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ABSTRACT

To gain insight into the importance of the genome for diseases, sequencing and genotyping
efforts aim to identify the consequences of genetic variation on both a functional and population
level. The task involves the fine-resolution mapping of biologically significant genes and
regions discerned by linkage analysis.

This thesis focuses on genetic variation in two candidate genes, Angiotensin-I Converting
Enzyme (ACE) and ATP-Binding Cassette A1 (ABCAI) that are shown to potentially modify
Alzheimer disease (AD) risk and related quantitative traits. AD is a disabling neurodegenerative
disorder characterized by progressive memory loss that affects an increasing part of the aging
population. Mutations in the Amyloid Precursor Protein (APP), Presenilin 1 (PSENI), and
Presenilin 2 (PSENZ2) have been described to cause the early-onset familial form of AD.
However, the discovery of genes involved in sporadic late-onset AD has proven to be more
difficult. Apolipoprotein-E (APOE) which mediates lipid and cholesterol metabolism is the only
presently recognized susceptibility gene for sporadic AD.

The Angiotensin-I Converting Enzyme modulates not only blood pressure homeostasis but also
the clearance of amyloid-f (Ap), the pathogenic hallmark of AD, making ACE an intriguing
biological candidate for both AD and cardiovascular disease. Significant effects for markers in
the promoter and 3'- regions were found upon AD risk and disease age-of-onset, consistent with
the presence of allelic heterogeneity in this genomic region. A unique differential relationship
between genotypes for AD and obesity/ myocardial infarction was explored. The emerging
pattern is consistent with the biological role of the ACE protein, but highlights the difficulties of
analyzing pleiotropic genes. Computational analysis suggested functionally important promoter
and splice variants that may be contributing to trait variability.

ATP-Binding Cassette A1 facilitates cholesterol transport and regulates APOE levels in cells.
The gene lies in proximity to an AD linkage peak on chromosome 9q, making ABCA [ both a
biological and positional candidate. In four independent European populations, significant
differences in genotype frequencies were found between cases and controls indicated by effects
on disease risk. Correlations between quantitative traits related to disease progression
complemented the data. To substantiate findings, cholesterol and metabolic traits were examined
in a large cardiovascular disease population whereby significant association was determined
only among smokers. The data highlight the importance of considering environmental factors
that can modify genotype-phenotype relationships.

Applying association analysis across many traits using large replicating samples brings us closer
to elucidating patterns of individual variations in genes that contribute to human diseases.

Key words: genetic variation, association, ACE, ABCA1, Alzheimer disease,
pleiotropy, cardiovascular disease
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1 PREAMBLE

The study of genetic epidemiology encompasses statistics, population genetics, epidemiology
and human genetics to understand the role of genes and environmental factors in complex traits.
The goal of this field is to identify specific genes involved in determining disease risk or
determining the underlying traits related to disease. Once the genes are identified,
characterisation of the loci at both the individual and population level is undertaken.

1.1 HISTORICAL NOTE

The 20th century marked several scientific milestones that revolutionized human genetic
research. The key to understanding how genetic information is replicated came in 1953, with
Rosalind Franklin’s images of DNA X-ray diffraction and James Watson’s and Francis Crick’s,
publication of the structure of the DNA double helix'. This scientific discovery marked the
beginning of developments of new techniques to unravel the genome. In 1961, French biologists
Franois Jacob and Jacques Monod, together with Andre Lwoff isolated messenger RNA
(mRNA) and presented a hypothesis on how genes are turned on and off with the lac-operon
model for regulation of gene expression”. The 1970’s brought together Fred Sanger and
colleagues in Cambridge to develop the Sanger dideoxy sequencing method to ‘read’ the DNA
double strand by whole genome shotgun sequencing% Methods ranging from pyrosequencing4
and chip-level sequencing5 are all based on improving sequencing speed, read length, and base-
call precision of the Sanger method, and have made whole genome sequencing of organisms
from parasites such as trypanosomatids to mammals such as mice, dogs, and cows feasible®. The
70’s also headlined Paul Berg’s contribution to genetic engineering by devising a method to cut
DNA sequences applied in recombinant DNA technology’. Another scientific breakthrough that
allowed genetics to advance to the genome level was the development of a technique to amplify
large amounts of DNA by polymerase chain reaction (PCR) in the 1980s by Kary Mullis®. PCR
has become a commonly used method in molecular biology to detect DNA sequences. Many
more scientific contributions bring us closer to understanding our genetic code. An industrial
and academic effort that began in the 1980’s made way for the publication of the reference
sequence of the human genome in 2003*'% The sequence revealed a genetic code made up of
3x10” base pairs. This finding was only the beginning of possibilities to map genes to common
diseases. Valuable resources such as the HapMap - ENCODE consortiums initiated mapping of
genomic sequence variation to identify all functional elements in the human genome'®'>'*,



2 INTRODUCTION

Discovering the genetic components to common diseases has changed dramatically. The
‘simple’ Mendelian genetic view of diseases caused by single genes has turned into an
awareness of complex interplays between interacting genes and environmental factors
influencing diseases. The developments of tools and improvement of technologies has been a
catalyst to discovering and understanding our genetic imprints. What does it all mean? How
will genome projects benefit our society? Will we find treatments for complex diseases such
as Alzheimer disease? Are only a few of the questions that we are now faced with while
deciphering information from genome sequences. ‘What does it all mean?’ It means we have a
code that determines appearance and behaviour, and our uniqueness is based on small
differences in the code that are also responsible for making us more susceptible to diseases.
These variations between individuals that amount to higher disease risk are what geneticist
aim to identify in genetic association studies. The genetic markers of variation implicate genes
and biological pathways involved in disease progression.

‘How will genome projects benefit our society?” There are undoubtedly health benefits from
research that provides information on genes, proteins and pathways that are involved in diseases
and could be of potential drug targets. Disease markers can also be used in risk assessments.
However, there are many ethical and social implications to the use of genetic information in
regards to confidentiality and disclosures, genetic testing and discrimination. The prospect of
personalized medicine based on genetic variation between individuals is not far fetched. “Will
we find treatments and cures for complex diseases such as Alzheimer disease?” There are many
challenges to be made in our understanding of disease etiologies to be able find “The treatment’
or ‘The cure’, but advances in genomics do bring us a

step closer to this goal.

This thesis presents an investigation of variations in the genes encoding Angiotensin-I
Converting Enzyme (ACE) and ATP-Binding Cassette A1 (ABCA1) in Alzhzeimer Disease
(AD) and cardiovascular disease (CVD) patients with emphasis on shared molecular
pathways.
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3 GENETIC VARIATION

The first publications from the human genome project debated on the implications of findings on
society and on future genetic research. Genetic research took a turn in terms of developments of
bioinformatic tools to analyze the vast data and genetic variation was at a spotlight heralded as
“the spice of life”'>. The genetic basis of individual differences is encoded in the DNA sequence.
There are only 6,000,000 million base pairs (bp) (around 0.1%) that are different between two
individuals. These differences add to the diversity of our species. It is important to point out that
large amounts of genetic information is common and shared not only between and within human
populations but also between humans and other species'.

Now that the era of genomics is in full blast, information and data is shared and explored
including the study of genetic variation involved in complex disease. The identification of
patterns and characterization of genetic variation in human populations is applied in the study
human evolution by comparing sequences within and between species, in genetic studies to
search for susceptibility genes in complex genetic diseases, and in the identification of
regulatory elements in the genomel’ .

3.1 EVOLUTIONARY FORCES

In the late 1800’s, Charles Darwin’s theories of evolution brought to light the notion that
natural selection is required for the variation observed in all species'®. It was only after Gregor
Mendel’s work demonstrating that units (or genes) passed on the hereditary information to the
next generation, that natural selection was thought to act on these units'”. It took several
decades for scientist to discover that changes or mutations in genes give rise to genetic
variation, and it was thus argued that evolution is dependent on these mutations.

Genetic variation however is determined by evolutionary forces. The degree of variation in the
genome is dependent on demographics events such as changes in population size and
migrations, as well as on chromosomal events such as recombination (crossing-over of alleles
during meiosis) and gene conversion (unequal crossing-over)'®. These chromosomal events also
influence mutation rates, though new mutations can arise from environmental exposures to
carcinogens, toxins and even to UV lightlg. Most mutations are neutral. If a mutation is
deleterious it is removed from the gene pool by negative selection. On the other hand, positive
selection will act to increase the frequency of an advantageous mutation in the populationzo‘

The random chance that a mutation will pass on to the next generation is known as genetic drift.
Genetic drift is dependent on the effective population size (N), defined by the number of
individuals contributing to the genetic pool in each generation'®. It takes 4N, generations for
alleles to be fixed in the population. Thus, genetic drift is stronger in small effective populations
than in large effective populations because it will take more generations for alleles to be fixed in
the larger population®'. The effects of genetic drift are most apparent in population bottlenecks
whereby population size is dramatically reduced because of changes in the environment and in
founder gopulations where a small group separates from the larger group and migrates to a new
region®*%. An example of a founder population is the Ashkenazi Jewish population. Genetic
diseases such as breast cancer caused by mutations in BRCAI and BRCA2, Tay-Sachs,
Niemann-Pick and Gaucher disease are more prevalent in the Ashkenazi Jewish population and
it is evident that alleles that were once rare and disease causing have increased in frequency in
this founder population®™™,
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3.2 POLYMORPHISMS

Polymorphisms are common genetic variations that have been widely used as genetic markers.
The variable tandem number repeat polymorphims (VNTRs) or the minisatellites were the first
to be identified followed by the discovery of simple tandem repeats (di- tri- or tetra units)
polymorphisms also known as microsatellites, commonly used in DNA fingerprinting®®*’. Other
types of polymorphisms are the insertion/ deletion (I/D) polymorphisms distinguished by
presence or absence of DNA bases. All these types of polymorphisms have been used to study
the genetic nature of diseases™. An example of insertional elements in the genome are the short
interspersed elements (SINEs) such as Alu repeats™~°, and the long interspersed elements
(LINEs), both used as molecular markers. The Angiotensin-I Converting Enzyme contains a
250bp Alu 1/D polymorphism on intron 16 which has been widely used as a genetic marker for
several complex diseases™ .

The development of several high-throughput technologies to detect single nucleotide
polymorphisms (SNPs) have led the field to focus on SNPs as genetic markers. With the
improvements of genotyping techniques other types of structural variations such as duplications,
copy number variants™ and complex rearrangements are used to illuminate on the cause of
complex disorders such as schizophrenia, autism and dyslexia®.

3.2.1 Single Nucleotide Polymorphisms

On average, the genomes of two individuals are 99.9% identical’”®.

Two chromosomes randomly selected from the human population PYT Pur
have one single nucleotide difference every 1000 base pair37’39. C G
When the least common allele has a frequency of more than 1% in the

population it is referred to as a SNP. Single nucleotide polymorphsims g E
are the most common type of variation in the human genome’.

These polymorphsims are biallelic and can either be transitions T
(purine-purine A® G or pyrimidine-pyrimidine C&T) or transversions
(purine-pyrimidine or pyrimidine-purine) substitutions*' (Figure 1).

X

A

Fig. 1 - Transitions vs.
Transversions

There are CG rich regions throughout our genome, known as CpG islands.

The Cs of most CpG di-nucleotides are methylated whereby methyl-C tends to mutate to ™,

and in actuality 70% of all SNPs are CHT transitions*. Sequencing data indicate the existence

of 10 million SNPs in the human genome4o’42. More than 5 million of these SNPs are validated

in NCBI’s dbSNP database (www.ncbi.nlm.nih. gov/SNP)M‘ Other public databases with SNP

annotations include: HGVbase (The European consortium; http://hgvbase.cgb.ki,se/)45, Japan

SNP database (JSNP; http://snp.ims.u-tokyo.ac.jp/)*, the SNP consortium (TSC http://cshl.org/ )

and Seattle SNPs (http://pga.mbt.washington.edu/). As SNPs are abundant and genetically

stable, they provide an excellent resource as genetic markers. Many studies including the work

presented in the present investigation focus on identifying SNPs involved in complex disease.
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3.2.2 SNP Functional Classification
The classification of SNPs is dependent on their genomic location.
Coding SNPs

Coding SNPs (cSNP) are located in exons and may be either synonymous or non—synonymous47.
Synonymous SNPs are silent mutations that do not alter the amino acid sequence of the protein.

Although, in some cases synonymous SNPs can affect alternative splicing by disrupting binding
sites of proteins such as the serine/arginine-rich (SR) proteins that bind to exon splice enhancers
(ESEs) and silencers (ESS)48.

Non-synonymous ¢cSNPs cause a change in the amino acid structure of the protein. They are
prioritized as genetic markers because a change in the amino acid structure may impact on
protein folding, as well as on interaction sites, solubility and stability of pro‘ceins47’49 .

Regulatory SNPs

Most SNPs are located in the non-coding region of the genome. The majority of these SNPs
have no known function; however some of these intronic SNPs may play a regulatory role in
modulating gene expression®’'. These SNPs are termed regulatory SNPs (rSNPs). Regulatory
SNPs located in the promoter region may affect transcription factor binding sites and rSNPs
located in the 5’UTR and 3’UTR (untranslated regions) may also affect protein binding sites by
changing sequence motifs*. Regulatory SNPs at exon-intron junctions or at ESE/ESS splice
sites may cause exon skipping and are known as splice variants'.

3.2.3 Prediction Tools

There are several tools that can be used to predict the effects on proteins caused by SNPs.
Polyphen is one of the tools used in the thesis work to predict the possible impact of non-
synonymous cSNPs on the structure and function of proteins (http://www.bork.embl-
heidelberg.de/PolyPhen/) 33 The damaging effects of synonymous cSNPs on splicing via ESE
sequence motifs can be predicted with RescueESE (http://genes.mit.edu/burgelab/rescue-ese/)™*
and ESE finder (http://rulai.cshl.edu/tools/ESE/)>. The ESEfinder predicts whether SNPs have
an effect on ESE binding sites for specific SR proteins. RAVEN (http://mordor.cgb.ki.se/cgi-
bin/CONSNP/a) is one other tool that can be used to predict the effect of SNPs on transcription
factor binding sites.
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4 GENETIC STRATEGIES FOR GENE MAPPING

4.1 STRATEGY | - LINKAGE AND POSITIONAL CLONING

The goal for research in genetics is to understand gene function and regulation. Groundbreaking
discoveries in the ‘hunt’ for disease genes have identified the genetic causes to many human
diseases. More than 2000 of these are described in public databases such as The Online
Mendelian Inheritance in Man (OMIM (www.ncbi.nlm.nih. gov/omim/)sé, and Human Gene
Mutation Database (HGMD http://www.hgmd.cf.ac.uk/)’’. Most monogenic diseases are
inherited in either a recessive, dominant, codominant or X-linked manner and follow Mendel’s
laws of independent assortment and segregation”°. Mendelian disorders are rare and are caused
by different genetic aberrations such as deletions, duplications, inversions, and translocations of
chromosomes in single genes (Figure 2). Mutations in disease causing genes have been
traditionally discovered using linkage and positional cloning strategies®’. The approach entails
the determination of the chromosomal region by linkage followed by sub-cloning to identify the
genes, and sequencing to identify the mutations®’. Examples of genes identified by positional
cloning and linkage are CFTR, BRCA1, and Huntingtin that cause Cystic Fibrosis, breast cancer,
and Huntington’s disease, respectively®*.

Fig. 2 i Common chromosomal aberrations. a) deletion b) duplication c) reciprocal translocation d) inversion
Modified from Purves et. al.

a) deletion b) duplication
.mﬁEﬁB — OBEEER + (@ NOERNEEE) CREEFO
N (lost) CJAlBICo[ETFTE) (ale[c[o[c[DlEFI6)
c) reciprocal translocation d)inversion
CAECBIEF® CIAELIMIN©
CEMIKEIMED COEMEKEPBEFS CEELREFRD C:MBL_EV'D'C)”G)

4.1.1 Linkage analysis

Linkage analysis detects the pattern of transmission of alleles in a pedigree. Linkage studies
often use widely spaced microsatellites (5-10cM)***’ or SNP panels to generate linkage peaks
of susceptibility loci®”!. Recombination fraction () is a measure of linkage defined by the
proportion of cross-overs between two alleles (or loci) during meiosis. Recombination fraction
can be used as a measure of relative physical distance between two loci measured in
centiMorgans (cM) also known as the genetic map distance’. According to Mendel’s law of
independent assortment, the recombination fraction will be 50% if the alleles are located on
different chromosomes. Two loci are considered linked if a recombination event occurs
between them with a probability of less than 50%"*7*. Linkage is measured by logarithm of
the odds (LOD) scores which calculate the likelihood that two markers are linked divided by
the likelihood that they are not linked”. Large positive scores are evidence of linkage’® and
LOD score of 3 (p=0.001) has been regarded as significant evidence for linkage”.
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In AD research, linkage analysis has identified chromosomes 1, 2, 5, 6, 9, 10,12, 13, 14,15,19,
21 to be linked to the disease’’. These linkage studies provide broad regions where susceptibility
genes reside. Fine resolution mapping of the region are further required to identify specific gene
that confer disease risk.

4.2 STRATEGY Il - ASSOCIATION

The majority of complex diseases are not caused by single gene, they do not follow Mendelian
laws and they are influenced by a variety of genetic and environmental factors. These complex
diseases remain largely unresolved on a genetic level’®”. To identify the genetic components of
complex diseases a candidate gene or genes in a pathway are chosen for fine mapping based on
their biological relevance or based on previously defined linkage regionsgo’gl. Single nucleotide
polymorphisms are then selected and prioritized according to predicted function to identify
alleles which are either increased or decreased in frequency in a population of patients versus
controls®™. This type of study design is referred to as a case-control association study. It is
assumed that the frequency distribution of alleles amongst patients and healthy individuals in the
study can provide an estimate of the distribution of alleles in the population®**’. Odds ratio (OR)
measures are used to compare the odds of patients exposed to the risk factor (in this case the risk
alleles) compared to the odds that healthy individuals are not exposed to the risk alleles®”*’
(Box 1).

Box 1 - Odds Ratios
Disease
° Yes No
%‘ Yes[ a b OR = ad OR>1 — positiye associ.atilon
s) cd OR<I — negative association
g No| ¢ d

Association studies assume Hardy Weinberg Equilibrium (HWE) (Figure 3) to test the null
hypothesis (Hop) of no association®’. There are several advantages of case-control association
studies compared to linkage analysis which include the simple and efficient study design to
refine small genomic regions and the large number of samples that can be readily ascertained,
especially for late-onset diseases such as AD’! (Box 2).

Fig. 3 - HardyiWeinberg Equilibrium

P +2pg+q’ =1

Alleles are the different forms of a gene. The set of alleles ata
specific locus (chromosomal position) are termed genotypes which
represent the genetic make-up of the individual. By applying HWE
allele frequencies can be used to predict genotype frequencies. The
genotype frequencies for a locus with alleles A and a, and with allele
frequencies p and q respectively, will be: AA homozygote = p2 ;

Aa heterozygote = 2pq and aa homozygote = ¢~ . There are several
assumptions in HWE which include a large, random mating
population that is not subjected evolutionary forces of mutation,
migration and natural selection®.
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Box 2 — Linkage studies vs. Case-control association studies’’

Linkage Studies

Use extended families or certain types of study cases and unrelated controls

Use genetic markers situated throughout genome.

Linkage of genotype for a genetic marker to disease may be unique to the particular family

Association studies

Use cases and appropriately matched unrelated controls

Determine genotype for polymorphism in candidate gene of biological relevance to disease
Association of a genotype or phenotype with disease is a statistical finding

4.2 Linkage Disequilibrium
Linkage disequilibrium is the non-random " ot
association of alleles often termed allelic _
association. In principal, closely linked alleles tend @] 0
to be inherited together. This means that a specific ’:l:l
combination of alleles may occur more often than e
would be expected by chance alone”. At first, LD :6_ -EI-:
can be mistaken with linkage which measures the
co-segregation of alleles in a pedigree, though LD is
a measure of the co-segregation of alleles in a ‘ |
population”*® (Figure 4). —
422 Patterns Of Diversity b Association J 20 generations
(B ~BR--0 B
Linkage disequilibrium is influenced by the same ERE T I ETD
factors that influence genetic variation, that is by e L T
recombination and gene conversion events’’ in the — L -

population history, as well as by demographic
events such as isolation, migration, admixture and
population bottlenecks®®**'®. The distribution of
genetic markers such as A/u’s and SNPs are used to
understand patterns of diversity in different
populations.

It is estimated that 80-90% of human SNPs are shared m - mutation®"
between populations at different frequencies®®'*"'*? and

that variation between populations is comparatively new. The shared markers between
populations indicate mutation events from the past 100,000-200,000. These data provide
evidence for the ‘out of Africa hypothesis’ 103105 "that is the dispersal of Homo erectus from

Africa to different geographic regions at that time'®.

Fig.4 i1 a) Linkage vs. b) Association
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4.2.3 Indirect Association

Linkage disequilibrium mapping has become a widely used tool for genetic disease mapping and
population studies'”""2. When measuring LD between genetic markers such as SNPs, the
presence of one marker makes it possible to predict other markers on a different locus,
depending on the strength of LD. The power of linkage disequilibrium to detect allelic
associations with disease is limited by the amount of allelic heterogeneity in the region
implying the contribution of several alleles to the disease phenotype. Another limitation to this
method is that a lack of association with a SNP does not necessarily rule out the functional
effects of other SNPs that are in LD**''""''¢_ Information on LD parameters between SNPs in
five different populations (Nigerians, Japanese, Chinese, Western and Northern Europeans) is
available from the HapMap project (www.hapmap.org)117 and currently tested for viability in
disease association studies''*"'%.

99,113-115
2

4.2.4 Measures of Linkage Disequilibrium

There are several methods to calculate LD but the most commonly used are measures based on
Lewontin’s D and r’. Both methods calculate the pairwise distributions between the allele
frequencies of two bi-allelic markers'>"'>,

D=P, —P,xP,
D is known as the linkage disequilibrium coefficient and ranges from -0.25—0.25. It measures
the difference between the observed frequency of a two-locus haplotype (discussed below); P,,

for alleles 4 and B, and the expected frequency if the alleles were independent ( P, x Py).

Alternative measures of LD are »* and ‘D'

. Both measures range from 0—1 and defined by:

b=
Dmax

‘D" =1 (complete LD) occurs when two markers have not been separated by recombination. ‘D"

is independent of allele frequencies and relates to the recombination rates between markers'*.

D]
value of D when all double heterozygotes are either AB/ab or Ab/aB.

. . 97,125,12 : :
measures do tend to overestimate LD in small samples *"'*>'?7; D max - maximum possible

o Db
P4.PaxPsxPs

The correlation coefficient »> = 1 (complete LD) measures statistical associations between
markers depending on the allele frequencies. The 2 value is correlated to the ¥ distribution,
and it is also inversely proportional to the sample size required to find the same association with

a different marker”!",
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4.2.5 Haplotypes and Linkage Disequilibrium

Alleles on the same chromosome that are in linkage disequilibrium with each other form a
haplotype. In accordance to LD patterns, new haplotypes are created by recombination and
mutation events in the population history””'?’. Across the human genome there are regions of
strong LD (where alleles are tightly linked) and regions of weak LD'**"*!_ In regions of strong
LD, where almost no recombination takes place, only a few common haplotypes are found. Thus
the genome can be divided into haplotype blocks that are separated by recombination ‘hot-
spots’ 1% These haplotype blocks (block-like patterns of LD) can extend up to 100kb'¥* '3
and can be identified or ‘tagged’ by only a small number of SNPs'?. Informative SNPs that can
capture haplotype diversity and knowledge of gene architecture makes the prospect of whole
genome-wide association attainable' %,

4.2.6 Haplotype Analysis

To test for association with disease risk and quantitative trait models, haplotype frequencies are
first estimated using various prediction tools. The programs use algorithms to infer haplotypes
from observed (phased) and unobserved (unphased) haplotypes from the genotype data.
Inferring haplotypes from double heterozygote genotypes cause problems of phase
uncertaintly'*. For example, for a single marker locus with alleles 4 and a, the haplotype for the
single marker is either A or a and the diplotype (multilocus genotypes) heterozygotes will be Aa

and aA. These diplotypes are indiscernible from one another'*’.

Haplotypes can be deduced by molecular haplotyping methods; however rarely used because
current techniques such as creating somatic cell hybrid methods'*® and allele-specific
polymerase chain reaction'>” are inefficient for large distances and technically challenging'**'*.

4.2.7 Haplotype Prediction Tools

The haplotype inference programs used in the thesis work are those of Haplotyper
(http://www.people.fas.harvard.edu/~junliu/Haplo/docMain.htm)"*', PHASE
(http://www.stat.washington.edu/stephens/software.html)'**'** and Arlequin
(http://Igb.unige.ch/arlequin/)'*. Arlequin is based on the expectation maximization (EM)
algorithm which produces an estimate of the maximum likelihood of haplotype frequencies 145,
PHASE and Haplotyper are both Bayesian methods with prior assumptions as a guide for

unobserved haplotypesm.

4.2.8 Clades

Clades are defined by mutations in regions represented by haplotypes. They are constructed
from evolutionary relationship of the haplotypes''*®. The haplotype trees or clades are
estimated using phylogenetic inference algorithms in candidate gene region where little or no
recombination has taken place147’149'151. Accordingly, it is assumed that haplotypes (branches) of
the haplotype tree (clades) will exhibit similar associations' '3!3 For example, in European
populations the ACE locus is defined by two major clades (clade A and clade B) that explain
36% of the variation in ACE activity. A third clade (clade C) was formed by a recombination
event between clades A and B **'¥7.
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4.2.9 Issues in Study Design

Stratification and Admixture

There are several issues that have been debated because of inconsistencies among the results
from association studies. These issues include population choice and the power to detect
associations'**'*’_ Inappropriate study design may cause both false positive (type I error) and
false negative (type II error) associations®"*’. Subpopulations in the study base due to
admixture and stratification are caused when cases and controls are poorly matched with respect
to age, gender, and ethnic backgroundl(’o'mz. To control for stratification and type I error in a
study the threshold of statistical significance can be increased. This approach is used in genomic
control whereby loci unrelated to the disease are evaluated in both cases and controls'®. Another
method to control for stratification is by group- matched study designs such

as the transmission disequilibrium test (TDT) where matching is by nuclear families'**'%.

Admixture mapping takes advantage of the proportion of known genetic markers in the
subpopulation to measure the degree of admixture in a population'®*'¢"'%*'7 Several markers
that are far apart (not to be in LD) are typed and tested for deviation from HWE at each locus.
Admixture is indicated by population associations amongst pairs of loci and by differences in
disease risk between loci'®*'*"'® This method does require a map of polymorphic markers or
admixture panels that differentiate between the founding populations.'*'%

Power

In association analysis, power is the probability that the test statistic indicates that the
observed marker is close to the disease locus'®’. Power is also related to type I error rate which
can be controlled by setting thresholds for the test statistic. For example, specifying power of
95% to detect an association at 5% type I error rate'”°. The power to detect association
depends on a number factors including sample size, effect size, (defined by the extent to which
a factor influences the outcome), the frequency of alleles, and the strength of LD?*'"",

169,172,173

and can be avoided by using both positive

Genotype errors may cause a loss in power
175

and negative controls or by replicating the results with different genotyping methods'”*
Genotyping a number of genes and polymorphisms in the same population of cases and
controls increases the chance of false associations (Type I error) due to multiple testinggo. The
Bonferroni correction (multiplying the p-value with the number of tests performed) can be
applied; however, the Bonferroni correction is conservative and may even lead to loss of real

associations(Type II error)'”.

4.3 DISEASE HYPOTHESES

The common disease/common variant (CD/CV) hypothesis proposes that the genetic risk for
common diseases will often be caused by high frequency (<1%) disease alleles found in the
population'*®. Thus, the disease is common because the alleles influencing the disease are
common. This hypothesis assumes that the detrimental effect of each disease allele is relatively
low. Although, the effects of susceptibility alleles may not be strong enough to cause the disease
they may influence disease traits and biological pathways'’"'’®. An extension of the CD/CV
hypothesis is the common variant multiple disease (CV/MD) hypothesis'””. The CV/MD
hypothesis proposes that common alleles which contribute to disease may act on several
outcomes due to gene-gene and gene-environment interactions'**'®!. The model emphasizes the
overlap in etiological factors among related disorders. This hypothesis closely relates to genetic
pleiotropy, defined by a mutation in a single gene that produces effects on several phenotypesm,
and the studies presented in this thesis represent the pleiotropic nature of both ACE and ABCAI.
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5 ALZHEIMER DISEASE

Alzheimer disease brain pathology was first described in 1907 by the German physician, Dr.
Alois Alzheimer'®. A century later, AD is one of the major diseases causing dementia, afflicting
15 million people worldwide'**'®. The disease is characterized by a progressive loss of memory
and decline in cognitive function. Histopathologic features seen in the brain of AD patients are
the presence of senile plaques with amyloid-f3 (Af) accumulation and neurofibrillary tangles
(NFTs)"*!%_Considerable neuronal damage and loss of synapses are also found in AD brain
pathologylgg. AD is an age-dependent disorder, with prevalence rates of 1% for age group 60-64
to 40% in the older than 90 age grouplgs. While age is an important known risk factor, AD is

multi-factorial with a strong genetic component'™.

5.1 CLINICAL ASPECTS

Post mortem neuropathology based on Braak'*’ provides the only method for a definite AD
diagnosis. To make appropriate diagnosis several health outcome measures are used in
combination with established criteria such as NINCDS-ADRDA and CERAD, for diagnosing
the different stages of the disease'*"'%. Diagnosis is divided into possible, probable and definite
AD depending on the progression of disease in patients. A commonly used tool by clinicians to
assess cognitive impairment is the MMSE, a score based questionnaire (maximum score = 30; a
score < 23 indicates cognitive impairment) that tests six areas of cognitive function: orientation,
registration, attention, calculation, recall, and language193 . In addition, neuroimaging techniques
such as PET and MRI are used to diagnose AD. Functional imaging techniques reveal the
changes in metabolism, while structural imaging detect atrophy and blood flow changes in the

. 194
brain .

5.2 AMYLOID PLAQUES AND NEUROFIBRILLARY TANGLES

Amyloid-p and NFTs are considered to be the hallmarks of AD'**"*”. The main constituents of
amyloid plaques are the 40—42-residues of the amyloid protein (Figure 5), whilst NFTs are
composed of the microtubule-associated phosphoprotein tau. The deposition of A and NFTs in
cerebrospinal fluid (CSF) are used as biomarkers to detect the early stages of AD, termed mild
cognitive impairment (MCI)'**'®°. CSF-tau levels are significantly higher in AD patients
compared to healthy individuals®®. On the other hand, CSF-
AB levels are lower in patients compared to controls®™' 2%,
Amyloid-f load measured by immunohistochemical
staining of autopsy brains is also used to assess the NH2 _ﬁqk COOH
-,

deposition of AP in the different brain regions. The amyloid

cascade hypothesis has been confirmed in many studies and Phd N N
proposes that the irregular clearance and degradation
AP initiates a cascade of neurodegenerative changes that ' ' “
186,195 X . "
eventually lead to AD pathology . B secretase o o a2
) (BACE1)
Fig. 5 - APP processing y-secretase
APP is a type | glycoprotein. AB (red) is produced by the - The B-pathway ~ sAPP-p co9
pathway, where APP is cleaved at the N-terminus (- ) b, | .&F
cleavage) of amyoid and then in the transmembrane y—cleavage
domain (y-cleavage), at either position 40 or 42. In most (PSEN1 & PSEN2)
The a-pathway  sAPP-o C88

cases APP is cleaved at the a-position without Ap
formation. C88, C99 represent the C-terminal fragments
produced after cleavage, (numbers are based on the y-cleavage
number of amino acids)204 :TM i transmembrane
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5.3 ALZHEIMER’S AND CARDIOVASCULAR DISEASE

Vascular risk factors influence AD as indicated by several epidemiological studies showing
strong relationships between AD and CVD*>*®. Hypertension, history of stroke,
hypercholesterolemia and diabetes are all associated with increased risk of AD**>*" 2! While a
number of different biological pathways are implicated in AD, the data point to perturbed
cholesterol and lipid metabolism as being central to the disorder”**"*, The principal evidence
for this is the association of APOE, the primary cholesterol carrier protein in the brain, with AD
and AB deposition2 14218 APOE-¢4 genotype (discussed below) is correlated with plasma LDL
cholesterol levels, which contributes to atherosclerosis™'’. Atherosclerosis in itself is an
additional AD risk factor””. Moreover, NFTs similar to those in AD have been reported in
patients with Niemann-Pick type C, a disorder characterizes by elevated levels of free
cholesterol (FC)*!. Findings from animal models and in-vitro studies indicate that cholesterol is
involved in APP processing whereby a reduction in cholesterol causes a reduction in AP
productionm’226 . The role of cholesterol in AP production is still unknown but it appears that
cholesterol, as an integral component of cell membranes may affect the clustering of APP
secretases in lipid rafts?"2%,

5.4 BRAIN CHOLESTEROL

Studies indicate that cholesterol is synthesized locally in the brain®”, making the brain one of
the organs richest in cholesterol”. Cells maintain a constant flow of cholesterol. The
redistribution of cholesterol in the brain involves the formation of complexes with
apolipoproteins - APOA, APOB and APOE™. In these complexes cholesterol is also
transported to neurons for membrane and synapse formation®'**, Removal of brain cholesterol
occurs by the conversion of FC to 24-hydroxycholesterol (24-OHC) which can then pass
through the blood brain barrier™’. This reaction is mediated by the enzyme 24S-hydroxylase
(CYP46), a brain specific enzyme. Studies have shown that AD patients have increased levels of
24-OHC in plasma and CSF*® making 24-OHC a potential AD biomarker™®. In the cell,
cholesterol is stored as either FC or in an esterified form. The conversion of FC to cholesteryl
esters is mediated by acyltransferase 1 (ACAT1). Reports have indicated that changes in
ACATI levels influence A producti0n237’238. Cholesterol homeostasis in the brain is maintained
by a balance of transport, storage and clearance and a disruption of this balance can lead to
neurodegeneration (Figure 6).

Astrocyte Neuron

fCholestorol  Synaptic

Synthesis Vesicles.

o

Cholesterol»

5.5 STATINS

Cholesterol reducing drugs such as Statins have
been suggested as a treatment for AD patientsm' Cholesteral
3 Statins cross the blood brain barrier and inhibit o)
the enzyme HMG-CoA reductase, which catalyzes [y
the formation of melovonate, the rate limiting step
in cholesterol formation®. Clinical trials have
been initiated to assess the effect of Statin use on

both cholesterol and Af3 concentration in the \, @" /
bloo d243,244‘ Elimination Synaptic g7y o

Vesicles

P 245-OH

24-OH Synaptogenesis

Regulation

Fig.6 - Cholesterol homeostasis in the
central nervous system. LXR- liver-X
receptors (important proteins in the

regulation of cholesterol homeostasis)?°
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5.6 GENETICS OF ALZHEIMER DISEASE

5.6.1 Early-Onset Alzheimer disease

Mutations in the Amyloid Precursor Protein (APP), Presenilin 1 (PSENT), and Presenilin 2
(PSEN2) are responsible for the early-onset (EOAD) familial form of AD with autosomal
dominant inheritance®**, EOAD accounts for 2-5% of all AD cases with an age-at-onset
(AAO) before the age of 65**°. Six missense (non-synonymous) mutations in APP located on
chromosome 21 have been identified to cause AD and are responsible for 5-10% of all published
EOAD**2%_ A recent study showed that duplication of APP with a frequency of 8% in the
studied population may be involved in the etiology of disease in a dose dependent manner™".
Both PSENI and PSEN?2 are active sites of the y-secretase complex involved in APP
processing25 2 (Figure 5). At least 50 different mutations have been found in PSEN] located on
chromosome 14**%3* and account for 30-50% of familial EOAD®, whilst mutations in PSEN2,

a gene homologous to PSEN-1 located on chromosome 1 are quite rare®*7,

5.6.2 Late-Onset Alzheimer Disease

The common sporadic form of AD is known as late-onset (LOAD) and represents 85-90% of all
cases worldwide'*!85. APOE which is involved in the transport of cholesterol and the
metabolism of lipoprotein particles is the only confirmed susceptibility gene identified so far for
LOAD***', The e4 variant of APOE has been shown time and again to be more frequent in AD
patients when compared to healthy individuals®'**'%»%2% and the associated risk may be both
gender and age-dependent®™%, Susceptibility of the APOE-g4 variant in AD exemplifies not
only the CV/CD hypothesis but also the CV/MD hypothesis as a gene associated with several
disorders including CVD, Parkinson’s disease, Schizophrenia, and diabetes™**"!. Even-though,
APOE-¢4 is an established risk factor for AD, the exact role of APOE in the pathogenesis of
disease is still unresolved”’? and not all individuals with the &4 allele are afflicted with AD**, It
is more than likely that other genes are involved in disease etiology.
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6 CANDIDATE GENES

Genetic association studies in different ethnic populations have implicated a number of
susceptibility genes in AD?”. These findings include cholesterol related genes such as ACATI
and CYP46 to be associated with AD risk and quantitative measures” + . Though, replication
attempts in independent samples have been generally unsuccessful®*! raising questions on
genetic risk factors and association methods. Two candidate AD genes, ACE and ABCAI will be
further explored in the present investigation in studies relating genetic variation to disease risk
and measures of AD severity.

6.1 ANGIOTENSIN-I CONVERTING ENZYME

sons 1 s 2 2 Fig. 7 — Schematic diagram of human

MWW ACE gene illustrating the location of 3
3 .

4 + 4 selected tag SNPs in the present
r3meC  AsdoT Icz;m investigation. Exons 1-26 are indicated
W with vertical bars'®*.

Located on chromosome 17, ACE is very well characterized with its simple architecture and
distinguishable haplotype structure'>*1%7 (Figure 7). Genetic variation in ACE has an effect on
the acthlt?/ of ACE glasma levels making it possible to correlate a measurable trait with a
genotgfzp SIS5286-288 By tensive evidence exists that variants of ACE contribute to CVD and

AD®#° The effect however, while heavily replicated appears to be quite weak, which has
resulted in many researchers questioning the relevance of the gene. The majority of studies
have also been conducted using a single Alu I/D polymorphism in the gene, leaving the
question about potential genetic heterogeneity largely unanswered. Three studies corroborate
on the b1010§1ca1 candidacy of ACE in AD by describing the involvement of ACE in A
degradation™'**, These studies and the present investigations provide strong evidence that
ACE is involved in disease etiology.

6.2 ATP-BINDING CASSETTE A1

The present investigation also explores ABCAI’s candidacy as a potential AD susceptibility
gene. Previous reports have identified and tested both promoter and non-synonymous cSNPs
in ABCA1 for association, mostly with CVD risk and related quantitative traits 95301 "put also
with AD*™. As a positional candidate, ABCA is located on chromosome 9q31.1 in proximity
to previously identified AD linkage peaks®”. The protein spans the membrane as an integral
transmembrane protein (Figure 8). It is involved in the transportation of cholesterol across cell
membranes to APOAT in the plasma membrane, the rate limiting step in the formation of HDL
particles304’305. Mutations in ABCAI cause Tangier disease, characterized by the inability of
cells to clear out cholesterol, and by low HDL and APOA1 concentrations™ %, Interestingly
reduced HDL and APOA1 have also been evident in AD patients’go%lo‘ ABCAL1 is required for
the regulation of APOE levels in the brain®"! and it appears that an increase in ABCAL1 levels
or function may cause a decrease in Af} via increasing APOE 1ipidations311'313 making ABCAT
a plausible biological candidate for AD.

R219K
. R1587K Extracellular

Fig. 8 — A topological view of ABCA1. The
position of the amino acid substitution presented V77J%25'
in the present investigation are shown; ABC - !
ATP-hydrolyzing domains; R — regulatory
segments’

Cytoplasmic COOH
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7 PRESENT INVESTIGATIONS

Aims

The studies presented in this thesis aim to explore candidate Alzheimer and cardiovascular
disease susceptibility genes by employing SNP strategies and association models with
emphasis on quantitative trait analysis and replication efforts. The ultimate goal of the work is
to present the applicability of genetic variation research for use in the public health domain.

Paper |l and Il

To study the role of ACE gene polymorphisms in sporadic AD populations by examining
single markers and haplotypes in relation to disease risk and age-at-onset.

Paper Il
To extend studies on ACE variants by investigating the pleiotropic effects of ACE in CVD and
AD patients and controls, by a systematic investigation of metabolic traits in both men

women, by investigating disease associations, and by investigating potential regulatory
markers.

Paper IV and V
To examine the link between cholesterol and AD, and the extent by which coding markers

within ABCA1 influence AD risk, as well as to examine measures of disease severity, and
cholesterol traits in CVD and AD populations.
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71 METHODS

7.1.1 Genotyping

To allow for the rapid assessment of SNP allele frequencies in large numbers of individuals,
Dynamic allele specific hybridization (DASH) was employed as the main genotyping method.
The reaction principal in DASH is based on the differences in the interaction of target alleles
with a probe®* (Figure 9).

Fig. 9 — The DASH assay

a) DASH involves the design of short PCR

b primers that span the SNP position. One of
the primers is biotinylated and immobilzed to
a streptavidin microtiter coated plate or
membrane. After the PCR reactions, the
non- biotynilated strand of the PCR product
is removed by an alakli rinse and an allele
specific probe is annelaed to the bound
target molecule along with a double
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stranded specific flourescent dye. This is
followed by dynamic heating and real-time
monitoring of the hybridization status.

b) Denaturation of the probe-target duplex is
plotted as a function of flouresence intensity
over temperature. c) The negative derivative

Observed Trm distinguish target sequence Temperature (<0)

of the denaturation curves displays the
peaks at the melting temperature of the
probe-target duplexes which can then be

assigned to either match (o), mismatch (¢) or

7.1.2 Population selection heterozygous genotypes (solid Iine)m.

In order to empower studies aiming to map genes underlying complex diseases like AD and
CVD the selection of study populations is important. The study population consisted of several
hundred well-defined late-onset AD patients and their age-matched controls from the Northern
European population. These collections included samples from the Swedish Twin Registry
(STR)*'® and other collections around Sweden and the UK. Unique to these samples are a wealth
of phenotypic data which allowed for investigations into genetic factors which influence not
only AD itself, but also many other traits related to A} metabolism and cognitive function.

To specifically explore questions about metabolic phenotypes, in parallel with the AD studies,
3,000 individuals from the Stockholm Heart Epidemiology Program (SHEEP) were examined.
The SHEEP is a population based case-referent study evaluating risk factors in myocardial
infarction (MI) and includes extensive measures of metabolic traits® '8,

7.2 RESULTS

Paper |

A meta-analysis of published data on the commonly studied Alu I/D polymorphism in ACE
indicated a significant association of the insertion allele with AD. Several SNPs in case-
control samples from five independent European populations were genotyped and analyzed
based upon single markers and haplotypes. Significant evidence of association was found for a
promoter SNP and an intergenic SNP indicating genetic heterogeneity in the region. The
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results suggested that alleles that are associated with AD are the same alleles that are
associated with reduced circulating ACE levels. This implied a relationship whereby reduced
ACE activity, either by modification of the protein or reduced expression levels, underlies an
increase in disease susceptibility.

Paper I

A replication study provided further evidence implicating ACE in AD by testing age-at-onset
(AAO) models. Three SNPs previously demonstrated to have maximum effects upon ACE
plasma levels™ were analyzed across 2861 individuals from three European populations. As
in previous studies, independent effects were observed for both promoter and intergenic SNPs.
The association of ACE with AD in case-control models was significant, whereby risk alleles
appeared to reduce AAO regardless of APOE-¢4 carrier status and gender. These results
complement existing data confirming ACE’s involvement in AD.

Paper li

A strategy examining haplotypes and haplotype combinations (clades) was employed in order
to find unique effects of ACE in disease risk models of AD and MI, and on quantitative traits
related to CVD. To explore the pleiotropic effects of ACE, a systematic analysis of metabolic
phenotypes of samples from the SHEEP material was carried out. Effects were detected upon
several traits and measures of obesity only in men, indicating gender specific effects.
Population frequencies of genotypes changed with age adding to the emerging evidence
linking ACE to longevity. Computation analysis of the regulatory effects of ACE variants
predicted promoter and splice variants as potential functional markers. In addition, clade
models were applied in both MI and AD case-control samples, which allowed for the
refinement of the region that harbours pathogenic variation. The data provide evidence of the
pleiotropic effects of ACE and the importance of testing for genetic heterogeneity.

Paper IV

Analysis of the potential role of ABCA in AD was performed in early and late-onset AD
cases and controls which included 1750 individuals from three European populations.
Significant association was evident for three common cSNPs, previously associated with
CvD¥H, Haplotype based association analysis of disease risk and quantitative traits of AD
severity showed stronger effects in the early-onset samples. These analyses revealed
inconsistencies between allele frequencies, suggesting varying degree of linkage
disequilibrium and genetic heterogeneity in the region. Moreover, in AAO models, single
marker tests indicated modest evidence of association; however no evidence for association
was evident in haplotypes based analysis. Data indicated that variants of ABCAI do contribute
to variable CSF-tau, CSF-A{342 protein levels, and brain AP load. The study implicates
ABCAI in AD, though much work remains to solve the molecular mechanism by which
ABCA1 affects the disease.

Paper V

Further support of ABCAI’s role in AD and lipid metabolism was demonstrated in a study
analyzing the genetic association of common cSNPs of ABCA[ with CSF- Ap42 and
apolipoprotein levels. Consistent with previous data, a common marker in ABCAI was
significantly associated with CSF- Ap42 in AD case-control samples. To define a link between
AD and cholesterol the correlation between CSF-cholesterol and CSF-AB42 was determined in a

26



small sample set. In an effort to distinguish the relationship between cholesterol and Ap42, an
alternative approach examining lipid traits in the SHEEP material was employed. Non-
synonymous cSNPs in ABCAJ modulated APOB, LDL and total cholesterol (TC) levels. An
independent effect of the markers indicated allelic heterogeneity in the region. Results showed
that plasma APOB was elevated among smokers providing evidence that smoking and variants
of ABCAI may be interacting to affect lipid profiles. The data provide an example of an
environmental exposure that may modify a genotype-phenotype relationship and adds to the
emerging evidence linking cholesterol to AD.

7.3 CONCLUSIONS AND PERSPECTIVES

The genetic association studies on ACE and ABCA [ brought forward many impending issues
in genetic disease associations.

For ACE, association findings were consistently replicated across well-defined study
populations. The tight LD structure of the gene in European populations makes the
identification of the ‘real’ disease variant difficult. It is more than likely that several alleles
determine the ACE trait. Genes may have several different functions as demonstrated by the
pleiotropic effects of ACE, whereby differences in ACE levels, determined by genetic variants
had an effect on both AD and CVD. The studies on ACE did depict specific genetic markers
that may be further studied in functional analysis to determine

their role in modulating gene expression or alternative splicing.

For ABCA1, findings in single marker analysis and haplotypes were only modestly replicated
across samples. The differences between early and late-onset samples and differences in ethnic
backgrounds between the samples, as well as the varying degree of LD between markers may
have contributed to these modest findings. Non-synonymous cSNPs were prioritized and
selected for in the study; however other promoter or downstream markers may also be
contributing to trait variability. Findings between common variants in smokers and changes in
apolipoprotein levels signify complex gene-environment interactions.

The fine-mapping studies of ACE and ABCAI provide evidence that the genes are implicated
in disease. The studies model known gene architecture in association analysis by selecting
SNPs that distinguished the haplotype structure of the genes. The strength of the studies lies in
the analysis of quantitative traits related to disease progression added to disease risk findings.

‘What does it all mean? How will genome projects benefit our society? Will we find
treatments for complex diseases such as Alzheimer disease?” With respect to Alzheimer
disease, the data illuminate on the relevance of genetic variation in ACE and ABCAI in disease
and advance our understanding of the molecular basis of AD. With knowledge about pathways
involved in disease such as cholesterol metabolism and data coming from clinical trials, the
use of cholesterol reducing drugs may become commonly used for the treatment of AD. Our
knowledge of the function of each of the ~25 ,000 protein encoded genes in the human
genome increases. The challenge for the future will be to identify all DNA sequence variants
that confer increase disease risk and to identify the network of gene- interactions in the context
of environmental exposures.
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