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ABSTRACT

The human genome sequencing projects revealed that the human genome contains over
3 billion DNA base pairs, but only 20,000–25,000 protein-coding genes.  In fact, only 
about 1.2% of the genome codes for proteins.  Surprisingly, the number of human genes 
seems to be almost equal to lower mammals like rodents, and less than a factor of two 
greater than that of many much simpler organisms, such as the roundworm and the fruit 
fly.  On the other hand, recent studies have revealed that eukaryotic genomes are almost 
entirely transcribed, generating an enormous number of non-protein-coding RNAs 
(ncRNAs).  Thus there may be a vast reservoir of biologically meaningful ncRNAs that 
greatly exceed the 1.2% of the genome that corresponds to conventional protein
coding genes.  Several classes of functional ncRNAs have been identified in recent 
years.  One prominent and complex class of ncRNAs is natural antisense transcripts 
(NATs).  NATs are RNA molecules transcribed from the opposite strand of 
conventional genes often overlapping in part with mature sense mRNA.  Indeed a large 
fraction of NATs is expressed in specific regions of the brain, supporting involvement 
of these ncRNAs in sophisticated regulatory brain functions as well as in complex 
neurological disorders.  Recent research on NATs, including several large-scale 
expression-profiling studies, has conclusively established the existence of NATs in 
eukaryotic genomes.  In fact, the consensus opinion is that natural antisense transcripts, 
most of which represent ncRNAs, occur abundantly in the mammalian genome.  
However, there are many unanswered questions that still exist concerning NATs 
biological functions and their heterogeneous mode of actions in various cells.  For 
instance, what fraction of NATs may have functional significance, and how many 
different regulatory mechanisms may exist for these RNA molecules?  NATs appear to 
be utilizing various cellular pathways, but it is still not clear which intrinsic properties 
of natural antisense RNA molecules or extrinsic features, such as protein interactions, 
cellular and developmental context are decisive for any given pathway.  How is the 
expression of these ncRNAs regulated in various cells, and what are the extrinsic 
factors that affect the regulatory output of antisense RNA transcripts?  Based on what 
we know about the broad expression of NATs in different tissues and cell types, and 
their varied proposed functions, NATs appear to be a heterogeneous group of regulatory 
RNAs with a wide variety of biological roles. 
During the course of my studies, I initially tried to uncover some general aspects of 
NAT-mediated regulation of gene expression.  Thereafter I have investigated, in further
detail, the functional significance of a number of these regulatory RNA elements.  I 
have also reviewed all the reported cases of NATs and summarized them in the 
introduction section of my thesis.  In conclusion, I found that there are widespread 
occurrences of NATs in mammalian genomes and that many of these regulatory 
elements are indeed functionally relevant in controlling conventional (sense) gene 
expression.  Considering tissue- and cell type-specific expression patterns of NATs and 
their heterogeneous proposed functions, it seems that we have, so far, only touched 
parts of an elephant in the dark.  The big picture, in the light of future studies, probably 
will include these parts, but it could be dissimilar to our current understanding.  My
work, like any other scientific project, has generated many more questions than 
answers.  Several other Ph.D. assignments are needed to address these questions and to 
generate more questions for future projects and this is the nature of growing sciences.
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1 INTRODUCTION

1.1 NATURAL ANTISENSE TRANSCRIPT DEFINITION

Natural antisense transcripts (NATs) are RNA molecules that are transcribed from the 
opposite strand of conventional (sense) genes and overlap in part with mature sense 
mRNA.  The overlap can occur in cis (sense and antisense transcripts reside in the 
same gene locus) or in trans (distinct loci).  It has become clear, over years of reports 
on NATs, that the genome of a mammalian organism in many cases encodes two 
distinct genes by using both strands of the same DNA [1, 2].

1.1.1 Widespread expression of natural antisense transcripts

Mammalian transcriptome analyses have unraveled the existence of a large number of 
NATs, which in many cases have been proposed to be involved in the regulation of 
sense gene expression.  The largest transcriptome profiling effort, that one pursued by 
the FANTOM-3 consortium, identified NATs for more than 70% of transcription units 
(TU)� within mouse and human genomes [3].  Over 20% of human and mouse mRNA 

had previously been predicted to form sense-antisense (S-AS) pairs [4-9].

NATs have been suggested to regulate gene expression by causing transcriptional and 
post transcriptional changes in sense mRNA levels [10-13].  Evolutionary studies and 
numerous well documented experiments have ruled out the possibility that this 
genome-wide NAT transcription represents a leakage of the RNA transcription 
machinery [14].  In fact, the high abundance of antisense transcripts observed in gene 
expression studies have been established as real overlap which has considerably 
affected vertebrate genome evolution [14], and suggested to display pivotal role in 
complexity of the higher organism nervous system [15].

Table-1 contains all reported functional NATs in mammalian genomes characterized 
to date.  This growing list of validated S-AS transcripts includes many important 
developmental genes as well as genes known to be involved in complex human
disorders.   

� A transcription unit (TU) is a group of ESTs/mRNAs, usually with alternative splice 

pattern, in which the ESTs/mRNAs share exonic overlap of at least one nucleotide and 

are in the same chromosomal orientation
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1.2 TABLE 1: REPORTED SENSE-ANTISENSE (S-AS) PAIRS IN THE 

MAMMALIAN GENOME AND THEIR PROPOSED FUNCTION / 

DISEASE RELEVANCE AND POSSIBLE MECHANISM OF ACTION.

Species; H: Human, M: Mice, R: Rat or rodent, Ch: Chicken, P: Primate, C: Canine,
Mm: mammals, B: Bovine, S: Snail, F: Fungus, Z: Zebrafish

S-AS transcripts Proposed function / 

disease relevance

Suggested mechanism Species Ref.

BACE1  & BACE1-AS Alzheimer’s disease Stability H  M [16]

APOE  & APOE AS1 Alzheimer’s disease H  M [17]

PU.1 and PU.1-AS Hematopoiesis Translational block H  M [18]

HOXD  & HOTAIR Embryonic 

development

Transcriptional gene 

silencing

H, M [19]

�5-desaturase & reverse �5-

desaturase

Fatty acid metabolism Translationl block, 

Transcriptional 

interference, mRNA 

Stability

H, R [20]

P15  & P15AS Tumor suppressor Chromatin modification H [21]

P21  & P21-AS Tumor Suppressor Chromatin modification H [22]

NKx2.2  & NKx2.2AS Neuronal cell 

differentiation

H [23]

Zfh-5  & zfh-5AS Transcription factor H, M [24]

Progesteron receptor & PR-

AS

PR activation / 

inhibition

Promoter 

activation/inhibition by

heterochromatin protein 1

H [25]

HAR1F & HAR1R Neuro-development H [26]

WT1 & WT1-AS Kidney development Methylation H, M [27]

BDNF & BDNFOS Neurotrophic  factor RNA duplex formation P [28, 

29]

PINK1 & naPINK1 Mitochondrial function H [30]

FMR1 & ASFMR1 Fragile X Mental 

Retardatin

Epigenetic changes H, M [31, 

32]

EPO-R  & asEPO-R Lung growth Stability, translation H, C [33]

Ghrelin  & ghrelinOS Anxiety, depression H [34]

Rad 18  & NAT-Rad18 Apoptosis Post transcriptional H, R [35]

HFE & HFE antisense RNA Iron storage disorder Translation repression H [36]

Zeb2 & Zeb2 NAT Epithelial-mesenchymal 
transition 

Splicing H, M [37, 
38]

TSP1  & TSP1-AS Platelet aggregation H [39]

Urocortin, Ucn  &  Ucn-AS Neuro-transmission Post transcriptional R [40]

Sphk1  &  Khps1 Calcium mobilization Demethylation H, R [41]

Pdcd2  & Tbp Apoptosis Editing, Alternative 

splicing , polyadenylation

H, M, 

Ch

[42]

Msh4 &Hspa5 Meiotic DNA 

recombination

RNA degradation M [43]

Pax6,2 & Pax6,2OS Eye development - M  H [44]
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Six3,6 &  Six3,6 OS

Otx2 & Otx2OS, Crx & 

CrxOS

Rax & RaxOS, Vax2 & 

Vax2OS

Hyaluronan Synthase 2 & 
HASNT

Hyaluronan 
biosynthesis 

- M  H [45]

Msx1 & Msx1_AS Skeletal  differentiation Splicing, Imprinting R,  H [46]

 FGF-2 & FGF-AS (bFGF &

bFGF-AS)

Hematological tumors, 

endometriosis

Polyadenylation, 

Translational Block, 

Editing, Stability

Mm [47-

50]

p53 Differentiation Transport M [51]

N-myc Oncogenesis Splicing M  H [52]

Tsix & Xist X inactivation Mm [53]

HIF-1� & aHIF Poor prognosis marker 

in breast cancer, renal 

cancer

RNA destabilization, 

RNA Splicing

H, R [54]

Survivin & EPR-1 Colon cancer Not known H [55]

�-globulin & LUC7L �- Thalassemia Methylation H [56]

IGF2R & Air Imprinting H  M [57, 

58]

KvLQT1 Beckwith-Wiedemann Imprinting H [59]

SNURF-SNRPN & UBE3A Prader-Willi, Angelman 

syndrome

Imprinting H [60]

GNAS Signal transduction Imprinting H, M [61]

BCMA & Antisense BCMA 

RNA

B-cell maturation Translation block, 

Editing

H [62, 

63]

Bcl-2 & IgH Follicular B-cell 

lymphoma

RNA Stabilization H [64]

c-erbA & Rev-ErbA� Thyroid hormone 

receptor

Splicing H, R [65-

67]

Thymidylate synthase & rTS� DNA replication and 

repair

Editing H [68]

CHRNA3 & CHRNA5 Neuronal nicotinic 
receptor

Stabilization H, B [69]

Myelin Basic Protein (MBP & 

MBP-AS)

Myelin formation Transport M [70]

eNOS  &  NOS3AS (sONE) Vascular disease Inverse S-AS correlation H  M [71]

Neuronal Nitric Oxide 

Synthase  & NOS

Nervous system 

signaling

Post transcriptional, 

Translation

S, H  R [72]

Inducible nitric oxide 

synthase (iNOS  & iNOS AS)

Inflammatory diseases Stability R [73]

NOS2A  & anti-NOS2A Neuronal differentiation Inverse S-AS correlation P [74]

SMAD5 & DAMS TGF-beta/BMP Transcriptional 

interference, Translational 

H, R [75]
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inhibitory signals block

eIF2� T cell mitogenesis RNA degradation H [76]

ERCC-1, RAF49 (ASE-1) DNA repair Stability, localization H [77]

�1 Collagen Chondro-genesis Competitive 

transcriptional interference 

Ch [78]

MKRN2 & RAF1 Cancer Polyadenylation Mm [79]

Hoxa 11 Development epigenetic Mm [80]

Cardiac Troponin 1 Myocardial function Translation H, R [81]

pMCH  & pMCH antisense Splicing H, R [82, 

83]

CDYL & CDYL-AS Spermatogenesis B [84]

FGFR-3 & psiFGFR-3 Bone and hematopoietic 

maturation

RNA degradation, 

translation inhibition

M [85]

TOP1 & TOP1-AS Cell cycle Translational regulation H [86]

EP1 prostanoid receptor &  

PKN protein kinase

Intracellular signaling - M [87]

EMX2 & EMX2OS Development Splicing, Polyadenylation H, M [88]

Thymidine kinase  & TK-AS Cell cycle Inverse S-AS correlation M [89]

DIPLA1 & DIPAS Placenta specific - H [90]

GnRH & SH Gonadotropin-releasing 

hormone (GnRH)

R [91]

HLA-J cluster

HZFw &  HZFc

HZFw & HCGV

HTEX6 &  HTEX4

MHC class I Alternative splicing

Alternative 

polyadenylation

H, M [92]

MHC IIa, IIx, IIb  &  

Antisense aII, xII, bII 

Skeletal muscle myosin 

heavy chain regulation

Transcriptional 

interference and/or 

Promoter methylation

R [93]

Cardiac �MHC  & AS-

�MHC

Cardiac myosin heavy 

chain alpha-beta gene 

switching

Transcriptional 

regulation at promoter 

H, R [94]

ABO  & ABOAS Blood group, ABO 

gene expression

Post-transcriptional, 

methylation

H [95]

Frequency, frq  & antisense-

frq

Circadian clock 

function

Inverse S-AS correlation F [96]

ORCTL2 & ORCTL2S Wilms tumor Imprinting H [97]

 Tenascin-X & P450c21B Adrenal function Post transcriptional H [98]

NPT  & NPT-AS Na/Pi cotransporter,

Phosphate homeostasis

Translation interference M, Z [99]

PKN & EP1 Protein kinase Alternative 

polyadenylation

M [87]

COX10 & C17ORF1 Charcot-Marie-Tooth Post transcriptional H [100]

c-myc & c-myc-antisense Oncogene Pre-mRNA processing, 

Transcription interference

R, H [2, 

101]
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1.3 HISTORICAL OVERVIEW

1.3.1 Prokaryotic and mammalian natural antisense transcripts

Overlapping antisense transcripts were first identified in viruses e.g. polyoma virus 
and prokaryotes [102-106].  In 1986 Trevor Williams and Mike Fried reported, for the 
first time, antisense transcription from opposite strands of DNA in mammalian 
systems [1].  The authors identified a mouse genetic locus at which two processed 
poly (A)+ RNA species transcribed from opposite strands overlap by 133 nucleotides 
at their 3’ ends and suggested that endogenous RNA double strand formation from 
overlapping transcripts can prevent RNA processing and/or transport.  Other natural 
antisense RNAs were reported from rodent [2, 91] and Drosophila [107-109] genomes 
in or around 1986.  

1.3.2 Human natural antisense transcripts

Three years later Van Duin et. al. reported, for the first time, a human example of 
conserved overlapping antisense transcription for ERCC-1 (Excision repair cross-
complementing rodent repair deficiency, complementation group 1), DNA repair gene 
regions [77].  The antisense transcript for ERCC-1 forms a tail-to-tail duplex with the 
sense ERCC-1 mRNA, and the duplex RNA suggested to mediate S-AS transport to a 
common cytoplasmic location, where it affect translation and/or stability of both 
transcripts [77].

1.3.3 Large-scale detection of natural antisense transcripts 

These scattered reports were followed by numerous studies such as large scale 
sequencing of cDNA clones [3, 12, 110, 111], tiling arrays [112-115], analysis of 
RefSeq and EST databases [5-10, 116, 117], hybridization techniques [21, 118] SAGE 
libraries [119, 120], strand specific microarrays [121-123], and most recently with a 
technique called asymmetric strand-specific analysis of gene expression (ASSAGE) 
[124].  These studies demonstrated the widespread occurrence of antisense 
transcription in mammalian genomes. 

1.4 REPORTED ncRNA TRANSCRIPT RELATED TO NATs

1.4.1 Small natural antisense transcripts (small-NATs)

Overlapping transcription of small RNA (<50 nt) in the sense and antisense direction 
has been documented by utilizing strand-specific genomic tilling arrays in the 
ENCODE� region of the human genome [125].  These small sense-antisense 

transcripts do not correspond to annotated NATs. There is no evidence for double 
stranded RNA or hairpin RNA precursors that could represent intermediates in the 
biogenesis of such small natural antisense transcripts.  These small NATs are thought 
to be involved in “housekeeping” functions ensuring the basic structural and metabolic 
needs of living cells [125].
1.4.2 Promoter- and termini-associated small RNA (PASR & TASR)

� ENCODE, the ENCyclopedia Of DNA Elements is a publicly founded project that 

aims to find functional elements in human genome
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Promoter-associated small RNA (PASR) and Termini-associated small RNA (TASR) 
are two classes of small RNA less than 200 nucleotide which have been identified by 
genomic tiling arrays and are enriched in the 5’ UTR and 3’ UTR of genes, 
respectively [125, 126].  The enrichment of NATs in both promoter and termini 
regions is confirmed by unbiased technique called asymmetric strand-specific analysis 
of gene expression (ASSAGE) [124].

1.4.3 Promoter-directed antigen RNA

There is a class of newly described synthetic antisense RNA, promoter-directed 
antigen RNA (agRNA), which can bind to the transcription start site (TSS) of genes 
and can activate or block transcription of the target gene dependent on the cellular 
context [127].  Natural antisense RNA has been shown to be essential for agRNA 
mediated gene activation/silencing, providing a scaffold for suppressor or activator 
proteins to bind to the promoter region [25].  The potency and generality of silencing 
with agRNA are consistent with the suggestion that RNA-mediated recognition of TSS 
may be a natural mechanism for regulation of gene expression.  Given the fact that 
significant fraction of PSAR overlap with the transcription-initiation sites of genes 
[125], PASR could possibly act as an endogenous agRNA, interacting with NATs to 
regulate transcriptional output at the DNA level.  

1.4.4 Natural antisense miRNA (nat-miRNA) and siRNA (nat-siRNA)

Natural antisense miRNA (nat-miRNA) [128] and natural antisense siRNA (nat-
siRNA) [129] are classes of small noncoding RNA that originate from overlapping 
region of sense-antisense RNA pairs.  Canonical miRNAs are generated from 
characteristic hairpin structure, in miRNA precursor.  Similarly, nat-miRNAs derive 
from intra-molecular (stem-loop formation) interactions and their production in plant 
depends on Dicer-like-1 (DCL1) enzyme.  Nat-miRNAs have been reported in the fly 
where the Hox miRNA locus generates miRNAs from both sense and antisense 
transcripts [130].  Nat-miRNAs have also been demonstrated in mice, originating from 
NATs to an imprinted locus retrotransposon-like gene (Rtl1) [131].  These nat-
miRNA, unlike canonical miRNAs, are fully complementary to their target mRNA.  

On the other hand, nat-siRNA’s, which are essentially the same as the recently 
reported endogenous siRNA (endo-siRNAs) [132], derive from inter-molecule (double 
strand-RNA formation) interactions between sense and antisense transcripts.  Nat-
siRNA production in plant, unlike nat-miRNA, depends on Dicer-like2 (DCL2) 
enzyme.  Both RNA species can form a perfect match with their target mRNA in 
plants, inducing mRNA cleavage [128].  Importantly, presence of many cis-NAT in 
eukaryotic systems suggests a great potential for generation of nat-miRNA and nat-
siRNA small RNA species.  

1.4.5 Other non-protein-coding RNAs

Table-2 and text box-1 summarizes the various categories of non-protein-coding RNA 
(ncRNA) and their special features.  
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Table-2: Features of various ncRNA classes; double stranded RNA: dsRNA

Non-coding 

RNA

Size Proposed 

function

Origin/target Features Ref

Small natural 
antisense transcripts 

(small-NATs)

> 50 nt Housekeeping ENCODE No dsRNA or 
hairpin RNA 

precursor

[125]

Promoter-associated 

small RNA (PASR)

> 200 nt Transcription 

initiation

5’ UTR Housekeeping [125]

Termini-associated 

small RNA (TASR)

> 200 nt Post-transcriptional 3’ UTR Housekeeping [125]

Promoter-directed 

antigen RNA 

(agRNA)

20 nt Transcription 

activation/suppressio

n

TSS Synthetic [127]

Natural antisense 

miRNA (nat-

miRNA)

~20 nt Translational 

suppression

Antisense RNA Derive from 

intra-molecule 

hairpins

[128, 

131]

Natural antisense 

siRNA (nat-siRNA)

~20 nt RNAi Overlapping 

region

Derive from 

inter-molecule 

dsRNA

[129]

Endogenous siRNA 

(endo-siRNA)

~20 nt RNAi Overlapping 

region, 
Pseudogenes, 

Repetitive 

elements

Derive from 

inter-molecule 
dsRNA

[133-

137]

Transacting 

siRNA(ta-siRNA)

~20 nt RNAi Plant miRNA 

cleavage product

Need RdRP [138]

Small temporally 

regulated RNAs 

(stRNA)

~20 nt RNAi C. elegans

miRNA, Let-7

Lin-4

Translation 

repression

[139]

[140]

MicroRNA (miRNA) ~20 nt RNAi Imperfect 

complementarity 

to target RNA

Translational 

repression, 

mRNA 

decay/degradat

ion

Revie

wed 

at 

[141]

MacroRNA ~1kb-

>100kb

Heterogeneous  mRNA 

regulation

Spliced, 

Capped and 

polyadenylated 

(See 

text)

Small nucleolar 
RNAs (snoRNAs)

200 nt Methylation, 
Pseudouridylation

rRNA processing Reside in 
nucleolus

[142]

Telomerase RNA ~1kb Maintenance of 

telomere

Telomeres Reside in 

nucleus

[143]

Small nuclear

(snRNA)

~150 nt mRNA splicing Splicosome Reside in 

nucleus

[144, 

145]

Small interfering 

RNA (siRNA)

~20 nt RNAi mRNA 

degradation

Synthetic Revie

wed 

at 

[146]

Piwi-interacting 

RNA (piRNA)

~30 nt Chromatin 

modification

Maintaining 

germline DNA 

integrity

Germline 

silencing of

repeat 

transcripts

Revie

wed 

at 

[147]

Repeat-associated 

small interfering 

RNA (rasiRNA)

~20 nt Chromatin 

modification

Retrosposone Germline 

silencing of

repeat 
transcripts

Revie

wed 

at 
[146]

Transfer RNA 

(tRNA)

74-95 nt mRNA translation Protein-coding 

mRNA

Anticodon loop

Ribosomal RNA 

(rRNA)

18S, 

28S

mRNA translation Protein-coding 

mRNA

Tandem 

repeats
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Text Box 1. Some mammalian RNA species

1. Messenger RNA (mRNA), well known class of RNA with average size of 2 
kb.  It is transcribed from DNA and processed before leaving the nucleus.  The 
processed mRNA, which is located in cytoplasm, contains polyA tail, cap 
structure, open reading frame and it is frequently spliced, in many cases 
alternatively.

2. MicroRNA (miRNA) is a small non-coding regulatory RNA.  The miRNA 
precursor (pri-premiRNA) is transcribed into a single stranded RNA transcript 
of approximately 150-250 nucleotides in length. A ‘hairpin’ secondary 
structure is formed in pri-premiRNA which is then processed by the enzyme 
Drosha and exported to the cytoplasm. Pre-miRNA is further processed by the 
enzyme Dicer to create a stable, ~22 nucleotide single-stranded mature 
miRNA from one arm of the hairpin. The mature miRNA sequence tends to be 
highly conserved.    

3. Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that 
guide chemical modifications (methylation or pseudouridylation) of ribosomal 
RNAs (rRNAs) and other RNA genes (tRNAs and other small nuclear RNAs 
(snRNAs)). snoRNAs are commonly referred to as guide RNAs but should not 
be confused with the guide RNAs (gRNA) that direct RNA editing in 
trypanosomes. The snoRNAs are less than 70 nucleotides in length including 
10-20 nucleotides of antisense elements for base pairing.

4. Small nuclear RNA (snRNA) is a class of small RNA molecules that are 
found within the nucleus of eukaryotic cells. They are involved in a variety of 
processes such as RNA splicing, regulation of transcription factors (7SK RNA) 
or RNA polymerase II (B2 RNA), and maintaining the telomeres.

5. Piwi-interacting RNA (piRNA) is a class of small RNA molecules that is 
expressed in mammalian testes and forms RNA-protein complexes with Piwi 
proteins. These piRNA complexes (piRCs) have been linked to transcriptional 
gene silencing of retrotransposons and other genetic elements in germ line 
cells, particularly those in spermatogenesis. Purification of these complexes 
has revealed that these oligonucleotides are approximately 29-30 nucleotides 
long.

6. Rapid associated RNA (RasiRNA): is presumably derived from long double 
stranded RNA (dsRNA) and match to repetitive sequence elements in 
antisense orientation.  In the Drosophila germline, rasiRNAs ensure genomic 
stability by silencing endogenous selfish genetic elements such as 
retrotransposons and repetitivesequences

7. Natural antisense transcripts (NAT) are single-stranded RNAs that are 
complementary to mRNAs. NAT regulate mRNAs in a concordant or 
discordant manner. The average length of NAT is 2 kb, but in some cases it is 
extremely long (over 100 kb).  NAT in some cases is spliced and contains 
polyA, cap structure or even open reading frame.  

8. Other long non-coding RNA transcripts (sometimes referred to as 
macroRNA) are diverse and not necessarily well conserved; they are often 
processed, containing polyA tail and/or cap structure.  There is no significant 
open reading frame for macroRNAs and their functions are largely unknown. 

9. Ribosomal RNA (rRNA) and transfer RNA (tRNA) are well studied 
components of the protein synthesis machinery.    



9

1.4.6 MicroRNA: Synthesis and function

MiRNAs are a class of small ncRNAs that have recently generated much interest [148-
150]. The enzymatic machinery and sequence of events, involved in the biogenesis of 
miRNAs are highly conserved across animals and plants. Specifically, miRNA 
precursor (immature miRNA) is transcribed into a single stranded RNA transcript of 
approximately 50-120 nucleotides in length, which forms a ‘hairpin’ secondary 
structure [151, 152]. This precursor miRNA hairpin is exported from the nucleus to 
the cytoplasm, where it is processed by Dicer, in combination with Argonaute 
proteins, and the RISC complex (RNA-induced silencing complex) to yield a stable, 
~22 nucleotides single-stranded mature miRNA from one arm of the pre-miRNA 
hairpin [152].  This mature miRNA sequence is highly conserved across species [148,
149].  In plants, miRNAs often demonstrate complete or precise complementary base-
pairing with target mRNA transcripts, resulting in the cleavage and degradation of 
target mRNA transcripts, via RNA interference (RNAi) machinery [153, 154].  In 
contrast to plant, animal miRNAs are generally thought to recognize and bind to the 
target mRNA transcripts by incomplete complementary base pairing. Such imperfect 
base pairing with target transcripts results in translational inhibition and down-
regulation of associated proteins. Thus, miRNAs may represent ‘master regulators’ of 
gene expression that orchestrate the expression levels of clusters of associated 
proteins. Indeed, it has been estimated that more than 33% of human gene products 
may be regulated by miRNAs [155].

1.5 NATURAL ANTISENSE TRANSCRIPT DATABASES  

1.5.1 Non-protein-coding RNA database, RNAdb 

RNAdb is a comprehensive database of mammalian ncRNA, which provide nucleotide 
sequences and annotations for tens of thousands of ncRNAs, including a wide range of 
mammalian microRNAs, small nucleolar RNAs and larger mRNA-like ncRNAs 
[156].

1.5.2 cis-natural antisense transcript database

There are some more specialized databases for NATs like LEADS-Antisensor [6],
SADB (http://fantom31p.gsc.riken.jp/s_as/), AntiHunter [157, 158], NATsDB [159]
and antiCODE [160], among these NATsDB has the most coverage of various species 
and antiCODE is the most comprehensive dataset comprising most of currently 
detected NAT pairs and introduces a simple classification system to facilitate studies 
of natural antisense transcripts [160].

1.5.3 Trans-SAMap

Trans-SAMap [161], is a dataset of trans-NATs in human and nine more species 
freely available at http://trans.cbi.pku.edu.cn/.

1.6 CLASSIFICATION OF NATURAL ANTISENSE TRANSCRIPTS

There are different classifications for functional RNA molecules.  NATs are classified 
by their expression pattern, their alignment with regard to the sense mRNA, coding 
potentials and the type of regulation exerted on the sense gene.  Classifications of 
NATs are useful for defining various transcripts and more importantly for predicting 
their regulatory function.  The more common and practical classifications of NATs are 
outlined below:  
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1.6.1 Classification based on cis vs. trans NATs: 

Most NATs are cis-encoded antisense RNA [162, 163]. By definition, cis-NATs are 
complementary RNA with an overlapping transcriptional unit (TU) at the same 
chromosomal locus. Trans-NATs are complementary RNA transcribed from different 
chromosomal locations [118, 161, 164].

1.6.1.1 Abundance of Trans-NATs

A recent study on Trans-NAT showed that the abundance of these regulatory elements 
is much more than previously expected.  Although the authors had applied very 
stringent criteria for selecting trans-NATs, eliminating all the NATs originating from 
repeat regions and pseudogenes, they reported presence of trans-NATs as high as 
4.13% among transcriptional units of various species [161].  Particularly, trans-NATs 
have been reported for nearly 3,000 human TUs (or 2.89% of all human TUs), which 
involve ncRNA partner at least in one-fourth of the reported cases [161].

1.6.1.2 Pseudogenes and trans-NATs

Trans-NATs often originate from pseudogenes or repeat regions.  Repetitive 
sequences in genome and pseudogenes have long been considered to be non-functional 
artifacts of transposition pathways.  However, an increasing number of reports point to 
the functional role for repetitive elements in post-transcriptional events [165].  Anti-
sense transcription of pseudogenes may constitute a mechanism for controlling their 
cognate (parental) genes.  

1.6.1.3 Examples of pseudogenes-related trans-NATs

Such a regulatory role has been demonstrated for topoisomerase I, neural nitric oxide 
synthase, inducible nitric oxide synthase (NOS2A/anti-NOS2A) and fibroblast growth 
factor receptor-3 pseudogenes [72, 74, 85, 86].  Importantly, recent reports proposed a 
role for a subset of mammalian pseudogenes in the production of endogenous siRNAs 
(endo-siRNA) through formation of double stranded RNA [166-168].

1.6.1.4 Chimeric NATs

Chimeric NATs are RNAs with identity to more than one region of the genome and 
may have some function in controlling retrotransposons [169, 170].  Chimeric NATs 
and in some cases trans-NATs offer partial complementarity to more than one target 
transcript [161], therefore are capable of regulating many sense mRNA at the same 
time reminiscent of miRNA-target mRNA interactions. 

1.6.2 Classification based on coding potential 

NATs can be protein coding or non-protein-coding (Table-3). Noncoding RNA’s 
(ncRNA) appear to be the most abundant form of NATs in the mammalian genome, in 
which there is a ncRNA overlapping with the protein coding target mRNA [3].

Coding–coding partners are also common in the mammalian genome for example 
Thymidylate synthetase (TS) and Enolase superfamily member (rTSalpha) are two 
protein coding genes in S-AS orientation [68].
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Table-3: Cis-NAT from FANTOM-3 dataset with exon overlap. 

TU pairing types Cis-S/AS pairs % in group

Coding-coding 1,687 37%

Coding-noncoding 2,478 55%

Noncoding-noncoding 355 8%

Total 4,520 100%

1.6.3 Classification based on S-AS format:

There is enrichment for the presence of NATs in both 5’ and 3’ ends of the sense 
genes.  Some reports indicates that over 70% of cis-encoded NATs have a tail-to-tail 
3’ overlap, while 15% have a 5’ head-to-head format with the 3’UTR or 5’UTR of 
their target mRNA, respectively. The remaining NATs have full, intronic or coding 
overlap (Figure-1).
These figures vary widely and some reports [3] revealed more prevalent head-to-head
orientation among NATs.  

Figure-1: Illustration of prominent transcriptomics patterns relating to complex 

loci in human and mouse genomes.

(A) cis-NATs, like BACE1-AS [16] in which two converging transcripts, from 
opposite strands of DNA, have 
overlapping exons shown as
hashed parts.  
(B) Bi-directional promoters as, for 
example, for FMR4 [32] drive 
transcription of two RNAs in 
opposite directions. The transcripts 
may share the same transcription 
start site (TSS), or even exhibit 
overlapping 5’UTRs.  
(C) Full or intronic transcripts in 
which antisense RNA (blue) is 
inside the boundary of the sense 
transcript (red).  Even if the fully 
processed RNAs do not contain 
overlapping sequences, RNA 
duplexes can still form between 
unprocessed transcripts.  
Alternatively, antisense RNA can 
bind to the DNA and exert its 
regulatory function.  

1.6.3.1 Examples of 5’UTR S-AS overlapping pattern

NATs with 5’ overlapping pattern, e.g. the antisense transcript to Wilm’s tumor 
suppressor gene (WT-AS) [171] or tumor suppressor p15 (P15AS) [21] or antisense 
transcript to hemochromatosis protein isoform 1 precursor (HFE-AS) [36] can exert 
their regulatory effects through epigenetic mechanisms like methylation of the sense
mRNA promoter region[172].
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1.6.3.2 Examples of 3’ UTR S-AS overlapping pattern

Tail-to-tail orientation is reported to be much more common in mammalian genomes 
and has a much higher probability (>5 times) of evolutionary conservation and 
discordant regulation (inverse expression pattern see below) [173].  Tail to tail 
overlapping S-AS pairs, like ERCC-1, RAF49 (ASE-1) [77] Makorin-2 and RAF1 
[79], may change the polyadenylation of sense mRNA, cover the miRNA binding sites 
or modulate post transcriptional events by a variety of mechanisms.  

1.6.3.3 Example of coding S-AS overlapping pattern

NATs interacting with the coding part of their target mRNAs, like ghrelinOS [34],
change the stability or splicing of the sense mRNA.  Thus, classification of NATs by 
their overlapping pattern is important for prediction of functional properties. 

1.6.4 Classification based on NAT-mediated regulation: 

There are broadly two types of regulation between sense and antisense transcripts, 
namely concordant and discordant regulation.  

1.6.4.1 Examples of concordant regulation

In concordant regulation, like in the case of BACE1-AS [16], aHIF1 [174], asEPO-R
[33] and Zeb2-AS [37], the NATs augment the level of the sense RNA, or 
corresponding protein levels.

BACE1-AS transcript: We have recently identified a conserved noncoding antisense 
transcript for �-secretase-1 (BACE1), a critical enzyme in Alzheimer’s disease 
pathophysiology.  The BACE1-antisense transcript (BACE1-AS) concordantly up-
regulates BACE1 mRNA and subsequently BACE1 protein expression in vitro and in 

vivo [16].

Zeb2-AS transcript: Concordant regulation is also reported for NATs to a 
transcriptional repressor of E-cadherin called zinc finger homeobox 1b (zeb2).  The 
antisense RNA for Zeb2 inhibits 5’UTR splicing, which in turn makes an internal 
ribosome entry site (IRES) accessible and causes increase in Zeb2 protein level 
without changes in mRNA transcript.  This NAT is an example of concordant 
regulation in which antisense RNA induces Zeb2 protein up-regulation and 
subsequently induces epithelial-mesenchymal transition [37].

asEPO-R transcript:  Concordant regulation is reported in the case of as-EPO-R
transcript.  Erythropoietin receptor (EPO-R) mRNA and protein levels are shown to be 
positively controlled by a cis-NAT, called asEPO-R [33].  Both S-AS transcripts as 
well as EPO-R protein are increased in canine lung after pneumonectomy, suggesting 
a role for antisense regulation during lung growth.  Although asEPO-R has two 
potential open reading frames (ORF), antisense-induced up-regulation of EPO-R
seems to be protein independent [33].

1.6.4.2 Examples of discordant regulation

In discordant regulation, e.g. naPINK1 [30], Rev�5-desaturase [20], zfh-5AS [24] or 
antisense-frq [96], the antisense transcripts have negative (opposing) effects on sense 
transcripts.  
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Rev�5-desaturase transcript:  The noncoding antisense RNA for �5-desaturase 
regulates fatty acid metabolism during the transition between fasting and refeeding by 
altering the expression of the sense gene.  The regulation was shown to be discordant 
i.e. a diet enriched in fish oil produced a reciprocal increase in antisense and decrease 
in sense transcript [20].

zfh-5AS transcript:  Consistent with discordant regulation, gene-targeted knock-out 
of zfh-5 NAT, a long spliced and polyadenylated RNA, caused up-regulation of zfh-5
mRNA, in vivo, in the brain of mice [24].

frq-AS transcript:  Another documented discordant regulation is reported for a NAT 
of frequency (frq) transcripts, related to Neurospora crassa circadian clock function.  
This ncRNA transcript is important in synchronizing internal and external time by 
reducing frq RNA transcript as well as FRQ protein [96].

1.6.4.3 Features of concordant vs. discordant regulation

Interestingly, in most cases both types of regulation (concordant & discordant) are 
primarily unidirectional in that the antisense transcript regulates the sense RNA [175].

In most reported cases of concordant regulation, the NATs show a low degree of RNA 
processing, are not spliced or display short introns [176] that are stay in the nucleus
and have a much shorter half-life time than their coding partner [16].  The rapid 
transcription and processing of this NAT class, similar to what suggested for (‘nimble’ 
genes) [176], implies that they are implicated in acute stress responses.  

In contrast, discordant NATs are mainly fully processed RNA transcripts with multiple 
exons and more prominent in the cytoplasm.  High cytoplasmic abundance of this 
group of NATs suggests a long lasting and housekeeping regulatory role through 
cytoplasmic RNA duplex formation (see proposed cytoplasmic mechanisms). 

1.7 NATURAL ANTISENSE TRANSCRIPTS EVOLUTIONARY

CONSERVATION

The presence of NATs is already shown in a spectrum of eukaryotic organisms 
including human [4-8], mouse [12, 111] cow [84], dog [161], frog, zebrafish, chicken 
[9] rat, nematodes [177] Drosophila [9, 178], rice [179], Arabidopsis [180, 181] and 
yeast [182, 183].
This widespread occurrence in various organisms indicates that the overall regulation 
of gene expression through NATs is a very well conserved phenomenon [184, 185].

1.7.1 Motif conservation vs. sequence conservation

The lack of strong nucleotide sequence conservation among individual NATs despite 
their occurrence in different species may indicate that only very short and specific 
parts of the whole NAT sequence or a specific secondary structure is required for 
NAT-mediated gene regulation.  

Unlike protein coding genes where complete nucleotide conservation is required to 
keep the amino-acid sequence functional, ncRNA may only need to maintain certain 
motifs to preserve their function.  Therefore, selective pressure in ncRNA is likely 
only applied to specific motifs rather than to the entire nucleotide sequence.  Indeed, 
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ncRNA transcripts in the HOX gene clusters demonstrate certain significantly 
enriched sequence motifs related to their expression pattern in the body [19].

1.7.2 Conservation and function

It is worth noting that lack of conservation does not necessarily indicate lack of 
function and that evolutionary conservation varies considerably among RNA classes 
[186].  The ENCODE project reported that as many as 50% of the experimentally 
identified functional elements, especially ncRNAs, do not show evidence of 
evolutionary constraint across mammals [187].

1.7.3 Low abundance of ncRNA

Lack of strong evolutionary conservation may indeed related to the low abundance of 
these ncRNA molecules, which make sequence detection more demanding than 
conventional protein-coding genes.  This problem could be subsided, by applying deep 
sequencing approach, where the sequence detection limits will be pushed to very low 
copy number RNA molecules.  

1.7.4 Reported conserved NATs

Nevertheless, many NATs are reported to be well conserved during evolution [9].  Up 
to 40% of trans-NATs [161] and at least 1,000 of cis-NATs from FANTOM-3 are 
well conserved between human and mice [188] and displayed identical expression 
pattern between the two species [189].   In a recent study, evolutionary conservation 
has been reported for 27% of the overlapping genes (NATs), in the sense and antisense 
direction, between human and mouse [190].

1.7.4.1 Primate specific NATs

There are reports of primate-specific NATs, such as BDNF-AS, FMR4, Anti-NOS2A
and BMC transcripts [28, 29, 32, 74, 191, 192].

1.7.4.2 Human specific NATs

Human specific NATs have been also reported expressed from the human accelerated 
region 1 (HAR1).  HAR1 is a genomic region that is conserved among mammals, but 
nevertheless has changed rapidly in the human lineage, and gives rise to multiple 
antisense-overlapping ncRNAs, one of which is specifically expressed in Cajal-
Retzius neurons of the developing neocortex of humans [26].

The non-conserved sequences have been linked to the emergence of human-specific 
brain features [26].  Although evolutionary conservation may not be a reliable 
signature of functional NATs, it can be an effective resource given the various reports 
that correlate conservation with function.  

1.7.5 Role of NATs in organismic and organistic complexity: 

It has previously reported that the percentage of the genome transcribed into ncRNA 
increases with the complexity of the organism [193].  In spite of numerous large 
intergenic spaces in the genome of higher mammals, many genes are still overlapping, 
suggesting that such a genomic arrangement must be functionally beneficial. 

Abundance of antisense transcription varies between multicellular animals; however, a
correlation between antisense transcription and organismic complexity was not 
observed [177].  In fact, NATs are not more enriched in human brain than in mouse 
brain, undermining their role in organismic complexity. 
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However, antisense transcription was more prominent in nervous system compared to 
other tissues, which suggest a role for NATs in organ complexity [177, 194].  Long 
ncRNAs have a highly specific distribution pattern in mouse brain comparing to 
protein coding mRNAs [195].  Utilizing the Allen Brain Atlas [196], Mercer et al.

identified expression of 849 ncRNA, including NATs in adult mouse brain, the 
majority of which were expressed in specific neuroanatomical regions, cell types or 
subcellular compartments [195]. The authors further predicted the expression of 
another 20,000 long ncRNAs in brain, supporting the idea that ncRNA underlie the 
functional complexity of the brain [195].

1.8 THE REGULATORY MECHANISMS BY WHICH NATS ACT ARE 

DIVERSE.

The NATs have been suggested to regulate gene expression by controlling various 
levels of gene expression including chromatin architecture/epigenetic memory, 
transcription, transcript localization, translation and turnover [10-13].  NATs have also 
been shown to be involved in methylation, demethylation [41], parental gene 
imprinting [197], chromosome X inactivation [198], RNA splicing [52, 65, 199],
transport [51], polyadenylation [42, 47, 200], editing and stabilization [201, 202].

1.8.1 Transcriptional interference

The transcriptional collision model (Figure-2) is based on the assumption that during 
cis-NATs transcription, RNA polymerases bind to the promoters of both sense and 
antisense transcripts, and move toward the 3�-end of the genes.  RNA polymerase 
complexes collide in the overlapping region blocking further transcription [203].
Transcription interference has been observed in Drosophila bithorax (bxd) ncRNAs 
[204] and Saccharomyces cervisiae [205].

Figure-2 NATs molecular mechanisms; Transcription interference model in which 
RNA synthesis from one DNA strands would possibly collide with transcription of the 
other strand.  According to this model, transcription only occurs in one direction at any 
given time, and active antisense transcription would suppress sense RNA transcription.  

This function might be true for a subset of mammalian cis-encoded NATs; however,
transcription at the same locus may occur independently, with individual turn for each 
RNA or simply sense and antisense RNA may transcribed from different paternal or 
maternal alleles.  Allelic-specific transcription may be supported by the fact that the X 
chromosome, present in only one active copy in mammals, shows a significantly lower 
degree of antisense transcription [5, 9, 12].
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UBE3A-ATS transcript:  

In the case of ubiquitin ligase E3A (UBE3A), natural antisense transcript, UBE3A-

ATS, is a very long (460-kb), spliced noncoding RNA located on chromosome 15.  
Paternal expression of UBE3A-ATS is responsible for monoallelic (maternal) 
expression of the UBE3A gene in the brain [60, 219, 220].  UBE3A-ATS lies within a 
highly complex locus containing several other imprinted genes including ATP10C and 
UBE3A, both show genomic imprinting [211, 221].

Association studies have revealed an important link to ATP10C in autistic patients 
[222, 223].  Prader-Willi syndrome and Angelman syndrome also result from the 
disturbance of UB3EA loci imprinted gene expression [224, 225].  These human 
disorders emphasize the importance of studying the role of NATs in genomic 
imprinting.   

Figure-3 NATs molecular mechanisms; RNA-DNA interaction model; in which 
newly-formed RNA transcript from Watson’s strands can bind Crick’s strand DNA 
and guide methylation, demethylation, acetylation of DNA or chromatin and thereby 
modulate the chromatin architecture/epigenetic memory.  Similar models have been 
proposed for imprinted genes as well as for mammalian X-chromosome inactivation.  
RNA-DNA binding also can cause alternative initiation or termination of the sense 
mRNA.

1.8.3 Involvement of NATs in DNA and chromatin modifications

NATs have been proposed to cause DNA modification at non-imprinted autosomal 
loci.  Several different NAT-mediated DNA and chromatin modifications have been 
documented, which indicates complexity of this proposed function.  Modifications of 
chromatin structure induced by noncoding RNA are suggested by the observation that 
many histone methyl transferase complexes lack DNA-binding domains but possess 
RNA-binding motifs [226].

Both trimethylated K4 on Histone H3 (a mark of active transcription) and 
trimethylated K27 on histone H3 (a mark of repressed chromatin) were reported to 
associate with ncRNAs, suggesting a scaffold model for the ncRNA in guiding 
chromatin modification [227].

1.8.3.1 Examples of DNA and chromatin modifications

NAT for �-globulin gene:

NAT-mediated DNA methylation is documented from studies of the human 
haemoglobin gene [56] where an antisense RNA for the �-globulin genes can induce 
DNA methylation leading to silencing of �-globulin gene.   
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P15AS transcript: 

Another example is the silencing of the tumor suppressor gene p15 via DNA 
methylation and heterochromatin formation induced by the NAT, p15AS.  Epigenetic 
silencing of p15 was not caused by transcriptional interference and was not Dicer-
dependent, excluding intermediate small RNAs originating from p15AS as mediating 
the silencing effect [21].

P21-AS transcript:  Low-copy promoter directed NAT of tumor suppressor gene, 
p21, mediates epigenetic modification of the sense promoter region [22].  Suppression 
of sense mRNA is directed by antisense-mediated induction of H3K27me3 at the p21 
sense promoter region.  Knockdown of antisense transcript caused relief of p21 
promoter suppression, by loss of the H3K27me3, repressed chromatin mark [22].

HOTAIR transcript: 

Histone modifications are well studied for homeobox (HOX) genes that encode key 
regulators of embryonic development [19].  Specifically, HOX antisense intergenic 
RNA (HOTAIR) is shown to repress the transcription in trans across a 40 kb region of 
the HOXD gene cluster by recruiting a regulatory complex that produces H3K27 
trimethylated histone [19].  HOTAIR is a conserved polyadenylated and spliced long 
noncoding NAT, differentially expressed throughout the body [19].  Spatial expression 
of HOTAIR in various tissues induces epigenetic changes in the HOXD sense promoter 
region and accounts for the difference in HOXD sense gene expression [19].

PR-AT transcript: 

NATs for progesterone receptor, PR-AT1 and PR-AT2, are fully processed, spliced and 
polyadenylated and can mediate agRNA-induced gene activation or suppression.  PR-

AT1 and PR-AT2 bind to the argonaute (Ago) protein and providing a scaffold for 
suppressor or activator proteins to assemble in the progesterone receptor promoter 
region [25].

Another case of RNA-mediated modification of the promoter region is the inhibition 
of dihydrofolate reductase (DHFR) expression by RNA transcript synthesized from an 
upstream promoter, involving DNA-RNA triple-helix formation [228].   Yet another 
example is the control of elongation factor 1� (EF1�) expression through interactions 
between promoter-associated RNA transcript and agRNA directed to the promoter 
region [229].  These reports point out to the fact that there should be more examples of 
RNA-mediated regulation of transcriptional output at the promoter region. 

1.8.4 Involvement of NATs in DNA elimination, recombination and genomic 

rearrangement:

Immunoglobulin production in B-lymphocytes and receptor selection of the T-
lymphocytes depend on transcription from hyper-variable regions.   To generate 
variability, T- and B-lymphocytes need a sophisticated silencing/recombination 
process and hypermutation in the variable regions of immunoglobulin and T cell 
receptor genes.  

Activation-induced cytidine deaminase (AID), which deaminates deoxycytidine to 
deoxyuridine in single-stranded DNA, is required for hypermutation process.  
Antisense transcription in the variable region makes the single-stranded DNA 
accessible for the AID [230, 231].  NATs are frequently observed in these regions 
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[232-235] and may be involved in remodeling of chromatin structure in order to make 
the DNA sequence accessible for recombination.      

1.8.5 Involvement of NATs in X chromosome inactivation

X chromosome inactivation accounts for balancing expression of the genes on the X 
chromosome in female mammals.  Silencing of one of the two copies of the X 
chromosome is a process that ensures that females, with two X chromosomes, do not 
have twice as many X chromosome gene products (dosage compensation).  
Two long non-protein coding genes are transcribed from the X chromosome 
inactivation center (XIC), XIST (X-inactive specific transcript) and TSIX (X (inactive)-
specific transcript, antisense), and control the silencing of the X chromosome.  The 
XIC is necessary and sufficient for X chromosome inactivation.  Expression of the 
XIST, a 17 kb RNA transcript that triggers X inactivation [236], is regulated in cis by 
an antisense gene, TSIX, transcribed along the entire XIST gene, and it is reported to be 
involved in X chromosome inactivation [198, 237].

1.8.5.1 Tsix silences Xist by chromatin modification at promoter region

The Tsix gene encodes a large non-protein coding RNA, transcribed antisense to Xist 

[238].  Tsix is a negative regulator of Xist through a mechanism requiring overlapping 
transcription and blocks inactivation on the future active X chromosome (Xa). 

It has been shown that Tsix silences Xist through modification of the chromatin 
structure in the Xist promoter region.  Premature termination of Tsix transcription, by 
introduction of polyadenylation signal, abolishes the repressive chromatin 
configuration at the Xist promoter on the mutated X [237].

1.8.5.2 Xist is required for X inactivation

The XIST gene is the only gene expressed from the inactive X chromosome (Xi) but 
not from the active X chromosome [236].  X chromosomes that lack the Xist gene 
cannot be inactivated. 

Prior to inactivation, both X chromosomes weakly express Xist RNA. During the 
inactivation process, the future Xa ceases to express Xist, whereas the future Xi 
dramatically increases Xist RNA production. On the future Xi, Xist RNA progressively 
coats the chromosome, spreading out from the XIC.  The silencing of genes along Xi 
occurs soon after coating by Xist RNA.  Therefore, dosage compensation occurs 
through heterochromatin formation along the inactive X-chromosome, which is coated 
by Xist.

1.8.5.3 Tsix is only express from active X chromosome

Like Xist, prior to inactivation, both X chromosomes weakly express Tsix RNA.  At 
the onset of X inactivation, the future Xi ceases to express Tsix RNA (thereby
increasing Xist expression), whereas Xa continues to express Tsix for several days.  

Alterations in Tsix expression lead to distorted inactivation patterns, with deletions of 
the Tsix promoter resulting in preferential silencing of the mutant chromosome [239-
241]  and upregulation of Tsix expression inhibiting X chromosome inactivation [242,
243].

All of these well-documented reports about X chromosome inactivation, genomic 
imprinting and methylation or chromatin modifications of autosomal loci suggest that 
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an ample fraction of NATs are involved in RNA-DNA binding and control 
transcription through RNA-directed epigenetic modifications. 

1.8.6 Alternative initiation, splicing, polyadenylation and termination: 

NATs can form a triplex with DNA strands and cause alternative initiation and 
termination of the sense RNA [199].  Antisense RNA may also bind to the sense RNA 
and mask the splice sites and thereby change the balance between splice variants [10]
(Figure-4).

1.8.6.1 Examples of NATs role in alternative splicing

In the case of N-Myc antisense, N-cym, the NAT forms an RNA duplex with the 
donor site of the first exon of N-Myc gene and thereby modulates the splice variants 
[52].  Thyroid hormone receptor alpha gene (TR�) is another example where antisense 
transcript called RevErbA� influences splicing of TR�1 and TR�2 mRNAs [66, 67, 
244].

Figure-4 NATs molecular mechanisms; Nuclear sense-antisense RNA pairing, right 
after transcription, may inhibit sense RNA processing.  NATs in this scenario can 
cover donor and acceptor splice sites to change the alternative splicing patterns.  
Additionally, by altering polyadenylation of the sense transcript, subsequently 
alterations of 3’UTR of sense transcript, NATs are able to affect stability and transport 
of mRNA.  Yet another consequence of nuclear RNA duplex formation would be A to 
I editing by the ADAR enzyme, which can cause a change in amino acids, nuclear 
retention and/or degradation of hyper-edited transcript by inosine specific nucleases.  

1.8.6.2 Alternative termination generates S-AS pairs

If two oppositely oriented neighboring genes undergo alternative polyadenylation and 
termination, they might form overlapping S-AS pattern.  For instance, alternative 
polyadenylation of two oppositely oriented genes, the programmed cell death-2
(PDCD2) and TATA box binding protein (Tbp), induces formation of a S-AS pair 
[42].  Alternative termination of transcripts originating from the TP53Bp1/ TUBGCP4
and CCNE2/ FLJ20530 loci were also reported to produce S-AS pairs.  These alternate 
transcripts originate from two neighboring convergent genes could potentially affect 
the cognate mRNA levels through S-AS pairing [6].  Therefore, it has been suggested 
that NATs may play a role in controlling the balance of transcripts differing in their 3’
terminus [14].
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1.8.6.3 Overlapping S-AS pairs are not leakage of transcription

Given that at least half of all human genes encode transcripts with alternative 3’ 
termini [245], it is hypothesized that antisense transcription is a “leakage” of RNA 
transcription machinery originating from un-terminated transcription of downstream 
genes.  However, evolutionary studies concerning genomic organization of 
neighboring genes were not in favor of the transcriptional leakage idea [14].
Moreover, unambiguous sequencing of human cell transcriptomes [124] did not 
support this idea.  Indeed, there were poor correlations between the density of 
antisense-originated sequence tags and the density of sequence tags originated from 
the closest downstream genes [124].

1.8.7 Editing, nuclear retention and transport: 

1.8.7.1 Transport

NATs can modulate mRNA nuclear transport by a mechanism, which involves nuclear 
duplex formation between S-AS pre-RNAs (Figure-4).  For instance, the antisense 
RNA for the non-spliced p53 RNA binds to intron-1, preventing transport of p53 RNA 
to the cytoplasm [51].

1.8.7.2 Nuclear retention

Nuclear retention of the antisense RNA is commonly observed for NATs and could 
account for some antisense RNA-mediated regulation [201, 246].  NATs can in turn 
also be the subject of nuclear retention.  Some cellular stressors, such as hypoxia, 
serum starvation and hydrogen peroxide can change the nuclear retention pattern of 
NATs and thereby alter the levels of their sense partners [16].  Nuclear retention of 
NATs is likely caused by direct interactions with nuclear proteins or other nuclear 
RNAs.  Elucidation of these RNA-protein interactions causing nuclear retention is 
likely important for developing therapeutic interventions.   

1.8.7.3 RNA editing 

NATs have also been linked to mRNA editing [63, 247].  Interaction between the 
Drosophila 4f-rnp gene and its cis-NATs, sas-10, is reported to induce A-to-G editing 
in the overlapping region of 4f-rnp mRNA.  Developmentally regulated expression of 
sas-10 overlapping transcript causes hyper-edition and subsequent degradation of the 
sense mRNA [247].

A-to-G RNA editing is induced by double stranded RNA (dsRNA) formation, in turn 
recruiting an enzyme called ADAR (adenosine deaminases that act on RNA), leading 
to deamination of targeted adenosine to inosine [248].  There are few documented 
reports on involvement of NATs in A-to-G RNA editing [50, 68, 247] and the 
overlapping regions of many S-AS pairs contain A-G mismatches [16, 63], suggesting 
possible RNA editing.   However, there is a bioinformatics report arguing that the 
overlapping regions of the S-AS transcripts are not extensively edited, which may not 
exclude the possibility of alternative forms or degrees of editing of S-AS transcripts 
[249].  Nevertheless, editing is sometimes followed by the degradation of sense RNA 
via inosine-specific RNAse activity [201, 250].

1.8.8 Changes in mRNA stability and translation: 

1.8.8.1 RNA stability 

Cytoplasmic S-AS duplex formation can alter sense mRNA stability and translation 
efficiency (Figure-5).  We previously showed that cytoplasmic S-AS duplexes are not 
normally subject to Dicer cleavage in mammalian cells and thus do not generally form 
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a basis for endogenous RNA interference [251].  However, duplex formation is still 
biologically relevant should antisense transcripts modulate the stability of their sense 
partners.  

1.8.8.2 BACE1-AS is an example of alteration in mRNA stability

The overlapping region might affect mRNA stability by reducing mRNA decay 
whereby mRNA undergoes endo/exonucleolytic degradation by various RNAses.  
Indeed, we have recently demonstrated that BACE1-AS increases the stability of 
BACE1 mRNA, through a mechanism involving RNA duplex formation.  We
hypothesize that transient RNA duplex formation may alter the secondary or tertiary 
structure of BACE1 and thereby increase its stability [16].

Figure-5 NATs molecular mechanisms; Cytoplasmic S-AS RNA duplex formation 
can possibly have its own effects on sense mRNA.  Hiding or exposing AU rich 
elements in sense transcript can affect RNA stability.  Changes in the RNA secondary 
structure, upon binding to antisense RNA, can alter translation, sub-cellular 
localization, and accessibility of the RNA degradation machinery.  According to this 
model, NATs can potentially “mask” miRNA-binding sites and release the miRNA-
induced block of translation. 

1.8.8.3 Other examples of alteration in mRNA stability

Antisense transcripts for inducible nitric oxide synthase, iNOS, an important gene in 
inflammatory diseases, increases the stability of iNOS mRNA [73].  Increased stability 
of iNOS mRNA, by iNOS AS, is basis of the observed concordant regulation of these
transcripts.  Enhancement of iNOS mRNA stability is mediated through interactions of 
antisense RNA molecule with the AU-rich element-binding HuR protein.  HuR protein 
in turn may suppress RNA degradation by inhibiting deadenylase or exonuclease 
enzymes [73].

The NAT for basic fibroblast growth factor (bFGF) has been also reported to alter the 
stability of bFGF mRNA [47, 48].

The antisense transcript for hypoxia inducible factor, HIF-1� (aHIF) is yet another 
example of decrease in RNA stability induced by NATs.  The aHIF ncRNA 
destabilizes one isoform of HIF-� mRNA and shifts the balance in favor of the other 
variant [252, 253].  Two isoforms of HIF, HIF-1� and HIF-2�, are both responsive to 
hypoxia but HIF-1� has a more ubiquitous expression pattern than HIF-2�.  Prolonged 
hypoxia cause induction of antisense transcript, aHIF, which in turn binds to sense 
mRNA, leading to reduction of HIF-1� transcript.  Importantly, destabilization takes 
place by exposing the AU rich elements (ARE) in HIF-1� mRNA following antisense 
binding to its 3’UTR [202, 252, 254].

An AU rich element (ARE) is a region in RNA transcript with frequent “A” and “U” 
nucleotides, such as “AUUUA”, that targets the RNA for degradation.  Alterations in 
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HIF-1� secondary structure expose the ARE and make this RNA prone for 
degradation.  Stabilization of mRNA by an opposite mechanism, covering the AU rich 
element, has been suggested for antisense transcript of the Bcl-2/IgH hybrid gene [64].

1.8.8.4 Translation block

Translational inhibition is yet another proposed function for some NATs as reported in 
the case of B cell maturation antigen transcript (BCMA), where over-expression of the 
antisense transcript has been reported to reduce sense protein but not sense mRNA 
level [62, 63].  BCMA, belong to the tumor necrosis factor receptor (TNF-R) family, 
and it has been shown to be controlled at the translational level by an antisense RNA 
transcript.  BCMA antisense transcript is a fully processed RNA with an ORF; 
however, the discordant regulation of the sense protein takes place independent of 
antisense coding potentials [63].

Another well-documented case of translational inhibition is the NAT for PU.1 mRNA.  
Transcription factor PU.1 is an important regulator of hematopoiesis and suppressor of 
leukemia transformation.  PU.1 mRNA translation is inhibited by a noncoding NAT 
[18].   Both sense and antisense transcripts of the PU.1 are co-regulated by an 
upstream regulatory element (URE).  PU.1 antisense RNA is a polyadenylated 
transcript with a lower concentration but a longer half-life time than the sense PU.1 
transcript and is equally distributed between cytoplasm and nucleus [18].  Processed 
antisense RNA in the cytoplasm may bind to the sense transcript and stall translation 
between initiation and elongation steps [18].

1.8.9 Cytoplasmic RNA duplex formation and “masking” miRNA binding

sites:

We propose and do have some preliminary data supporting the idea that NATs can 
conceivably cover miRNA binding sites upon cytosolic RNA duplex formation 
(Figure-5).  In contrast with plant miRNA, most animal miRNAs are predicted to have 
their binding site in the 3’ UTR of target mRNA [255].  Although most web tools for 
miRNA binding sites are designed to screen 3’ UTR regions of transcripts, there is no 
evidence that miRNA does not bind to the coding region.  Binding of miRNA to the 
coding region of the mRNA, or even 5’ UTR, has been shown in plants and recently in 
animals [256-258].  We propose that one of the regulatory functions of NATs could 
occur by an ability of the antisense transcript to “mask” the miRNA binding site on the 
sense mRNA.

1.8.10 Formation of endogenous siRNA from double stranded RNA

1.8.10.1 RNA interference

RNA interference (RNAi) is a cellular surveillance mechanism that responds to 
exogenous double stranded RNA (dsRNA) molecules by destroying mRNAs 
containing sequences homologous to the dsRNA [259].  Duplex RNAs first cleaved by 
an RNase III enzyme, Dicer, to generate short interfering RNAs (siRNAs).   SiRNAs 
include two strands, guide and passenger strands, and it become incorporated into a 
multiprotein RNA-induced silencing complex (RISC) that unwinds the helical 
structure of the siRNA duplex.  The guide strand is retained in RISC, which then 
guides the entire complex to a target mRNA.  Based on the complementarity between 
the target mRNA sequence and the guide strand sequence, RISC initiates the 
endonucleolytic cleavage or translational arrest of the target mRNA [260].
Processing of short RNA (>200 nt) from long and largely un-annotated nuclear RNAs 
were suggested from high resolution tilling array studies of human cell lines [126].
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Gene regulation by endogenous siRNAs has been frequently observed in organisms 
possessing RNA-dependent RNA polymerase (RdRP) [261-263].

1.8.10.2 Endogenous siRNA

The presence of endogenous processing machinery for exogenous siRNA, which is 
mediated sequence-specific knockdown of targeted genes, implies that endogenous 
siRNA should exist.  Endogenous siRNAs derived from a NAT were observed in 
Arabidopsis, where they regulate salt tolerance.  Two types of siRNAs were shown to 
be generated from the overlapping region of Pyrroline-5-carboxylate dehydrogenase 
(P5CDH), a stress-related gene, and SRO5, a gene of unknown function[129].  Plant 
endogenous siRNAs are documented, derived from sense-antisense RNA duplex 
formation of several genes.  For instance, Sho gene NAT transcript [264],
SRLK/AtRAP NAT [265], and 64% of protein-coding cis-NAT in Arabidopsis are 
reported to generate endogenous siRNAs [266].

1.8.10.3 Mammalian endogenous siRNA

In mammals, where no RNA-dependent RNA polymerase (RdRP) activity has yet 
been found, biogenesis and function of endogenous siRNAs remain largely unknown 
[132].  Endogenous siRNAs derived from transposable elements and pseudogenes 
have been identified in mouse oocytes and cultured human cells [136, 137, 166-168].
Endogenous siRNAs originating from mRNAs and their corresponding NATs were 
recently identified in mouse oocytes [167] and human HepG2, liver carcinoma cells 
[168].

Both 25-27-nucleotide Piwi-interacting RNAs (piRNAs, Dicer independent) [147,
267] and approximately 21-nucleotide siRNAs originating from messenger mRNAs
were found in mouse oocytes [167].  Transposable elements, inverted repeat 
structures, bidirectional transcription of sense-antisense genes (cis-NATs) and 
antisense transcripts from remote loci (trans-NATs) have been recognized as sources 
of dsRNAs and subsequent, Dicer-dependent, endogenous siRNA production [167,
168].

1.8.10.4 Intra-molecular vs. intermolecular dsRNA formation

Inverted repeats with an intra-molecular dsRNA structure are more likely to act as 
precursors of endogenous siRNAs as they can form more stable dsRNA structures 
required for their cleavage by Dicer.  However, endo-siRNA has also been reported 
from intermolecular S-AS double stranded RNA formation.  For instance, Kinesin 
family member 4A (KIF4A) and PDZ domain containing 11 (Pdzd11) are two genes 
located on opposite strands of X chromosome, where the two genes are orientated in a 
head-to-head manner.  The overlapping transcripts in the Pdzd11/Kif4A locus 
generating endogenous siRNA derived from cis-NAT.  Importantly, almost all of the 
endo-siRNAs in that locus (117 unique sequences) were derived from the overlapping 
region of the sense and antisense transcript, suggesting that these endo-siRNAs were 
produced from an intermolecular dsRNA formed between the oppositely oriented 
transcripts.  

In Dicer mutants, levels of the siRNAs derived from the Pdzd11/Kif4 locus were 
decreased and both Pdzd11 and Kif4 mRNA levels were increased, suggesting that 
Pdzd11 and Kif4 expression is regulated by an endogenous siRNA pathway [167].
Endo-siRNAs may regulate both sense and antisense transcript levels. There is further 
evidence indicating that endogenous RNAi is also used as a defense mechanism to 
silence selfish genetic elements [168, 268].



25

1.8.10.5 Endo-siRNA is not a prime consequence of S-AS duplex RNA formation 

Although NATs are abundant in mammalian cells, high throughput small RNA 
sequencing did not yield many endo-siRNAs mapping to NATs suggesting that RNAi 
is not the predominant mode of action of NATs.  

Co-expression of NATs with their sense counterpart [251] as well as frequently 
observed concordant regulation of sense and antisense RNAs in many tissues and cell 
lines argue against endogenous siRNA being a prime mechanism of NAT-mediated 
regulation of gene expression.  In addition, most co-expressed cis-NATs in Drosophila 
S2 cells did not generate endo-siRNAs [269, 270].

It is unclear how the majority of co-expressed NATs escape the endo-siRNA 
formation pathway.  It is also not clear if there is an active selection for entry into the 
RNAi pathway and endo-siRNA formation.  

Sub-cellular compartmentalization and coating of transcripts by proteins might act as 
potential barriers for the formation of dsRNA and subsequent endogenous siRNA.
Nevertheless, biogenesis of endogenous siRNAs from some NATs has been 
documented.  The reports mentioned above have revealed a biological role for 
endogenous siRNAs in mammals and show that organisms lacking RdRP activity can 
produce functional endogenous siRNAs from naturally occurring dsRNAs [166-168].

1.8.10.6 Endogenous siRNA production in oocytes

The production of dsRNAs by interactions between sense and antisense transcripts has 
been most frequently reported in oocytes suggesting that dsRNA formation requires a 
unique environment found only in oocytes.  Oocytes substantially lack a protein kinase 
R response (a dsRNA-induced general translational repression pathway).  

1.9 CLINICAL SIGNIFICANCE

Several important physiological roles have been proposed for NATs, such as balancing 
gene expression during spermatogenesis [189] cardiac gene regulation [271], cardiac 
[94, 272] and skeletal [93] myosin gene organization, and regulation of circadian clock 
function [96].

NATs involvement in various disorders has also been reported [273, 274].  Significant 
association with complex human disorders has been demonstrated for a number of 
NATs  (Table-4).

1.9.1 NATs associated with cancers 

1.9.1.1 NATs for tumor suppressor genes 

Tumor suppressor genes are frequently suppressed in cancer.  An elegant study by Yu 
et al. has documented the presence of NATs for many tumor suppressor genes and 
they have identified NATs for each one of 21 well-known tumor suppressor genes 
[21].

Specifically, p15, a tumor suppressor gene involved in a wide variety of tumors 
including leukemia, melanoma, glioma, lung cancers and bladder carcinomas, is 
epigenetically controlled by its NAT, p15AS.  The expression of p15 S-AS transcripts 
has an inverse correlation (discordant regulation) in leukemic patients where 70% of 
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leukemic patients showed increased expression of p15AS and reduced expression of 
p15 mRNA [21].

Another tumor suppressor gene, p21, is also shown to negatively regulated by an 
antisense RNA molecule, p21-AS [22].  Imbalance expression of antisense p21, p21-
AS, can potentially suppress p21 expression, leading to tumor growth.   

Table 4: Human disease related natural antisense transcripts 

Sense-Antisense pairs Human Disease Ref

BACE1  & BACE1-AS Alzheimer’s Disease [275]

FMR1, FMR4 & 

ASFMR1

Fragile X mental retardation, Fragile X-associated tremor and 

ataxia syndrome (FXTAS)

[31, 32]

PINK1 & naPINK1 Parkinson disease, Mitochondrial disorders [30]

C6orf37  & C6orf37OS Diffuse panbronchiolitis [276]

FGF-2  & GFG Endometriosis, Carcinogenic progression [277-

279]

HIF-1� & aHIF Poor prognosis marker in breast and renal cancer [54]

Survivin & EPR-1 Colon cancer [55]

WT1 and WT1-AS Wilms’ tumor [27, 280]

�-globulin & LUC7L �- Thalassemia [56]

KvLQT1 Beckwith-Wiedemann syndrome [59]

SNURF-SNRPN & 

UBE3A

Prader-Willi and Angelman syndrom [60]

Bcl-2 & IgH Follicular B-cell lymphoma [64]

Zeb2 & Zeb2 NAT Epithelial- mesenchymal transition 

Colon cancer, Hirschsprung’s disease

[37, 38]

RMRP Cartilage-hair hypoplasia [281]

1.9.1.2 NATs reported in various cancers:

aHIF transcript:

The antisense transcript for hypoxia inducible factor, aHIF, has been reported as a 
marker of poor prognosis in human breast cancer and shown to be inversely related to 
disease free survival of the patient as well as proliferation of cancerous cells [253].

FGF-2/GFG transcripts:  

FGF-2/GFG is another well-characterized S-AS pair, suggested to be linked to tumor 
progression [282]. The sense protein fibroblast growth factor2, FGF-2, induces growth 
and proliferation.  The FGF-2 antisense transcript (GFG) regulates the levels of the
FGF-2 sense mRNA discordantly, i.e. sense and antisense transcripts are inversely 
expressed in many tissues and cell types.  
Reduced levels of the NAT increase FGF-2 mRNA and promotes carcinogenic 
progression [283, 284] or implantation of ectopic tissues such as in endometriosis 
[277].  Reduction of FGF-AS is a negative prognostic factor for esophageal 
adenocarcinoma [278].
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FGF-AS (GFG) also inhibits cell cycle-dependent nuclear accumulation of FGF-2, and 
this is associated with a marked delay in S-phase progression leading to tumor 
suppression. This may play a significant functional role in the regulation of FGF-2
dependent cell proliferation in C6 glioma cells [279] as well as lymphoid and myeloid 
tumor cells [285].

EPR-1/Survivin transcripts and other examples 

The effector cell protease receptor-1 (EPR-1) cDNA, an antisense transcript for 
Surviving gene, has been shown in vitro to reduce tumor growth potential and enhance 
the response to anti-cancer drugs [55].  The NAT for the Bcl-2/IgH hybrid gene has 
been proposed to underlie follicular B-cell leukemia [64].  Antisense transcript for zinc 
finger homeobox 1b, Zeb2-AS, has been linked to colon cancer and Hirschsprung’s 
disease.  Specifically, antisense RNA, Zeb2-AS, induces Zeb2 protein up-regulation 
and subsequently induces epithelial-mesenchymal transition [37].

1.9.2 NAT involvement in certain forms of anemia

In one inherited forms of anemia, �-thalassemia, a NAT has been reported to cause 
silencing of the �-globulin gene via methylation [56].  Tufarelli et al. found that a 
deletion in the globin gene locus of thalassemic patients relocates the constitutively 
active LUC7L gene 300 nucleotides downstream of alpha-2 globin (HBA2) gene.  
HBA2 encode hemoglobin alpha chain and antisense RNA causing promoter 
methylation and transcriptional silencing of HBA2 gene.  Reduction in hemoglobin 
alpha chain, which is major constitute of adult hemoglobin, causes anemia.  

A mouse model for genomic rearrangement (relocation of LUC7L) recapitulated the 
�-thalassemia disease phenotype and confirmed the role of cis-NAT in early 
developmental CpG island methylation [56].

1.9.3 NAT-related disorders linked to imprinting

Alterations in NAT expression patterns are commonly linked to imprinted gene 
disorders.  For example, in both Prader-Willi and Angelman syndromes the SNURF-
SNRPN sense and UBE3A antisense RNA are implicated in the disease 
pathophysiology [208].     Additionally, antisense RNA, Kcnq1ot1, is shown to be 
involved in sporadic cases of Beckwith-Wiedemann syndrome (BWS) patients [59,
216].

1.9.4 Involvement of NATs in neurological disorders

1.9.4.1 FMR4 transcript:

Fragile X syndrome, the most common cause of mental retardation, is caused by the 
expansion of CGG trinucleotide repeats (>200 repeats) in the 5� UTR of the fragile X 
mental retardation 1 (FMR1) gene [286].  On the other hand, individuals with 55–200
repeats are premutation carriers and generally express higher levels of FMR1 mRNA 
than normal individuals with less than 55 repeats and may develop a clinical condition 
termed fragile X tremor and ataxia syndrome (FXTAS) [287].

We reported recently the discovery of FMR4, a long ncRNA (2.4 kb), resides 
upstream of the FMR1 gene, which may shares a bidirectional promoter with the 
FMR1 gene [32].  The antisense transcript for FMR1 (ASFMR1) has also been 
reported recently, which overlaps the CGG repeat region of FMR1 and is transcribed 
in the opposite direction [31].  The CGG expansion appears to affect transcription in 
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both directions as FMR4 and ASFMR1 similar to FMR1, are silenced in fragile X 
patients and up-regulated in permutation carriers [31, 32].

The similar expression pattern of FMR4, ASFMR1 and FMR1, suggests that FMR4

and ASFMR1 may also contribute to aspects of the clinical presentation of fragile X 
syndrome and FXTAS arguing that these disorders should not continue to be 
considered single gene disorders.

1.9.4.2 naPINK1 transcript: 

Mutations in the PTEN induced putative kinase 1 (PINK1) are implicated in early-
onset Parkinson's disease. PINK1 is expressed abundantly in mitochondria-dense
tissues, such as skeletal muscle.  We characterized a novel NAT at the PINK1 locus 
(naPINK1) [30].  The naPINK1 transcript induces alteration in PINK1 splice variant in 
neuronal cell lines.  

Moreover, the PINK1 and naPINK1 transcripts display discordant regulation during in 

vivo exercise-induced mitochondrial biogenesis, suggesting that the noncoding 
naPINK1 might play a role in Parkinson's disease.   

1.9.4.3 BACE1-AS transcript:

We recently identified BACE1-AS as a noncoding NAT for �-secretase-1 (BACE1), a 
crucial enzyme in ß-amyloid biosynthesis related to Alzheimer’s disease 
pathophysiology [16].  We showed that BACE1-AS up-regulates BACE1 mRNA and 
protein in vitro and in vivo.  Upon exposure to various cell stressors including 
amyloid-� 1–42 (A� 1–42), expression of BACE1-AS becomes elevated, increasing 
BACE1 mRNA stability and generating additional A� 1–42 through a post-
transcriptional feed-forward mechanism. We showed that BACE1-AS concentrations 
are significantly elevated in Alzheimer’s disease patients [16].

1.10 ALZHEIMER’S DISEASE

1.10.1 Alzheimer’s disease with an enormous unmet medical need

Alzheimer’s disease is a devastating age-related neurodegenerative disorder 
characterized by progressive impairment of cognition and short-term memory.   It is 
the most common form of dementia affecting 5% of adults over 65 years.  More than 
4.5 million people in the United States alone currently suffer from Alzheimer’s disease 
[288].  Worldwide, approximately 18 million people suffer from Alzheimer’s disease, 
with this number projected to increase to approximately 34 million people by the year 
2025 [288].  Direct and indirect annual costs of caring for individuals with 
Alzheimer’s disease are at least $100 billion in the US alone [289].  In view of our 
ageing society the number of patients, as well as the economical and social impact, is 
expected to grow dramatically in the future. 

Currently available medications appear to be able to produce moderate symptomatic 
benefits but not to stop disease progression.  Indeed, most therapeutic entities for the 
treatment of Alzheimer’s disease are designed to alleviate Alzheimer’s disease-related 
symptomatology, and not block the mechanisms that underlie Alzheimer’s disease 
pathology.  Until very recently the majority of compounds considered candidate drugs 
for treatment of Alzheimer’s disease were designed to modulate the synthesis, release, 
or degradation of various brain neurotransmitters, for review see [290]. Thus, an 
improved strategy for developing novel agents for treatment of Alzheimer’s disease 
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should include therapeutic targets located directly within cellular pathways involved in 
the neuronal dysfunction and death that drives Alzheimer’s disease pathology, 
potentially slowing or halting the progression of Alzheimer’s disease.  

1.10.2 Amyloid hypothesis related to Alzheimer’s disease

The sequential cleavage of the Amyloid precursor protein (APP) by the �-site cleaving 
enzyme (BACE1) followed by �-secretase initiates the “Amyloid Cascade” which is 
central to Alzheimer’s disease pathophysiology [291-293].

Controversy still exists in the link between amyloid pathway and Alzheimer’s disease 
and in the precedence of events leading to Alzheimer’s disease; however, deposition 
of myloid-� 1-42 (A� 1-42) into senile plaques is a proven feature of Alzheimer’s 
disease neuropathology.  Moreover, a recent study has reported that Amyloid-beta 
protein dimers isolated directly from human Alzheimer's brains impair synaptic 
plasticity and memory in the rat brain [294].  BACE1 is essential for A� 1-42
biosynthesis [295, 296], which is the main component of senile plaques found in 
Alzheimer’s disease brain. 

Oligomers of A� 1-42 produced by BACE1 influence virtually all the other observed 
components of Alzheimer’s disease pathophysiology, such as mitochondrial function 
[297, 298], tau hyperphosphorylation [299], NMDAR endocytosis, excessive calcium 
influx [300, 301], synaptic dysfunction [302], neuronal stress [303], and apoptosis 
[304].  Numerous studies have documented up-regulation of BACE1 concentrations in 
the brain of Alzheimer’s disease patients compared with normal controls [305-310].
Furthermore, the amyloid pathology usually observed in transgenic mice 
overexpressing mutant human APP which is completely ameliorated when these mice 
are crossed with BACE1 knockout mice [311].

1.10.2.1 Alteration in APP cleavage products in late-onset Alzheimer’s disease

Alterations in the processing and clearance of proteolytic products of the APP, such as 
C-terminal fragments and A� peptides, likely play a key role in the pathogenesis of 
late-onset Alzheimer’s disease [312-314].  Indeed, recent studies suggest that A�
causes neuritic dystrophy and interferes with mechanisms of synaptic plasticity such 
as long-term potentiation (LTP) [315].

Transgenic mouse models of Alzheimer’s disease have been generated that express 
familial Alzheimer’s disease mutations in the APP gene, such as the Tg19959 mice 
that overexpress a doubly mutated human APP [316]. Such Alzheimer’s disease 
mouse models recapitulate many aspects of human Alzheimer’s disease pathology, 
including A� plaques in hippocampal and cortical regions [317-319].

The precise relationship between A� peptides and the emergence of Alzheimer’s 
disease-related cognitive deficits remains unclear.  Nevertheless, A�-associated 
memory deficits in mice have been observed in a range of hippocampus-dependent 
place learning paradigms, including the Morris water maze, Y-maze, radial arm maze 
and Barnes maze tasks [311, 320-327]. Based on these and similar observations, it is 
likely that A� production is closely associated with the physiological and cognitive 
impairment so characteristic of Alzheimer’s disease [314, 328, 329].
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1.10.3 APP cleavageand generation of Aß peptides

APP cleavage and its enzymatic cleavage byproducts are depicted in figure-6.  In this 
model APP C-terminal fragments and Aß peptides are generated by sequential 
cleavage of the transmembrane APP at the � and � locations.  The initial cleavage, 
which generates C-terminal APP fragments, is accomplished by BACE1 [330-332].
Subsequently, the C-terminal APP is further cleaved by a second protease known as �-
secretase [333]. Thus, �- and �-secretase activities are required for the production of 
the Aß peptides.  

Figure 6: (A) One structural model of BACE1; (B) schematic model for APP 
cleavage and its byproduct of enzymatic cleavage; (C) amyloid plaques in 
Alzheimer’s disease brain. 

1.10.4 BACE1 expression is tightly regulated

In addition to its role in Alzheimer’s disease pathology, BACE1 performs several 
important functions in mammalian brain since the ablation of BACE1, results in a 
range of deficits, including memory loss [334], emotional disturbances [290],
myelination defects in peripheral nerves [335, 336], and loss of synaptic plasticity 
[290].  The subtle but critical boundaries between BACE1 physiology and pathology 
indicate that BACE1 expression and activity levels must be tightly regulated, both 
temporally and spatially.  Such a well articulated regulation machinery would allow 
the enzyme to perform its important physiological functions while avoiding serious 
consequences of deregulation such as A� 1-42 accumulation.  

1.10.5 Unexpected complexity in the BACE1 gene locus

We have recently identified a noncoding cis-antisense transcript to BACE1. We have 
termed this transcript, BACE1-AS, and shown that it is highly conserved.  We have 
also conducted a bioinformatics search for miRNA binding sites in BACE1 mRNA 
and predicted the presence of a binding site for miR-485-5p in the sixth exon of 
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BACE1 mRNA, i.e. exactly on the overlapping regions of the BACE1-AS and 
BACE1 transcripts.  We postulated that at least part of regulatory function of BACE1-
AS may be “masking” of the miR-485-5p binding site and thereby blocking the 
inhibitory effects of this miRNA on BACE-1 translation.  

1.10.6 BACE1-AS has potentials as an Alzheimer’s disease biomarkers

The increasing prevalence of Alzheimer’s disease and the devastating consequences of 
late-life dementia motivate the drive to develop diagnostic biomarkers to reliably 
identify the pathology associated with this disorder prior to the start of manifestations.  

Therapeutic approaches and novel medications targeting the presumed underlying 
pathogenic mechanisms need to be tested on clearly diagnosed Alzheimer’s disease
patients as early as possible.  Accessible, sensitive, and specific biomarkers need to be 
also employed to monitor the response to treatment.  

Of great value as diagnostic tools, ideal biomarkers for the disease should be directed 
toward basic neuropathological pathways and detect a fundamental characteristic 
neuropathology, instead of secondary markers prone to inform non-specific changes.  

Some methods show promise as diagnostic tools for the disease, including plasma 
signaling proteins [337] and CSF protein panel [338].  Although, neuroimaging, CT 
and MRI, plays an important part in the diagnosis of Alzheimer’s disease to exclude 
alternative causes of dementia, such as brain tumor and subdural haematoma, but the 
overlap with normal ageing and other dementias is too large to have any diagnostic 
value.  However, at present, none of these are recommended as routine diagnosis 
methods for Alzheimer’s disease.  Blood levels of A� 1-42 were found to be 
significantly elevated in the family of late onset Alzheimer’s disease patients, 
compared to non-blood relatives, such as spouses [339].

Peripheral blood cells have already shown promising data as reporters of neural 
pathology.  Gene expression profiles from lymphoblastoid cell lines of autistic twins 
have yielded a series of informative biomarker candidates [340].  Gene expression 
studies of patient samples with bipolar disorder have yielded similar results [341, 342].

Considering marked up-regulation of BACE1-AS in Alzheimer’s disease patients, 
which is significantly higher than BACE1 changes, we postulated that BACE1-AS
might also be useful as a readily accessible peripheral biomarker candidate, 
presumably ultimately as part of a signature of biomarkers.  The stress response 
features of BACE1-AS further enhance its candidacy as a peripheral biomarker of the 
early stages of CNS pathology.  We have tested BACE1-AS ratio to �- Actin as a 
molecular diagnostic marker of Alzheimer’s disease.

1.10.6.1 BACE1-AS level is high in subjects with Alzheimer’s disease

In fact, BACE1-AS is markedly elevated in the brain of Alzheimer’s disease patients 
in each of two independent sets of Alzheimer’s disease brain samples tested so far.  

A peripheral blood mononuclear cell (PBMC) is a blood cell having a round nucleus, 
such as a lymphocyte or a monocyte.  BACE1-AS is also readily detectable in PBMC 
which make it suitable for diagnostic purposes.  BACE-AS alteration in PBMC of 
subjects with Alzheimer’s disease and elderly patients with mild cognetive impairment 
(MCI might be proven beneficial as a diagnostic biomarker.  
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1.11 CONCLUSION 

In the light of this present thesis, we know that natural antisense transcripts are 
functional RNA molecules that control sense mRNA expression at different levels.  

Most NAT are noncoding RNA, NATs help to mediate sense gene expression in 
response to a variety of environmental stimuli and to keep tight regulation of sense 
protein expression (allowing proteins to perform their physiological functions while 
avoiding the serious consequences of over or under expression).  

We present several examples of functional NATs to show multilayer involvement of 
these molecules in regulation of gene expression.  

Although protein synthesis was the first assigned function for RNA molecules, it is 
become increasingly evident that the more pervasive function of RNA molecules is a 
regulatory one.  This hypothesis is considerably supported with the content of this 
current thesis in which we summarize proposed regulatory functions of naturally 
occurring antisense transcripts.  Considering other reported functional long ncRNA 
(macroRNA), and small regulatory RNA (such as miRNA, piRNA, rasiRNA) and 
their enormous physiological impact it is feasible to claim that the more frequent 
function of RNA molecules is a regulatory role, which is far greater than their assigned 
functions in protein synthesis as messenger, transfer and ribosomal RNA 
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2 PRESENT INVESTIGATION

2.1 SCIENTIFIC BACKGROUND

I received my medical doctorate (M.D.) degree in 1994 from Shiraz University of 
Medical Sciences, Iran.  Initially, I entered the public health sector and worked on 
practical public health issues like preventing HIV transmission among prisoners.  I 
was successful in improving the living conditions of my target groups, establishing 
higher health standards.  Those dedicated efforts did not satisfy my eagerness to study 
Neuroscience, so I moved to the Karolinska Institutet in Sweden to join the laboratory 
of Professor Claes Wahlestedt, where I have been deeply involved in projects related 
to natural antisense transcripts, with a particular focus on their involvement in 
neurological disorders.  I have been able to show a critical role for these long non-
protein-coding RNA transcripts in regulation of major neurological disorders, like 
Parkinson’s disease, Fragile-X mental retardation and Alzheimer’s disease.

2.2 FANTOM PROJECT REVEALED HIGH ABUNDANCE OF NATS

I made contributions to the FANTOM-3 project (Functional annotation of mammalian 
transcriptomes), which was the largest transcriptome profiling effort in the world and 
resulted in the discovery of NATs for more than 70 % of transcription units (Paper V). 

This work was published in “Science Magazine” by this title:  “Antisense transcription 
in the mammalian transcriptome” Science 309:1564-6, 2005.

We showed that antisense transcription is a common feature for many transcriptional 
units in mammalian transcriptome.  We also presented experimental evidence that 
perturbation of an antisense RNA can alter the expression of sense messenger RNAs, 
suggesting that antisense transcription contributes to control of transcriptional outputs 
in mammals.

Antisense transcripts were previously suggested for up to 20% of transcripts.  The 
FANTOM-3 consortium conducted a large-scale cDNA sequencing approach, which 
revealed antisense transcription for up to 72% of transcriptional units.  Interestingly, 
imprinted loci showed much higher rate of antisense transcription than previous 
reports.   

Table-5   Total number of sense-antisense (S-AS) overlapping transcriptional units 
(TU) 

Total TU S-AS overlapping Percent of total

Coding TU 20,714 18,021 87%

Noncoding TU 22,839 13,401 59%

Total 43,553 31,422 72%
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In this study we clustered transcripts into the transcriptional units (TUs), which we 
defined as all the EST or mRNA in one direction, with at least one nucleotide exonic 
overlap.  We found more than 50,000 overlapping pairs, grouped into about 30,000 
non-redundant different overlapping regions in close to 10,000 TU pairs.  We showed 
that 4,520 TU pairs contain full-length transcripts, which forms exon-overlapping 
sense-antisense pair.  There were additional 4129 TU pairs, in the sense-antisense 
direction, without any apparent exon overlapping regions.  Although conservative, the 
combined NAT prediction were 1.5- to 2-fold greater than that from previous studies 
of mouse [12] and human [6].  Our finding is to this time considered the largest 
reported collection of NATs (Table-5).

Head-to-head NATs (see NAT classification), were slightly more frequent than 3’UTR 
overlapping partners, which suggest an important role for NATs in control of 
transcriptional output (Table-6).

Table-6:  Percent of sense-antisense overlapping transcripts based on coding properties 
and transcript orientation

Transcription Unit Head-to-head (5’) Tail-to-tail (3’) Full

Coding-coding 37% 45% 19%

Coding-noncoding 36% 27% 37%

Noncoding-noncoding 29% 34% 36%

Total 36% 34% 30%

Interestingly, overlapping sense-antisense pairs, in our study, were not evenly 
distributed.  Chromosome X showed the fewest bidirectional pairs, which could be 
related to monallelic inactivation. Another finding was the evidence for antisense 
transcription in more than 80% of imprinted loci, emphasizing the proposed role for
NATs in genomic imprinting.  

Expression profiling reveals frequent concordant regulation of sense/antisense pairs. 
Among the functionally validated NATs, we found both types of discordant and 
concordant regulation, consistent with the other published works.  For instance, two 
protein coding S-AS transcripts, Ddx39 and CD97, showed a reciprocal regulation 
pattern.  We observed that siRNA-mediated knockdown of Ddx39 transcript cause up-
regulation of CD97, which is a G protein-coupled receptor.  

Global transcriptome analysis of the mouse by FANTOM-3 revealed that antisense 
transcription is widespread in the mammalian genome.  This study provides evidence 
that a large proportion of the genome can produce transcripts from both strands of a 
gene locus, and those NATs commonly link neighboring genes in complex loci into 
chains of linked transcriptional units. 
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2.3 MECHANISTIC ASPECTS OF NATS

Next, I showed that NAT-mediated regulation of gene expression predominantly 
occurs through a pathway independent of Dicer associated RNAi, (Paper IV).  This 
work was published in “Genome Biology” by this title:  “RNA interference is not 
involved in natural antisense mediated regulation of gene expression in mammals” 
Genome Biology 7(5):R38, 2006 [251].

We investigated functional properties of natural antisense transcripts (NATs) to 
explore the mechanism of reciprocal S-AS regulation, and to investigate the possible 
involvement of endogenous RNA interference (RNAi) in S-AS interactions.  We 
selected two examples from each coding and noncoding NATs to study effects of 
antisense transcript modulation on corresponding gene expression.  Particularly, we 
investigated the possible involvement of endogenous RNA interference (RNAi) in S-
AS interactions.

The simplistic assumption, at the time, was that all NATs should produce endo-siRNA 
and therefore should down regulate the corresponding sense mRNA levels.  We 
selected two functional NATs and investigated the presence of endogenous siRNA in 
cells originating from the overlapping region of S-AS transcripts.  We found that at 
least in our cellular model and for our selected candidates, RNA interference is not 
involved in antisense-mediated regulation of the sense mRNA.  This finding argued
against the simplistic assumption of a negative regulatory role of antisense
transcription.  In the light of this study, researchers in antisense field start to realize 
that NATs can be functional even if they do not cause down-regulation of 
corresponding sense mRNA partner.   

We examined the mechanism of S-AS RNA base pairing, using thymidylate synthase 
and hypoxia inducible factor-1� as primary examples of endogenous genes with 
coding and noncoding NAT partners, respectively.  We provided direct evidence 
against activation of RNA interference (RNAi) and generation of endogenous siRNA.
Our data demonstrated that NAT regulation of gene expression occurs through a 
pathway independent of Dicer associated RNAi.

Endogenous siRNA originating from overlapping region of NATs have recently 

reported for a few NATs.  Endo-siRNA or piRNA found for few genes (17 NATs 

[134]), which is a very small fraction of NATs in any given cell.  Endo-siRNA, in 

many cases, originated from intra-molecular hairpin formation instead of 

intermolecular S-AS duplex formation.  However, Watanabe et al. shown that 

Pdzd11/Kif4 loci can generate endo-siRNA from intermolecular S-AS duplex RNA.

Majority of reported cases of endo-siRNA are originated from pseudogenes, 

transposable elements or repeat regions [133, 135-137].  These regions are shown to 

have different characteristics than the rest of genome and some reports state that endo-

siRNAs, in these cases, used as a defense mechanism to silence selfish genetic 

elements [135, 343].

It is not clear that how the majority of co-expressed NATs escape the endo-siRNA 

formation pathway.  Most co-expressed NATs in Drosophila did not generate endo-
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siRNAs [269, 270]. In our study, we tested endogenous expression of S-AS

transcripts and found that both transcrits are co-exist in a single cell, but do not 

generate endo-siRNA.  We have also tested overexpression of both S-AS transcripts 

and found that, even when we have a very high concentrations of both S-AS

transcripts, there was not any detectable endogenous siRNA’s corresponding to the 

overlapping region.  Our finding showed that production of endo-siNRA is not a prime 

route of NAT-mediated regulatory function.    

Furthermore, frequently observed positive regulation of sense and antisense RNAs in 

many tissues and cell lines are against endogenous siRNA as a prime mechanism of 

NATs mediated regulation of gene expression. Examples of positive regulations, 

which are explained in the introduction section, include but not limited to aHIF1 [174],

asEPO-R [33] BACE1-AS [275] and Zeb2-AS [37].  Therefore, endo-siRNA 

formation is a valid regulatory mechanism for NAT-mediated regulation of the sense 

transcripts, but it is not definitely the predominant mechanism.     

2.4 NATURAL ANTISENSE TRANSCRIPT FOR PINK1

I selected several interesting NATs identified by the FANTOM-3 consortium for 
detailed studies of their role in neurological disorders.  In these studies I have 
characterized a NAT for the PINK1 gene, implicated in early-onset Parkinson's disease, 
(Paper III).  This work was published in “BMC Genomics” by this title: “The human 
PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during 
modulation of mitochondrial function.”  BMC Genomics 15;8:74, 2007.

Mutations in the PTEN induced putative kinase 1 (PINK1) are implicated in early-
onset Parkinson's disease. PINK1 is expressed abundantly in mitochondria rich 
tissues, such as skeletal muscle, where it plays a critical role determining 
mitochondrial structural integrity in Drosophila. We characterize a novel splice 
variant of PINK1 (svPINK1) that is homologous to the C-terminus regulatory domain 
of the protein kinase. 

Moreover, we describe a human specific noncoding antisense expressed at the PINK1 
locus (naPINK1). The observation of regulation of svPINK1 and naPINK1 during in 
vivo mitochondrial biogenesis was confirmed using RNAi, where selective targeting 
of naPINK1 results in loss of the PINK1 splice variant in neuronal cell lines.  

Our report provided description of a novel ncRNA, which is the in vivo regulator of 
PINK1 gene and could potentially be involved in Parkinson's disease pathophysiology. 

2.5 FMR4 NONCODING RNA INVOLVED IN FRAGILE X MENTAL 

RETARDATION

Furthermore, I discovered FMR4, a ncRNA transcript that shares a bidirectional 
promoter with FMR1, a gene implicated in the fragile-X syndrome, (Paper II).  This 
work was published in “PLoS ONE” by this title: “A Novel RNA Transcript with 
Antiapoptotic Function Is Silenced in Fragile X Syndrome” PLoS ONE 3(1):e1486,
2008.
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In this publication we described FMR4, a ncRNA transcript (2.4 kb) that resides 
upstream and likely shares a bidirectional promoter with FMR1, a gene heavily 
implicated in the fragile-X syndrome. 

We showed that FMR4 is a product of RNA polymerase II and has a similar half-life 
to FMR1.  The CGG expansion in the 5’UTR of FMR1 appears to affect transcription 
in both directions as we found FMR4, similar to FMR1, to be silenced in fragile X 
patients and up-regulated in premutation carriers. 

Knockdown of FMR4 by several siRNAs did not affect FMR1 expression, nor vice 

versa, suggesting that FMR4 is not a direct regulatory transcript for FMR1. However,
FMR4 markedly affected human cell proliferation in vitro; siRNAs knockdown of 
FMR4 resulted in alterations in the cell cycle and increased apoptosis, while the 
overexpression of FMR4 caused an increase in cell proliferation. 

2.6 BACE1-AS  INVOLVED IN ALZHEIMER’S DISEASE 

I recently identified a conserved noncoding antisense transcript for �-secretase-1
(BACE1), a critical enzyme in Alzheimer’s disease pathophysiology [291].  I generated 
compelling data indicating that the BACE1-antisense transcript (BACE1-AS) concordantly 
regulates BACE1 expression (Paper I).  This work was published in “Nature Medicine” by 
this title: “A noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-
forward regulation of �-secretase expression”  Nature Medicine 14(7):723-30, 2008.

We showed that BACE1-AS levels are dramatically up-regulated in several brain regions 
of individuals with Alzheimer’s disease.  We proposed a model in which exposure to 
various cell stressors results in BACE1-AS levels becoming elevated, increasing BACE1

mRNA stability and generating additional Amyoid-beta 1-42 (A� 1-42) through a post-
transcriptional feed-forward mechanism.

We demonstrated a putative role for a noncoding RNA transcript in Alzheimer’s disease 
pathophysiology.  We showed that BACE1-AS transcript is indeed elevated in human 
Alzheimer’s disease  brain samples and that this regulatory RNA contributes to a feed-
forward mechanism that underlies �-amyloid formation in the Alzheimer’s disease  senile 
plaques.

The BACE1-antisense transcript (BACE1-AS) regulates BACE1 mRNA and subsequently 
BACE1 protein expression in vitro and in vivo. Upon exposure to various cell stressors 
including amyloid-b 1–42 (Aß 1–42), expression of BACE1-AS becomes elevated, 
increasing BACE1 mRNA stability and generating additional Aß 1–42 through a post-
transcriptional feed-forward mechanism.  BACE1-AS concentrations were elevated in 
subjects with Alzheimer’s disease and in amyloid precursor protein transgenic mice. 

Our finding showed that BACE1 mRNA expression is under the control of a regulatory 
noncoding RNA that may drive Alzheimer’s disease–associated pathophysiology. In
summary, we reported that a long noncoding RNA is directly implicated in the increased 
abundance of Ab 1–42 in Alzheimer’s disease.
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2.7 FUNCTIONAL RELEVANCE OF NATs

Next, we planned to find out if these scattered reports on functional NATs are 
exceptions or they are representing general rules.  Then we took all the reported 
conserved NATs between human and mouse [188] and designed siRNA for the entire 
collection.  

We performed a cell viability screening, using this aforementioned library of siRNA.  
Large-scale screening with siRNA targeting 794 conserved natural antisense 
transcripts (NATs) revealed a potential role for a considerable number of these NATs 
in regulating cell viability and proliferation.  We prepared this work for publication in 
a manuscript with this title: “A High-Throughput RNAi Screen Reveals Widespread
Biological Function For Mammalian Noncoding Antisense Transcripts”

In this study we focused only on well-conserved S-AS transcript pairs and showed
functional role for these RNA molecules.  Particularly, we showed a potential role for 
a significant number of these NATs in cell viability and proliferation.  

It is worth noting that only a fraction of all NATs were expressed in our cellular model 
and we have only tested cell viability phenotype.  Therefore, considering the whole 
phenotypic space in various cell line, we argue that perhaps all of these RNA 
transcripts are functional elements.  Collectively, our screening revealed a prominent 
role for NATs in basic cellular pathways, much more prevalent than previously 
appreciated. 
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3 PROSPECTIVE

3.1 FUTURE RESEARCH GOALS

My current projects focus on the expanding role of ncRNAs in the regulation of nervous 
system gene expression, especially in the delicate balance between physiological and 
pathological information flow that could define the onset of chronic disease.  

I am working to define new BACE1-AS related therapeutic targets and biomarkers for 
Alzheimer’s disease.  

I am participating in a project aiming to characterize novel NAT-mediated regulation of 
brain derived neurotrophic factor (BDNF) in human cortical neurons.  

Furthermore, I have preliminary data of what may be the first evidence of direct 
communication and thermodynamic interaction between members of two distinct families 
of ncRNAs in the computation of nervous systems gene expression. 

Based on what I learned about various families of ncRNA, their involvement in 
neurophysiology and neuropathologies, I am planning to build my career on 
characterizing ncRNAs in neurological functions and their dysregulation in various 
neuropathologies.  I am very determined to drive this area of research and to become a 
leader in this new field.  

Keywords:

Natural antisense transcripts, NATs, NAT, Sense-Antisense, S-AS RNA, antisense 
transcript, noncoding RNA, ncRNA, non-protein-coding RNA, Regulation of gene 
expression
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