CLP is localized in the cytosol of myeloid cells. CLP mRNA shows
a wide tissue distribution. It is predominantly expressed in placenta, lung,
kidney and peripheral blood leukocytes and low levels of CLP were detected
in brain, liver, and pancreas [211].

CLP has recently been described as a human pancreatic antigen, as its
mRNA is found to be overexpressed in pancreatic cancer cell lines, if com-
pared to normal pancreatic tissues. Three epitopes of CLP have been rec-
ognized by HLA-A2 restricted and tumor-reactive cytotoxic T-lymphocytes
and it has been suggested that peptides 1524 and 104113 of CLP could be
appropriate candidates for humoral immunity [179, 180] and therefore appro-
priate vaccine candidates for peptide-based immunotherapy of HLA-A2(+)
cancer patients. In addition, CLP has also been suggested as tumor antigen
in the case of bladder cancers, since immunoscreening of urinary bladder can-
cer cDNA library revealed upregulation of CLP expression [39]. Treatment of
the PaCa44 adenocarcinoma cell line with 5-aza-2’-deoxycytidine had been
found to result in a 22-fold reduction in the expression of CLP protein [36].
CLP protein levels were found to increase during differentiation of 3T3-L1
fibroblasts into adipocytes [275]. In proteomic analysis of the neuroblastoma
cell line N1E-115, CLP was detected upon differentiation of the cells with
DMSO [193]. Recently, a tissue based comparative proteome study of healthy
and diseased human substantia nigra has revealed that CLP was also differ-
entially regulated in substantia nigra in Parkinson’s disease, together with
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annexin V and beta-tubulin cofactor A [276].

Upregulation of CLP has also been implicated in development and pro-
gression of autoimmune, inflammatory diseases, e.g. rheumatoid arthritis
(RA). Jin and coworkers identified CLP as a rheumatoid arthritis (RA) can-
didate gene that is highly expressed in peripheral leukocytes of RA patients
[126].

CLP knock-out mice. So far, there are no reports on generation of
CLP knock-out mice.

1.3.5 5-lipoxygenase activating protein (FLAP)

The discovery of FLAP came as a result of the observation that the LT
biosynthesis inhibitor MK-886 inhibits 5-LO activity in intact cells by binding
to a membrane-associated protein, without affecting 5-L.O, phospholipases
or other non-selective mechanisms that could lead to leukotriene inhibition
[172].

Structure. FLAP is an 18 kDa integral membrane protein which forms
homotrimers within the nuclear membrane. Each monomer is composed of
four transmembrane helices that are connected by two cytosolic loops and
a luminal loop [166, 59, 71]. The FLAP trimer is cylinder-shaped, with a
flattered cytosolic top and pointed luminal base. Recent studies have demon-
strated that FLAP is present also as a monomer and a homodimer in human
PMNL, and that organization of FLAP as a homodimer appears to be essen-
tial for LT biosynthesis [208]. It has also been reported that FLAP can form
a heterodimer or trimer together with LTC, synthase [155].

This small membrane bound protein is a member of the MAPEG
(membrane-associated proteins in eicosanoid and glutathione metabolism)
family of proteins. In contrast to other members of this group including
LTC, synthase, microsomal PGE; synthase, and the microsomal glutathione-
S-transferase [123], FLAP does not bind glutathione and does not express
glutathione transferase activity, typical for the members of this group of
proteins.

Activity. FLAP has no known enzymatic activity. It has been shown to
be an AA binding protein. This interaction can be interrupted by the indol-
class compound such as MK-886 or quinoline-indol based inhibitors such as
MK-591 and ABT-080 compounds [152]. In addition, it was recognized that
FLAP inhibitors also weakly inhibit LTC, synthase [117] and mPGES-1 [133].
Since evidence for physical association of FLAP to 5-LO is lacking, FLAP
has been suggested to play a role as a substrate transfer protein presenting
cPLAy-liberated AA to 5-L.O, and also enhancing the sequential oxygenation
of AA to 5-HPETE and dehydration to leukotriene A4 [1]. The requirement
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of FLAP for cellular LT biosynthesis was first visualized in experiments with
osteosarcoma cells transfected with 5-LO, where concurrent transfection with
FLAP was required for A23187-induced LT production [59]. However, there
is no absolute requirement for FLAP when cells are stimulated in the presence
of exogenous AA [1] and MK-886 failed to suppress LT formation under such
condition. Nevertheless, it was found that FLAP can also stimulate the
utilization of exogenous AA by 5-LO [280] and there was a huge stimulatory
effect on 5-LO catalyzed conversion of 12-HETE [153].

Cellular distribution. Expression of FLAP is consistent with the
occurrence of 5-LO protein in myeloid cells like granulocytes, mono-
cytes/macrophages and B-lymphocytes and up-regulation of FLAP often
correlates with that of 5-LO [270].

FLAP-deficient mice. Activated macrophages from FLAP knock out
mice were unable to produce LTs and they appeared to mimic 5-LO deficient
mice regarding the blunted inflammatory response [30]. Moreover, severity of
collagen-induced arthritis was substantially reduced if compared to wild type
mice, demonstrating an essential role of FLAP in LTs biosynthesis involved
in both the acute and chronic inflammatory response in mice [89].

1.3.6 Leukotriene A4 Hydrolase

Cellular distribution. LTA4H is a solubile zinc-containing enzyme, which
catalyzes the conversion of the unstable epoxide LTA, into LTB,. It is widely
expressed in most tissues and cells. Among hematopoietic cells, LTA4H was
found in neutrophils [269], monocytes [85], lymphocytes [124], mast cells [7§]
and erythrocytes [164]. Eosinophis have low levels of this enzyme [269, 13],
while basophils [272] and platelets [151] seem to be devoid of its expression.
LTA4H is a cytosolic enzyme, although nuclear localization has also been
reported [20, 22]. In addition, LTA4H activity has also been detected in
blood plasma and bronchoalveolar lavage fluid [73, 173].

Structure. LTA4H is a monomeric enzyme, which contains one Zn atom
essential for the catalytic function [94]. The crystal structure of LTA4H in
complex with the inhibitor bestatin has been solved. The protein was found
to be folded into three domains: N-terminal, catalytic and C-terminal, which
together form a deep cleft harboring the zinc site [259].

Activity. Apart from epoxide hydrolase activity, LTA4H possesses an
aminopeptidase activity, which cleaves the N-terminal aginine moiety of
tripeptides such as Arg-Gly-Asp, Arg-Gly-Gly and Arg-His-Phe [95]. How-
ever, no natural substrate for the peptidase activity has been identified
[88, 187]. Biochemical studies and mutational analysis suggest that the two
enzyme activities of LTA4H are exerted via distinct and yet overlapping ac-
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tive sites, with the zinc atom necessary for both catalyses. Both enzyme
activities of LTA4H are subject to covalent modification and inactivation
by LTA,, LTA4 methyl ester and the structural isomers LTA3 and LTAj;, a
process commonly referred to as suicide inactivation [66, 194]. Tyr-378 has
been identified as the LTA4-binding amino acid during inactivation since the
mutation of this residue abolished suicide inhibition [171]. The peptidase
activity of LTA4H is stimulated by albumin and several monovalent anions,
while the epoxide hydrolase activity remained unaffected [286]. In addition,
phosphorylation of Ser-415 has been reported to inhibit the epoxide activity
but not the aminopeptidase activity [233, 232].

Cellular regulation of LTA,;H expression. There are only a few
reports on the cellular regulation of LTA4H. IL-4 and IL-13 have been shown
to increase mRNA expression and protein synthesis of LTA4H in human
PMNL [294]. In contrast to this, another study demonstrated that INF-y
increased LTA4;H mRNA expression, whereas IL.-4 and IL-13 reduced LTA4H
mRNA in monocytes [169].

LTA ,H knock-out mouse. LTA H deficient mice develop normally and
are healthy. A comparison of the phenotype of these mice with 5-LO knock
out mice allowed the respective roles of LTB,4 and cysteinyl-LT's to be ascribed
to various parts of the inflammatory responses. LTBy4 causes the influx of
neutrophils accompanying topical AA administration and contributes to the
vascular changes seen in this model. In contrast, LTB, influences only the
cellular components of zymosan A-induced peritonitis whereas LTC, appears
to be responsible for plasma protein extravasation [31].

1.3.7 Leukotriene C, synthase

Cellular distribution. LTC,S is an 18kDa integral membrane protein,
located in the outer nuclear membrane and peripheral endoplasmatic retic-
ulum of the cell [44]. LTC,S is found in various cells of hematopoietic ori-
gin, specially eosinophils, basophils, mast cells, monocytes/macrophages and
platelets, as well as in non-hematopoietic cells and tissues lacking 5-LO, in
which LTCy is formed form LTA, via transcellular metabolism [93, 199].

Structure. As a MAPEG protein, LTC,S exhibits 31% sequence identity
to FLAP at the amino acid level and it was previously suggested that LTC4S
can be organized as a heterodimer together with FLAP [155].

Two years ago, the crystal structure of the human LTC,4S was presented in
its apo- and GSH-complexed forms to 2.00 and 2.15 resolution, respectively
[159]. The structure reveals a homotrimer, where each monomer is composed
of four transmembrane segments. The structure of the enzyme in complex
with substrate shows that the active site enforces a horseshoe-shaped con-
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figuration on GSH, and effectively positions the thiol group for activation
by a nearby arginine at the membrane-enzyme interface. In addition, the
structure provides a model for how the w-end of the lipophilic co-substrate
is pinned at one end of a hydrophobic cleft, providing the molecular ’'ruler’
to align the reactive epoxide at the thiol of glutathione [159]. This provides
new insights into the mechanism of LTC,S formation and also suggests that
the observed binding and activation of GSH might be common for a fam-
ily of homologous proteins important for inflammatory and detoxification
responses.

Activity. LTC,S catalyzes the committed step in cysteinyl-LT formation
by conjugation of reduced glutathione to LTA4. LTC, is transported out of
the cell by the multidrug resistance-associated protein, and is subsequently
converted into LTD, (through cleavage of glutamic acid) and further to LTE,
through cleavage of glycine [80, 236].

LTC4S activity is stimulated by phosphotidylcholine and divalent cations
(Mg?* > Ca®" ), whereas glutathione is essential for enzyme stability
[184, 200]. LTC4S contains two potential PKC phosphorylation sites, the
phosphorylation of which appears cell-specific and reduces LTC4S activity
[6, 91]. The FLAP inhibitor MK-886 was shown to inhibit LTC,S as well
[138].

Cellular regulation of LTC,S expression. Increased expression of
LTC4S, as determined by immunostaining, was observed in bronchial biop-
sies from patients with aspirin-intolerant asthma [50]. Regulatory effects
of cytokines on the LTC, expression have been in several cellular studies
[240, 224, 114]. IL-4 triggered a profound induction of LTC4S in human
mast cells [114]. TGF-3 increased LTC,S expression at the transcriptional
level in the monocyte-like cell line, THP-1 [224].

LTC;S knock-out mice. These knock out mice develop normally and
are fertile. The bone marrow-derived mast cells from LTC,;S knock out
mice produce no LTC, in response to IgE-dependent activation, whereas
the production of LTB4, PGDs and 5-HETE is normal. In in vivo inflamma-
tory models, LTC4S knock out mice exhibited markedly attenuated antigen-
induced pulmonary inflammation with reduced IgE secretion and Th2 cy-
tokine production, suggesting a role for cys-LTs in regulating the Th2 cell-
dependent pulmonary inflammation [131]). Congenital LTC,S deficiency has
been reported to be linked to a fatal neurometabolic disorder [163, 162].

1.3.8 Leukotriene receptors

All LT receptors are seven-transmembrane spanning G-protein couple recep-
tors (GPCRs) and the LTs either activate the Gq subtype (resulting in an
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increased intracellular calcium concentration) and/or the Gi subtype (resting
in decreased intracellular cyclic adenosine monophosphate, cAMP) [260, 67],
as presented in Figure 1.4.

Figure 1.4: Leukotriene receptors and signaling with sites of action of anti
leukotriene drugs. Adopted from Marc Peters-Golden, The New Engl. J. of Med.
2007.

LTB, exerts its effects by binding to two receptors, termed B leukotriene
receptor 1 (BLT;, high affinity receptor) and B leukotriene receptor 2
(BLTq, low affinity receptor) [260] and PPAR-«, the peroxisome proliferator-
activated receptor alpha.

LTB, has been shown to be a natural ligand and activator of PPAR-«.
Activation of PPAR-« results in the induction of genes involved in the fatty
acid oxidation pathways that degrade fatty acids and fatty acid derivatives
like LTB, [58]. Direct interaction between PPAR-« and LTBy, which results
in induction of enzymes for catabolism of LTB,, may represent a feedback
mechanism that controls the duration of inflammatory responses.

BLT; is primarily expressed on leukocytes, and mediates most of the
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LTB4-induced effects. BLT5 is more ubiquitously expressed and it binds
LTB, with significantly less specificity than BLT;. Several eicosanoids other
than LTB, including 12-HETE, 12-HPETE and 15-HETE were found to
compete with LTB, binding in a dose dependent manner to membrane frac-
tions of chinese hamster ovarian (CHO) cells expressing human BLT,, but
not human BLT; [292]. Although its functional role is less clear, a recent
study showed that LTB, mediates dendritic cell chemotaxis via BLT, [245].

Cys-LTs act via two receptors named cysteinyl-leukotrienes receptor type
1 and type 2 (cys-LT; and cys-LTy), as shown in Figure 1.4. Cys-LT; is
mainly expressed in the spleen, peripheral blood leukocytes, and less ex-
pressed in the lung (smooth muscle cells and interstitial macrophages), small
intestine and placenta. The cys-LT; receptor antagonists montelukast, zafir-
lukast and pranlukast are registered drugs for the treatment of asthma and
allergic rhinitis [206]. The cys-LTs receptor is mainly found in the heart,
adrenal medulla, peripheral blood leukocytes, spleen and lymph nodes with
weaker expression throughout the CNS [190, 116]. Recently, the orphan
receptor GPR17 was identified as a new dual uracil nucleotides/cysteinyl-
leukotrienes receptor [45], which was found to be highly expressed in the
organs typically undergoing ischemic damage, such as brain, heart and kid-
ney.

1.4 Activation of 5-LO enzyme in wvitro

1.4.1 Stimulatory factors

The induction of 5-LO activity in vitro has extensively been studied through
years and shown to involve the following factors.

Ca%t

Although other lipoxygenases (LOs) do not require Ca** for catalysis, Ca?"
can strongly stimulate 5-LO activation in wvitro. However, the extent of
activation by various stimuli, including Ca?*, depends strongly on the
lipid:arachidonate ratio [221, 227]. Nevertheless, under conditions optimized
to give maximal activity, Ca®>" was shown to be the most potent stimulus.
For purified 5-LO, half-maximal excitatory activation (ECjyg) is obtained in
presence of 1-2M calcium, whereas concentrations of 4-10uM of Ca?T caused
maximal activation of the enzyme [189, 202].

5-LO binds Ca?* in a reversible manner. For the intact enzyme, a disso-
ciation constant (Kd) of 6 uM has been determined by equilibrium dialysis
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and the stoichiometry of maximum binding has been shown to average ap-
proximately two Ca?" ions per molecule of 5-LO [100]. Similar results (two
Ca?* per 5-LO; Kd 7-9 uM) have been obtained for the His-tagged C2-like
domain (residues 1-115). Mutations of Asn-43, As-p44 and Glu-46 in the
ligand binding loop of C2-like domain of 5-LO have been indicated to be es-
sential for 5-LO binding to Ca?* and Ca?'-stimulated enzyme activity [99].
The C2-like domain of 5-LO is negatively charged, and binding of Ca?* is
thought to neutralize it [136].

Ca?*-stimulated activation of 5-LO requires the presence of phosphatidyl-
choline (PC) or coactosin like protein (CLP), and therefore Ca?* might in-
duce a productive binding to these scaffold factors. Ca2t also lowers the
Michaelis constant (Km) of 5-LO for arachidonic acid (AA). It also changes
the kinetics of the reaction leading to substrate inhibition at high concentra-
tions of AA [221].

Ca?* also appears to modify the affinity of 5-LO for lipid hydroperoxides,
since in the presence of this divalent cation, glutathione peroxidase-1 (GPx-1)
is less efficient in inhibiting 5-LO activity. This effect of Ca®* is drastically
diminished for the 5-LO loop-2 mutant with decreased Ca?* affinity [28].
For the reduction of 5-HPETE into 5-HETE, a pseudoperoxidase activity
of 5-LO has also been accounted to have Ca?*-dependent character [226].
Interestingly, in addition to Ca?* also Mg?", at millimolar concentrations
present in cells, can activate 5-LO in vitro [221]. In contract, Zn**, Co*"
and Cu®T had been shown to inhibit 5-LO activation in in vitro assays [202].
Due to appearance of some basal 5-LO activity in the absence of Ca?* and
Mg?*, the divalent cations appear not to be part of the catalytic mechanism.

Phosphatidylcholine

During purification of 5-LO from human leukocytes, it was observed that
the enzyme activity depended on microsomal membranes [231]. Among the
different phospholipids that have been tested, only PC promoted 5-LO ac-
tivity, although 5-LO could associate also with phosphatidylethanolamine
and phosphatidylserine [213, 189]. Synthetic PC vesicles could replace the
cellular membrane and thus function as a stimulatory factor. Binding of PC
to 5-LO has been described in the presence as well as the absence of Ca?*,
however stimulatory effects of PC on 5-LO activity in vitro were significantly
more pronounced upon addition of this divalent cation [221, 197].

Most lipids were shown to have inhibitory effect on 5-LO activity, while
cationic lipids had stimulatory effect. The complex pattern of dependence of
the 5-LO activity on various lipids indicates that the negative surface charge
of membranes is inhibitory especially in the absence of Ca?*, but is required
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for Ca?t-mediated membrane binding and activation of 5-LO. Furthermore,
Ca?*-induced binding to PC vesicles was shown to stabilize structure of both
5-LO protein and the membrane [221, 196]. Ca*", as well as Mg, increased
the hydrophobicity of 5-LO in a phase partition assay [100, 221].

Binding of 5-LO to PC has been shown to involve three surface-exposed
Trp residues, positioned in the 5-LO [-sandwich [136]. Ca?" binding at
the C2-like domain appears to change orientation of these three tryptophan
side chains, so as to maximize membrane insertion potential, resulting in an
increased enzyme affinity for certain membrane phospholipids, specifically
binding to phosphatidylcholine molecular species typically found within the
nuclear membrane [197]. Such phospholipid classes are not particularly abun-
dant on the inner leaflet of the cellular plasma membrane, which has more
anionic bulk character due to higher abundance of glycerophosphoserine and
glycerphosphoinositol [176].

In line with this, the isolated 5-LO C2-like (-sandwich containing the
three previously mentioned Trp residues, was also shown to have a higher
affinity for zwitterionic PC vesicles than for anionic (phosphatidylserine and
phosphatidylglycerol). It was suggested that the PC selectivity directs 5-LO
to the nuclear envelope [136]. This data is in accordance with the requirement
of the (-sandwich for translocation of GFP-5-LLO constructs to the nuclear
membrane in ionophore-stimulated HEK 293 cells [40].

Increased membrane fluidity favored 5-L.O association, and it was argued
that this should be the factor directing 5-LO to the AA enriched nuclear
envelope [197]. Interestingly, addition of cholesterol to a membrane prepa-
ration in vitro reduced 5-LO activity by half [197], and cholesterol sulfate
could also inhibit 5-LO in intact cells [5].

Coactosin-like protein (CLP)

CLP was initially found to bind 5-LO in the yeast 2-hybrid system [212].
The binding of purified proteins were later confirmed in numerous in vitro
assays. Non-denaturing polyacrylamide gel electrophoresis and cross-linking
experiments showed that 5-LO binds CLP in a 1:1 molar stoichiometry, in a
Ca?*- independent manner [211]. The effect of CLP on the 5-LO activation
and modulation of the enzyme product profile will be in detail discussed in
‘Result and Discussion’ of the thesis.

ATP

5-LO catalytic activity has been shown to be stimulated by ATP and to lesser
extent by the other nucleotides, including ADP, AMP, cAMP, CTP and UTP
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(191, 188, 68]. Among LOs, it appears that only 5-LO can bind ATP and be
activated by nucleotides. However, database analysis revealed no consensus
on ATP- or nucleotide-binding site in the amino acid sequence.

The extent of 5-LO stimulation at 0.1-2 mM ATP is in the range of 2-
to 6-fold, and Ka values for ATP were determined as 30-100 uM. ATP was
first shown to stimulate crude 5-LO [191] and it was long thought that the
ATP stimulation requires Ca?* presence. Additional studies, however, have
demonstrated that ATP triggers activity of 5-LO in the absence of Ca?"
247], although combination of Ca?" and ATP gives the best stimulatory
effect [221].

Since the non-hydrolysable analogue v-S-ATP caused comparable effects,
ATP hydrolysis appeared not to be required for stimulation. In stead, it
seems that ATP acts by having an allosteric and/or stabilizing effect on the
enzyme.

In vivo, the intracellular concentration is assumed to be in the millimolar
range, and MgATP2- (the major form of ATP inside the cell) rather than
ATP might be the physiological stimulus [221].

Lipid Hydroperoxides

Activation of resting 5-L.O requires the oxygenation of the iron to the ferric
Fe3* state, therefore the redox environment appears to be of importance for
5-LO activity in cellular but also in vitro systems.

Electron paramagnetic resonance (EPR) studies showed that the iron of
purified recombinant 5-LO is ferrous (Fe*™) [37, 98], and the treatment with
5-HPETE as well as other lipid hydroperoxides (12-HPETE and 13-HPODE)
gave ferric form of 5-L.O. In accordance with EPR data, 5-L.O in crude leuko-
cyte homogenates was shown to be stimulated by lipid hydroperoxides but
not by the presence of hydrogen peroxide.

Lipid hydroperoxides can shorten the lag phase of 5-L.O, which is usually
observed after addition of substrate to crude 5-LO in cell homogenates or
to a solution of the purified enzyme. In addition, conditions that promote
lipid peroxidation stimulate 5-LO activity in leukocytes [225]. Glutathione
peroxidases (GPx) reduce lipid hydroperoxides, and when added to in vitro
5-LO activity assays, GPx-1 was shown to inhibit 5-LO product formation.
GPx-1 and also catalase can stabilize 5-LO enzyme in vitro by scavenging
ROS formation [296].
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Glycerides

Various glycerides have been found to activate 5-LO. Of the compounds
tested, 1-oleoyl-2-acetyl-sn-glycerol (OAG) was found to be the most potent
[112]. This activation occurs in the absence of Ca®". However, in the pres-
ence of Ca?", OAG caused no stimulation of 5-LO. Phospholipids or cellular
membranes also abolished the stimulatory effects of OAG.

The same tryptophan residues that mediate binding to phosphatidyl-
choline [136] and are essential for binding to CLP [219], appear to be involved
in binding to OAG, since 5-LO triple mutant lacking tryptophan residues
(WI13A/WT75A/W102A) was not stimulated with OAG [112]. In addition,
phospholipids or cellular membranes abolished the effects of OAG. As pre-
viously found for Ca?*, OAG protected 5-LO against the inhibitory effect of
GPx-1 [112].



Chapter 2
Aims & Methods

2.1 Aims

The aim of this thesis was to functionally characterize interaction of CLP (a
human F-actin binding protein) with 5-lipoxygenase and decipher its role in
biosynthesis of leukotrienes, with the intent to increase our understanding
of mechanisms involved in leukotriene formation and also enable more ef-
ficient pharmacological treatment of diseases where these pro-inflammatory
compounds are implemented.

2.2 Methods

Methodologies used in this thesis are established in the field of biochem-
istry, immunology and molecular biology. For experimental details, see the
Materials and Methods sections in papers I-IV.



Chapter 3

Results

3.1 Structural determination of CLP by
NMR

In the half-century since the first glimpse of a protein structure at atomic
resolution, structural biology has had a fundamental role in advancing our
understanding of biological function at a molecular level. Yet, although it is
generally agreed that proteins must have some flexibility in order to perform
their roles, uncertainty remains about how well static structural models cap-
ture the essential features underlying function. A picture may be worth a
thousand words, but does it always tell the entire story?

In order to gain the knowledge on the CLP movements (rather than ob-
taining a static crystal structure of the protein), which could enable deter-
mination of ensembles of structures that represent the conformational fluc-
tuations of the protein, and advance our understanding of CLP interactions
with actin filaments and 5-LO enzyme, we performed NMR spectroscopy, as
a powerful tool for studying the structure and dynamics of small proteins.

For the purpose of the experiment, CLP was isotopically N-labelled and
expressed in F. coli. It was previously reported that human CLP could exist
both as a monomer and a dimer [211]. During purification, we also observed
that CLP showed two bands with molecular masses corresponding to the
monomer and the dimer on SDS-PAGE. However, CLP analyzed by mass
spectroscopy (MALDI) gave a sharp single peak with the monomer mass
(unpublished data).

The structure featured a five-stranded [3-sheet with two a-helices on either
side, Figure 3.1.

The superposition of our NMR structure of CLP with another solution
CLP structure, determined almost at the same time [54], and crystal struc-
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Figure 3.1: Ribbon diagram of human CLP. The five-stranded [-sheet is high-
lighted in green and the connecting loops are in grey. Four helices are highlighted
in purple. In A, the mobile loop connecting 33 and (4 is indicated. In B, the Lys
residues binding 5-LO (Lys131) and F-actin (Lys75)are indicated

ture of CLP [147] in backbone shows that the loop (residues 66-75) between
B3 and (4 and the C-terminus (residues 136-142) is flexible (encircled on
Figure 3.1 A), while the other regions are kept highly similar and rigid.

Polar residues cover most areas of the CLP surface, with a few hydropho-
bic residues exposed, suggesting that CLP binds to other proteins with hy-
drogen bonds and/or salt bridges. Previous reports from our laboratory
indicated that the critical binding residues for F-actin and 5-LO are Lys-75
and Lys-131, respectively. Mutation of Arg-73 has also been reported to
affect CLP binding to S-actin [210].

In the CLP structure, Lys-75 is located on the surface of the molecule,
which together with Lys-72 and Arg-73 creates a positively charged microen-
vironment that favors an electrostatic bond with an acidic site of the surface
of actin. In that respect actin subdomain 1, in particular the acidic N-
terminus of actin, is of interest. Actin subdomains 1 and 2, as shown before,
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are favored targets for F-actin binding proteins [165], since several proteins
were found to cross-link to this area of actin [267]. The complementary
interfaces in these proteins were regions rich in basic amino acid residues,
suggesting that the N-terminus of actin, which protrudes from F-actin as a
highly mobile unit [107], acts as a fishing-rod in attracting positively charged
surfaces of actin binding proteins, including CLP.

Our NMR structure also revealed that Lys-131, involved in CLP binding
to 5-LO, is positioned on the surface of helix 4, which is followed by the
mobile C-terminus.

The binding of mouse CLP to F-actin was favored at low salt conditions
(in agreement with electrostatic interactions), while binding of CLP to 5-LO
was favored at high salt concentrations, indicating a hydrophobic interaction
[61].

The Ca atoms of the functionally important residues, Lys-75 and Lys-131,
are found to be separated by about 14 A. Therefore, it appears plausible that
these two residues overlap, making the observation of this ternary complex
experimentally impossible. We attempted to obtain information on CLP
residues binding to 5-LO by addition of purified 5-LO to *N-labelled CLP.
However no striking difference in the CLP NMR-spectrum before and after
the addition of 5-LO could be seen.

Despite great expectations from this experiment, the NMR structure of
CLP turned out to be a story on mute, since it did not reveal much in regard
to directions of future experiments. However, the CLP structure has been
used to model the CLP-5-LO complex (paper III in this thesis).

3.2 Characterization of 5-LO interaction
with CLP n vitro

Although papers that came out from our laboratory have demonstrated di-
rect interaction between 5-LO and CLP by several experimental approaches,
the physiological significance of this interaction was missing. In this study,
we investigated if presence of an equimolar concentration (1:1) of CLP in
the solutions with purified 5-LO, under different experimental conditions,
could effect the 5-LO enzymatic activity and modulate its product profile in
vitro. Formation of 5(S)-HPETE, 5(S)-HETE, and LTA, (measured as the
nonenzymatic hydrolysis products 6-trans-LTB, and 12-epi-6-trans-LTBy)
was monitored at 235nm and 270nm, respectively, by using reverse-phase
high pressure liquid chromatography (HPLC).

As is often the case in science, this study benefited from a fortuitous
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accident.

3.2.1 CLP up-regulates Ca?t-induced 5-LO activity in
the absence of PC

Early on it was determined that 5-LO activity (as well as a degree of activa-
tion) is different at various combinations of arachidonic acid (AA) and PC
[221], and the concentrations of 100uM of AA and 25ug/ml of PC were chosen
as our standard conditions in vitro activity assays. Analysis of AA metabo-
lites, 5(S)-HETE and 5(S)-HPETE, in samples where 5-LO was pre-exposed
to an equimolar amount of CLP, without presence of PC, serendipitously
revealed that Ca?*-induced activation of this enzyme was up-regulated by
about 3-fold, compared to controls.

CLP-induced up-regulation of the 5-LO activity in the absence of PC was
further investigated and confirmed by the spectrophotometric cuvette assay,
where this 16kDa small protein strikingly increased initial velocity of the 5-
LO catalysis, even under modified conditions due to method limitations (as
explained in paper II).

These data were surprising, since it had been postulated that the presence
of a membrane preparation, usually PC vesicles, is required in addition to
Ca?*, for the 5-LO enzymatic activity in vitro, as it is supposed to mimic
the membrane interfaces at which 5-L.O catalysis in vivo is occurring.

To ascertain that this effect of CLP on 5-LO activity in wvitro mirrored
the specific 5-LO-CLP interaction, 5-LLO was incubated with either of two
CLP mutants. Unlike the wild type, a mutated CLP (K131A) protein (with
reduced binding ability to 5-LO, [210]) had no effect on the 5-LO activity
and failed to trigger the formation of 5-HPETE and 5-HETE in the absence
of PC.

On the other hand, the K75A mutation which abolished the actin-binding
properties of CLP without interfering with binding to 5-LO [211], caused
equally strong activation of 5-L.LO enzyme as the wild type protein, confirming
previous finding which indicated the importance of Lys-131 of CLP in 5-LO
binding.

3.2.2 CLP up-regulates formation of LTA, in the pres-
ence of PC

Addition of CLP-wt or its K75A mutant to the standard 5-LO reaction mix-
ture, including PC, was furthermore found to cause elevated formation of
LTA4 by about 3- up to 5-fold compared with the control samples. This up-
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regulation of LTA, was maximal at the highest concentration of PC tested
(258 /).

Interestingly, by decreasing the amounts of membrane preparation in the
incubating mixture (from 25ug/ml, 10ug/ml, 2.5ug/ml to zero), CLP grad-
ually elevated the formation of 5-HETE with a simultaneous reciprocal de-
crease of LTA, synthesis, which was completely abolished in samples lacking
PC. In those samples 5-HETE appeared as a main and practically the only
5-LO product formed, considering that formation of LTA,; metabolites was
barely detectable (shown in Fig. 1A, paper II).

In a parallel set of experiments, presence of CLP in 5-LO incubations
at increasing amounts of PC, gradually led to an up-regulation of 5-LO-
catalyzed formation of LTA,, which appeared as a result of diminished 5-
HPETE reduction. These findings implied that type of the 5-LO products
as well as the degree of their up-regulation by CLP appears to be highly
dependent on the amount of PC present in the assay. In addition, the highest
yield of LTA, was obtained in samples when an equimolar 5-LO:CLP complex
was incubated at the highest concentration of PC, thereby suggesting that
CLP and PC do not compete, but rather function together to improve the
capacity of 5-LO for leukotriene biosynthesis. Based on this, we concluded
that CLP in the presence of PC promotes formation of LTA,.

3.2.3 CLP promotes formation of 5-HETE

Variations in the amounts of PC in samples, as described in paper II, have
clearly revealed a few prominent features of CLP in connection to 5-LO catal-
ysis, among which is pronounced reduction of lipid-hydroperoxides, particu-
larly 5-HPETE.

Presence of an equimolar amount of CLP (1:1), that could replace the
membrane preparation, and have such a strong impact on the 5-LO activation
in wvitro, has additionally received our attention for its apparent peroxidase
activity and clear promotion of 5-HETE formation. Inclusion of CLP in
the incubation mixture shifted the formation of 5-LLO products monitored at
235nm, from 5-HPETE to 5-HETE (Fig. 1A, paper II). This was particularly
clear in the absence of PC if compared with the control samples.

To rule out the possibility that the conversion of 5-HPETE, as the main
5-LO metabolite formed under standard assay condition, is due to a presence
of reducing agents (or some unspecific interaction of CLP with one of the 5-
LO cofactors or even a substrate itself rather than with 5-LO), experiment
was performed in presence of only Ca?* and 13-HPODE.

Also under this condition, the degree of 5-HPETE conversion was not
changed and it was found that interacting 5-LO:CLP complex, rather than
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CLP by itself, is capable of drastically reducing 5>-HPETE to 5-HETE.

As shown in Fig.4 (paper II), in the same manner, even exogenously
added 5-HPETE was highly converted into 5-HETE, as only 28% of starting
amount remained unchanged.

Since 13-HPODE also was reduced to a similar extent, this indicated that
CLP might be able to promote reduction of lipid-OOH bound to a proposed
second fatty acid binding site in 5-LO [234, 168].

3.2.4 CLP supports Mg?T-induced 5-LO activity

The pronounced stimulatory effect of Ca?* is regarded to be specific. How-
ever, some other divalent cations have also been shown to stimulate 5-LO ac-
tivity in vitro, although less effectively [202, 221]. Compared with the effect
of Ca?* on the 5-LO product synthesis, mediated via ligand-binding loops
in the 5-LO C2-like domain [99], the concentration of free Mg?* required to
achieve maximal activity response in the presence of PC was approximately
50-fold higher.

Based of these earlier studies and considering high concentrations of free
Mg?" in the cell (up to ImM), we investigated if 5-LO catalysis would be
affected in the same way as it had been in the case with Ca?T. We added
an equimolar amount of CLP, only in the presence of Mg?" as a stimulatory
cation. Our experiments revealed that all three, previously described, CLP-
induced effects on 5-LO activation and modulation of its product profile have
also been consistently observed with Mg?* as a stimulatory co-factor.

These data were confirmed in additional experiments, carried out by spec-
trophotometric assays, where time courses of 5-LO activity in the presence
of CLP and Mg?* had the same general appearance as with CLP and Ca?*,
with a high initial velocity of the reaction that leveled out after 1-2 min
(Fig. 3A and B, paper II). Due to method limitation, cuvette assays were
performed at lower concentrations of AA than in standard incubation con-
ditions, showing that even below the critical micellar concentrations CLP is
efficient.

3.2.5 Molar stoichiometry of the functional 5-LO:CLP
complex

It is noteworthy that when 5-LO activity was assayed with CLP in molar
stoichiometries 1:2, 1:5, and 1:10, no additional impact on the observed CLP-
induced effects on 5-LO catalysis has been noticed. On the other hand, the
reduced amount of CLP (stoichiometry 1:0.1) gave no up-regulation of the 5-
LO activity neither did it appear to have any modulation effect on the 5-L.O



3.2 Characterization of 5-LO interaction with CLP in vitro 37

product profile. These results dovetail with the previously reported study
[210] where non-denaturing PAGE experiment together with chemical cross-
linking assays showed that interacting covalently linked 5-LO:CLP complex
can only have 1:1 molar stoichiometry. Heat-treated CLP, probably with
deranged structure, was not functional.

It is of importance to mention, that apart from an equimolar amount of
CLP present in the 5-LO reaction mixture, separate experiments have shown
that presence of Ca?* or Mg?* is absolutely required for all the effects of CLP
and/or PC we had observed. We find this to be a puzzling disconnect from a
report on 5-LO:CLP binding which was shown to be Ca*"-independent [210].
On the other hand, as it was suggested that 5-LO can bind to membranes
in the productive/nonproductive modes (i.e. membrane binding per se may
not confer 5-LO activity), it also appears possible that the binding mode of
5-LO to CLP could depend on the presence of Ca?" in that way resembling
the productive/nonproductive modes of membrane binding [196].

3.2.6 CLP stabilizes and protects 5-LO against non-
turnover inactivation

In addition to supporting Ca?*-induced enzyme activity, we have found that
CLP could also successfully prevent inactivation of 5-L.O over time. Solutions
of purified 5-LO kept at RT (on the lab-bench) for up to five days in sealed
Eppendorf tubes and under normal atmosphere, were found to be gradually
inactivated with the half of activity remaining after 24h, and about 20%
after 120h. However, in presence of CLP (molar stoichiometry 1:1), 5-LO
enzyme activity was preserved, considering that about 2/3 of its starting
activity remained after 120 h (Fig. 4A, paper III). Since no substrate was
present during this time frame, experimental set implied the conclusion that
CLP could protect 5-LO also against non-turnover inactivation caused by
exposure to oxygen which has previously been shown to inactivate 5-LO due
to loss of the prosthetic iron [201, 55].

Similarly, CLP provided protection of 5-LO also against high temper-
ature, as the degree of heat-induced inactivation of 5-LO appeared to be
significantly reduced compared to the heat exposed 5-LO samples in which
CLP was not added. In contrast to this, CLP failed to protect 5-L.O against
turnover related inactivation that had earlier been shown to appear as a
consequence of the enzyme interaction with its own products 5-HPETE and
LTA, [2, 141]. As described in the result section of paper III, repeated ad-
dition of the substrate into reaction mixture with an equimolar 5-LO:CLP
complex, did not result in significantly increased formation of 5-LO products.
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Specificity of the above described effects, were again proved to be strictly
dependent on the binding between CLP and 5-LO, since CLP K131A muta-
tion lead to a complete absence of each of them.

3.2.7 Importance of Trp residues (13/75/102)

Three surface-exposed tryptophan residues (Trp-13, Trp-75, and Trp-102),
have previously been reported to be involved in the membrane binding, in
particular the PC selectivity of the 5-LLO C2like domain, playing a dual role
of accelerating the membrane association and prolonging the membrane res-
idence time [136].

Since much of the above discussion has been focused on the similarity
of the CLP-induced effects on 5-LO activity in relation to those of PC, we
have further investigated whether those properties of CLP could be blocked
by a specific cadre of 5-LO mutants generated by single-point, and triple
mutations of three triptophan residues 13, 75 and 102 positioned in the ligand
binding loops of the 5-LO C2-like domain, also referred to as (#-sandwich.

GST-pull down assays showed that the triple 5-LO (W13/75/102A) mu-
tant was not able to associate physically with CLP, which in turn abolished
all previously seen CLP-dependent effect of 5-LO catalysis (Fig. 2B and 1B,
paper II). Yet more remarkable is the fact that three Trp residues appeared
not to be essential for the effects of PC on Ca?*-induced 5-LO activation in
vitro since at standard incubation condition, with the highest concentration
of PC tested, 5-LO activity of the triple mutant was even higher than for the
wild type enzyme (Fig 2B, paper II).

However, lower concentrations of PC resulted in a reduced activity of
triple 5-LO (W13/75/102A) mutant, which was even more pronounced when
concentration of AA was also lowered (Table 2, paper II). Although these
three Trp residues were previously identified as crucial for binding of the
isolated 5-L.O (-sandwich to PC [136], they appear not to be overtly essential
for membrane binding of the intact enzyme.

It is possible that these Trp residues are not the only residues relevant
for PC-supported 5-LO activity. Nonetheless, it is clear that they can ap-
preciably contribute to the Ca?"-stimulated enzyme activation, particularly
at the low concentrations of PC and AA (below micelle formation levels),
in this way supporting the concept that other residues also in the catalytic
domain of 5-LO may contribute to membrane association (as described for
12/15-LO, [271]), and in accordance with other protein containing a C2-like
domain such as cytosolic phospholipase A2 [216].

However, the tryptophan residues were shown to be essential for the bind-
ing of CLP and required for CLP scaffolding of Ca?*-induced 5-LO activation
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(as shown in paper II). Additionally, single-point mutation of W13, W75 and
W102 has particularly hinted the importance of W102 in that matter. The
5-LO (W102A) mutant had drastically reduced binding ability to CLP (Fig.
3, paper III), which was consequently followed by the absence of all CLP-
induced effects on 5-LO stability and activation (Fig. 1A and B; Fig. 5A
and 5B, paper III), that have earlier been described in the text. Therefore
activity of 5-LO (W102A) mutant could not be supported by CLP, in the
same way as CLP-K131A could not support activation of wild type 5-LO.

In an attempt to further elucidate the relevance of two amino acid resides
W102 of 5-LLO and K131 within CLP structure, for their mutual interaction,
we performed protein-protein docking of CLP and 5-LO by using the ClusPro
server [48] and applying the DOT algorithm [156, 7].
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Figure 3.2: 5-LO:CLP model structure.

Our model of the CLP-5-LO complex (Figure 3.2) suggests a direct pi-
cation interaction of CLP-K131 (with 5-LO-F14), confirming the importance
of K131 for binding to 5-LO but also for the CLP-supported effects on 5-LO
activation [219] and enzyme stability (Fig. 6, paper III). On the other hand,
5-LO-W102 appeared to influence CLP binding via 5-LO-R165. Such an
indirect role of W102 is compatible with the 5-LO model structure, in which
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W102 is partially hidden in the cleft between the two domains and not easily
accessible for a binding partner. This is also analogous to the corresponding
residue W100 [103] in the 12/15-LO structure, used as the basis for our 5-LO
model as its structure has remained unsolved up to date.

Furthermore, the 5-LO:CLP model complex indicates five additional hy-
drogen bonds between 5-LO and CLP, two of which involve residues in the
5-LO catalytic domain, while the other three involve residues in the (-
sandwich. Therefore binding of CLP to 5-LO may influence the relative
positions of the two domains in 5-LO.

In this context, it is noteworthy that CLP could protect 5-LO against
thermolysin-catalyzed proteolysis (paper III) which was drastically delayed
in the presence of CLP. This thermo-stable protease from B. thermoprote-
olyticus, which preferentially cleaves sites with bulky and aromatic residues,
is usually used in a method called pulse proteolysis for determination of
structural stability of proteins. Our results highlight the possibility of CLP
hindering access of thermolysin-preferred cleavage sites on 5-LO, thus delay-
ing proteolytic degradation of 5-LO.

3.3 5-LO interaction with CLP in the cell

Several studies have suggested that cellular 5-LO activity and distribution
is regulated by interaction with other proteins. In that perspective an as-
sociation of 5-LO with CLP n wvivo, could have important implications for
translocation and modulation of cellular 5-L.O activity.

3.3.1 Subcellular localization and trafficking of 5-LO
and CLP

The subcellular distribution of 5-LO differs among cell types and changes in
response to various stimuli. 5-LO is mainly localized in the cytosol, although
presence in the soluble compartment of the nucleus have been reported for a
few cell types (see Introduction). Upon cell activation, both cytosolic and nu-
clear 5-LO translocate in parallel with cytosolic PLA; to the nuclear envelope
[205].

As expected, in unstimulated human PMNL (mostly neutrophils), 5-L.O
was localized in the cytosolic (non-nuclear) fraction, while stimulation of the
cells with ionophore for 3, 10 and 25 min. led to an increase in the amounts
of 5-L.O that reached the nuclear region (Fig. 5, paper II). Interestingly, CLP
showed the same pattern of translocation. Treatment of the cells with Ca?*-
ionophore A23187 led to redistribution of cytosolic CLP from nonnuclear to
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nuclear fractions. We estimated the amounts of 5-LO and CLP by Western
blot analyses of a 10.000 x g supernatants obtained from sonicated human
leukocytes with known amounts of purified proteins loaded on membrane as
control. The soluble protein fraction from 1 million cells contained ~20-50 ng
of 5-LO and ~20-50 ng of CLP. Considering Mr values (78kDa for 5-L.O and
16 kDa for CLP), CLP would be approximately five times more abundant
than 5-LO, on molar basis.

The apparent 5-LO-dependency of CLP translocation found in human
leukocytes was also tested in Mono Mac 6 cells (MM6), known to express
substantial levels of 5-LLO only upon induction with transforming growth
factor-g (TGF-( ) and calcitriol (vitDs) [25]. That allowed us to employ
a few new experimental settings that were essential for the purpose of our
investigation. In undifferentiated MMG6 cells, expression of CLP but not 5-
LO was detected. Regardless of stimulation, in these undifferentiated cells
almost all CLP was found to be located in non-nuclear fraction as shown in
Fig. 8A (paper III).

On the other hand, differentiated MM6 cells (expressing 5-LO) required
priming with PMA, in order for 5-LO to translocate from cytosol and as-
sociate with the nuclear membrane in response to ionophore [279]. 5-LO
was primarily found in non-nuclear fractions upon cellular stimulation with
ionophore alone. The same pattern of cellular distribution appeared for CLP.
However, priming with PMA (PKC activator) followed by the subsequent ad-
dition of A23187 with or without AA, resulted in 5-LO activation that con-
sequently led to translocation towards nuclear envelope, as large amounts of
5-LO were found in the nuclear fractions (Fig. 8B, paper III). In differenti-
ated MMG6 cells, CLP migrated in the same manner as 5-LO (Fig. 8B, paper
I1I).

Our data on the 5-LO-dependent trafficking of CLP was further sup-
ported by the recent study on a gender difference in regard to subcellular
localization of 5-LO [204]. It was shown that in neutrophils from males
a substantial amount of 5-LO associated with the nucleus already in rest-
ing cells. Upon ionomycin stimulation, the compartmentalization of 5-LO
was not significantly altered. In contrast to this but in accordance with al-
ready well established model for 5-LO activation, translocation of 5-LO to
the nucleus in neutrophils from females was detected only upon cell chal-
lenge. Interestingly, the subcellular distribution of CLP was also shown to
be gender-dependent, as it consistently co-localized with 5-LO in female and
in male neutrophils.

These experiments strongly indicated that CLP translocation has 5-LO-
dependent character. It tightly follows changes in the 5-LLO migration, in-
dependently on the type of cell stimuli, further supporting our prevailing
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hypothesis of CLP functioning as a chaperone of 5-LO.

3.3.2 Hyperforin, a novel type of 5-LO inhibitor

Hyperforin, a natural compound isolated from St. Johns wort (Hypericum
perforatum), has previously been reported to act as a dual inhibitor of COX-1
and 5-LO enzyme [4]. In relation to the 5-LO pathway, hyperforin has been
shown to abrogate the 5-LO nuclear membrane translocation and inhibit
5-LO product synthesis induced by different cell stimuli.

We have recently found that this compound possesses a novel and unique
pharmacological profile as a 5-LO inhibitor with high efficacy in vivo. Hy-
perforin significantly suppressed formation of LTB4 in pleural exudates of
carrageenan-treated rats, which was earlier described and used as a suitable
model for studying anti-inflammatory efficacy of 5-LO inhibitors [220, 52].
By contrast, the COX1/2 inhibitor indomethacin, similarly efficient in reduc-
ing exudate volume and number of inflammatory cells as hyperforin, failed
to significantly suppress formation of LTB, (Fig. 1, paper 1V), emphasiz-
ing that hyperforin-induced effects on 5-LO pathway are specific, directly
related to interference with 5-LO activity and not due to general impairment
of inflammatory response.

Inhibition of 5-LO catalysis in cell-free system by hyperforin, but not by
the iron-ligand type of 5-LO inhibitor BWA4C or the non-redox type such
as ZM230487, was selectively abolished in the presence of PC (but not other
phospholipids; Fig. 4A, paper IV) and strongly reduced by mutations of
three triptophan residues at 13, 75 and 102 positions in the C2-like domain
of 5-LLO. Taken together, these results indicated the specific physical binding
between hyperforin and ligand-binding loops of 5-LLO C2-like domain (Fig.
4-5, paper 1V).

In that regard, bearing in mind the importance of tryptophan residues
also for the 5-LO binding to CLP (papers II and III), it was particularly
interesting to further investigate whether this novel 5-LO inhibitor would
also be efficient in disrupting functional interaction of 5-LO with CLP.

As shown in GST pull-down assay (Fig. 7, paper IV), hyperforin success-
fully interrupted formation of functional 5-LO:CLP complex, as it reduced
the binding of 5-LO to CLP at the concentrations that inhibited 5-LO prod-
uct synthesis (in vitro and in cellular systems). Moreover, the ability of CLP
to support Ca?*-induced activation of 5-LO upon treatment with ionophore
A23187, was severely compromised in presence of hyperforin. Particularly
interesting was the finding that this pharmacologically active constituent of
St. Johns wort could suppress CLP-mediated upregulation of LTA, syn-
thesis (expressed as LTB, isomers) much more efficiently than 5-HPETE
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(Table 2), in this way confirming functional interference with the putative
CLP/PL-binding site within C2-like domain of 5-LO. At the same time these
data further supported our prevailing hypothesis of LT synthesis being fa-
vored by the formation of a three-partner complex consisting of 5-L.LO, CLP
and PC (papers II and III). 5-LO and CLP as novel molecular targets for
hyperforin, were also investigated in intact cells. In activated human neu-
trophils, hyperforin (but not BWA4C or ZM230487) prevented translocation
and nuclear-membrane association of 5-LO (Fig. 8A and B, paper IV), con-
sequently leading to inhibition of the 5-LO product synthesis (Fig. 2A-B-C,
paper 1V).

Hyperforin failed to block Ca*" mobilization in neutrophils evoked by
ionomycin [69], in that way excluding the possibility that inhibition in 5-
LO redistribution occurred as a result of hyperforin-induced repression of
Ca?" mobilization. Since 5-LO product formation also from exogenous AA
(20uM) was suppressed by hyperforin in human PMNL and platelets [4]
without a significant loss of efficacy, a possible inhibitory effect of hyperforin
on cytosolic PLA,, which could consequently lead to limiting endogenous AA
supply, was by this excluded.

Upon the treatment of activated neutrophils with hyperforin, transloca-
tion of CLP was found to be disrupted in the same manner as for 5-LO
(unpublished data). The concentration which blocked redistribution of CLP
and 5-L.O toward the nuclear envelope was within the range of concentrations
at which significant drop in synthesis of the 5-L.LO products in human PMNL
and in wn vitro assays had been observed previously. Based on previous
results and this study, it is tempting to speculate that CLP might be func-
tioning as a small chaperone of 5-LO capable of following 5-LO translocation
and supporting the formation of L'Ts at the nuclear membrane as a site for
eicosanoid biosynthesis. In addition, despite resemblance with permanently
membrane-bound FLAP in regard to stimulatory effect on LT production,
no sequence similarity between CLP and FLAP has been found.
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Discussion

Opposite to this LT-prone story of 5-LO interaction with CLP, which takes
place at the nuclear membrane (option 1. in Figure 4.1), the cellular play
with 'the same actors involved” might be having a quite different scenario and
an interesting twist, leading to surprisingly different location and outcome
of the play from the ones that have already been postulated and widely
accepted. Given the finding above that CLP could replace PC and function
as a scaffold for Ca?*-induced 5-LO activity in vitro, it appears possible that
5-LLO can be active in the cytosol of the cell without prerequisite association
with the nuclear envelope (option 2. in Figure 4.1).

Reports supporting this concept have already appeared. In human PMNL
and differentiated MM6 cells (both abundantly expressing 5-LO and CLP)
subjected to hypertonic buffer conditions, which prevented migration of 5-
LO towards nucleus, presence of exogenous AA successfully initiated 5-LO
product formation [29]. In Epstein-Barr virus-transformed B-lymphocytic
cell line, BL41-E95-A, 5-LO activity was found to be high upon addition
of exogenous AA, whereas association with the nucleus was undetectable
277]. Cellular distribution of CLP stayed unchanged upon the same stimu-
lus, showing no migration toward nucleus (unpublished data).

Localization of 5-LO and CLP were also found to be cytoplasmic in a few
cancer cell lines, upon stimulation regardless on the type of cell challenge
(unpublished data). In that respect and in a view of high Mg?" requirements
in rapidly metabolizing cancer cells [198], our results on CLP-supporting
effects of 5-LO activity in the presence of high Mg** and ATP concentrations
but not PC, appear particularly tempting for hypothesizing the essential role
of CLP in providing the basis for active cytosolic 5-LO, which could produce
5-HETE. Additionally, nonnuclear 5-LO activity may also involve a lipid
scaffold. Cytoplasmic lipid bodies of eosinophils were suggested as a site for
eicosanoid biosynthesis [18].
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Figure 4.1: Subcellular localization of 5-LO activity. Arrow 1. Activity of 5-LO
at the nuclear membrane. Arrow 2. Cytosolic activity of 5-LO.

A putative cytosolic 5-LO activity should depend on transcellular supply
of AA or it should be provided from another cellular compartment. The
S100A8/A9 complex (abundant in PMNL for instance), can be relevant in
that matter, as it was suggested to function as an intermediate reservoir of
AA, capable of delivering AA to metabolizing enzymes hours after phospho-
lipid hydrolysis [178].

Evaluation of any of these concepts in cells related to cytosolic activity
of 5-LO (devoid of nuclear membrane association), however, has yet to be
proved. The final outcome of these studies will for sure further complicate but
also challenge our already difficult search for the pharmaceutical strategies
that could intervene with production of LTs.

Despite the large number of therapeutic indications and the strong need
for efficient and safe drugs that target the 5-LO pathway, no 5-LO inhibitor
is available on the market for the treatment of LT-related diseases of human
subject, mostly due to either their ineffectiveness in vivo or poor track record
for safety. Novel molecular strategies for intervention of 5-LO activity are
needed for step forward in anti-LT therapy.

Up to now, no data demonstrating pharmacological inhibition of 5-L.O
by interfering with the C2-like domain were available. Most 5-L.O inhibitors,
synthetic ones as well as those isolated from natural sources (polyphenols,
coumarins, quinones), act at the catalytic domain by reducing or chelating
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the active iron site, by reduction of activating lipid hydroperoxides, or simply
by scavenging electrons participating in the redox cycle of the iron [280, 283].
Given the above, hyperforin appears as the first compound shown to suppress
activity of 5-LO by directly interfering with the N-terminal S-sandwich.

Lipophilic nature of hyperforin allows this molecule to cross the plasma
membrane of the cells. However, major concern for hyperforin pharmaco-
logical use is in its potential interference with the other drugs through its
activating effect on various CYP450 enzymes, particularly CYP3A4, which
is involved in oxidative metabolism of more than 50 % of all drugs used. On
the other hand, this modulation could be beneficial in some instance, inas-
much as hyperforin is a potent inhibitor of carcinogen formation by human
CYP1A1 (a major human procarcinogen-activating enzyme), hyperforin act-
ing as a competitive inhibitor. Therefore hyperforin may be worthy of further
evaluation for cancer chemo-preventive potential.

However, the design of hyperforin analogs, retaining the pharmacological
properties of the parental compound, but unable to stimulate expression of
CYP3A4 will be a challenge for pharmaco-chemists in the near future. Taking
into account also the antitumor activity of hyperforin that has recently been
highlighted [293, 160], this molecule certainly deserves thorough investigation
and it already got our full attention.

The core machinery of the 5-LO pathway has been delineated, at least
in broad strokes. However, many conundrums still remain. Indeed, the
results emerging from our plunge into bewildering complexity of cell signaling
networks suggest that we may grasp their logic soon. Many questions and
many principles still need to be established, but problems that have long
worried ’eicosanologists’, particularly those fans of the 5-LO pathways have
begun to be unraveled.
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Concluding Remarks

5.1 Summary

The major conclusions from the studies described in this thesis are as follows:

1. The NMR structure of human CLP is composed of a five-stranded (-
sheet surrounded by four a-helices. The loop connecting 33 and (34, and the
C-terminus are flexible. Surface-exposed Lys-75 (a critical binding residue
for F-actin), and Lys-131 (essential residue for CLP binding to 5-LO), are
shown to be close to each other, precluding simultaneous binding of F-actin
and 5-L.O to CLP.

2. CLP supports Ca?T/Mg?*-induced 5-LO activity and modulates the
5-LO product profile. We have found and described three major CLP-
dependent effects on the 5-LO catalytic reaction in witro.

e CLP upregulates Ca?T-induced 5-LO activity in absence of phos-
phatidylcholine (membrane). Apparently, CLP can function as a scaf-
fold for 5-LO, similar to the effect of membranes on 5-LO catalysis. In
such incubations, formation of 5-HETE was highly upregulated, while
formation of LTA, was minimal.

e CLP gives significant 3- up to 5-fold increase in the amount of LTA,
formed by 5-LO when present together with phosphatidylcholine, in-
dicating the possible involvement in LTs biosynthesis at the nuclear
membrane.

e CLP increases the ratio of 5-HETE/5-HPETE by substantially reduc-
ing 5-HPETE into 5-HETE. The reduction of 13-HPODE into 13-
HOPE was also observed in the presence of CLP.

3. CLP stabilizes 5-LO and prevents its non-turnover inactivation in
vitro induced by high temperature and appearing over time. Together with
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the effects on 5-LO activity, this finding suggests that CLP functions as a
chaperone for 5-LO.

4. Trp-102 in the f-sandwich of 5-LO is required for binding of CLP to
5-LO, and for all the above mentioned CLP-induced effects on 5-LO activity
and stability. This indicates that the f-sandwich is part of the CLP binding
surface on the 5-LO molecule.

5. Similar changes in subcellular localization of CLP and 5-LO were found
in human polymorphonuclear leukocytes and Mono Mac 6 cells upon activa-
tion with different cell stimuli, which indicated a possible direct interaction
of 5-LLO and CLP also in the cell.

6. Hyperforin, an anti-inflammatory compound isolated from St. John’s
wort and previosuly reported to inhibit 5-LO activity both, in vitro and in
cellular systems, successfully interrupted formation of functional 5-LO:CLP
complex by imparing direct binding between CLP and 5-LO. This finding
indicated that hyperforin, as a new type of 5-LO inhibitor, acts by interferring
with the 5-LO S-sandwich.

5.2 Future perspective

A few reports have recently implied a possible role of the 5-LO pathway
also in cancer cell chemoresistance. These data appeared to be particularly
intriguing in the light of our findings on 5-L.O interaction with CLP, since
our studies (as mentioned earlier in this thesis), has hinted at a tumor-prone
character of the functional 5-LO:CLP complex due to upregulation of LTA,
and 5-HETE in particular, compounds previously described to be important
for cancer cell survival and escape from apoptotic machinery. Understanding
the molecular and cellular mechanisms that contribute to tumor formation,
progression and restistance to chemotherapeutic agents has been a major
challenge in cancer research. For many years, progress in this field has been
dominated by the concepts and methods of molecular genetics, but advances
in technologies for protein analysis over the last years have accelerated studies
on cancer biology at the protein level. Having emphasized that, possible
CLP-dependent alterations in levels and groups of 5-L.O products formed (in
cancer versus normal cells), have particularly challenged me to direct my
lines of research along two fronts:

1. Possible importance of 5-LO interaction with CLP in cancer cell sur-
vival and chemoresistance

2. The role of 5-LO pathway as a pro-inflammatory signaling cascade in
cancer progression
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5.2.1 Chemoresistance: Ways to avert it

To paraphrase Tolstoy in the opening lines of Anna Karenina, normal cells are
all alike in their response to drugs, but cancer cells each respond in their own
way. Brushing up on literature leaves no doubt that there are many studies
on drug resistance in cancer cells, but comparatively little is known about the
underlying mechanisms. Combining previously reported data with our recent
studies on interacting 5-LLO:CLP complex, we have designed several ongoing
projects, with the aim to elucidate the possible role of 5-LO and its small
chaperone CLP in survival of cancer cells, specifically focusing on the possible
role of their interaction in resistance to different anticancer drugs. For this
purpose, as an ideal cell model, we chose two human, prostate cancer cell
lines: DU145 and PC3 (with relatively high expression level of CLP) as they
are both highly metastatic, androgen-receptor negative but still genetically
different in regard to phH3 gene status, and expression levels of pro- and anti-
apoptotic members of the Bcl-2 family. Particularly intriguing is the fact
that 5-LO expression is inducible in both cell lines upon drug treatments.

We hope that data from these experimental sets, will give us more de-
tailed insight into the role of 5-LLO pathway in the mechanisms of cancer cell
chemo-resistance and potentially open an interesting window for therapeutic
intervention.

5.2.2 Inflammation and cancer: back to Virchow

If formal proof that cancer can be initiated by inflammation in the absence of
exogenous carcinogens is still lacking, there is abundant evidence that the in-
flammatory response can play a central role in modulating tumor growth and
progression. As early as 1863, Rudolf Virchow recorded the presence of leuko-
cytes in neoplastic lesions and hypothesized that malignant transformation
originates from chronically inflamed tissues [9], providing the first conceptual
framework for linking inflammation and cancer. Clinical and experimental
observations of the past two decades increasingly support the notion that
immune cells recruited to and activated within the tumor microenvironment
play a strong supporting role in tumor progression [19].

In most cases, tumor cells hijack stromal cells’ functions for their own
benefit and ultimately dictate the rules of engagement to the host tissue mi-
croenvironment. How helpful the 5-LO pathway would be in that matter?
Which of its pro-inflammatory products would be the most beneficial in pro-
moting relentless expansion of tumor cells? Would expression of CLP appear
to be important in that regard?

These are just some of the questions we addressed in our ongoing studies.
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From the data obtained so far, the forthcoming years in 5-LO and CLP
research promise to be very exciting.
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