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“I draw from the absurd three consequences, which are my revolt, my freedom, and my 
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ABSTRACT 

The work presented in this thesis is an effort to decipher and understand the mechanism of 

action (MOA) of anticancer agents by building on and complementing chemical proteomics 

methods. The backbone of the thesis relies on a recent method called Functional Identification 

of Target by Expression Proteomics (FITExP) developed in Zubarev lab, where drug induced 

proteomic signatures are analyzed in various cell lines and top differentially regulated proteins 

with consistent behavior are determined, among which the drug target and mechanistic proteins 

are usually present. FITExP relies on the assumption that proteins most affected with a 

perturbation have a higher probability of being involved in that process. 

In this regard, Paper I aimed to enhance the performance of FITExP analysis by merging 

proteomic data from drug-treated matrix attached and detached cells. This is while the majority 

if not all proteomics and molecular biology experiments are performed in matrix attached cells, 

as the general belief is that detached cells lose their structural integrity and do not harbor 

valuable information. However, detached cells are those that are more sensitive to 

chemotherapeutics and might reflect the proteome changes better. The comparative proteomics 

of living and dying cells improved FITExP performance with regards to identification of targets 

and provided insight about proteins involved in cellular life and death decisions. Furthermore, 

the orthogonal partial least squares-discriminant analysis (OPLS-DA) paradigm presented in 

this study, was used throughout the thesis for contrasting and visualizing the proteomic 

signature of a molecule against others, to reveal targets and specific proteins changing in 

response to the molecule of interest. 

In Paper II, as a further development of FITExP and to demonstrate its applicability in a 

broader context, we built a proteome signature library of 56 clinical and experimental 

anticancer agents in A549 lung adenocarcinoma cell line. This resource called ProTargetMiner 

can be used for different purposes. The proximity of compounds in hierarchical clustering or t-

SNE could be used for prediction of the mechanism of new compounds. Contrasting each 

molecule against other treatments using the OPLS-DA scheme presented in Paper I, revealed 

drug targets, mechanistic proteins, resistance factors, drug metabolizing enzymes and effects 

on protein complexes. Representative examples were used to demonstrate that the specificity 

factors extracted from the OPLS-DA models can help identify subtle but biologically 

significant processes, even when such an effect is as low as 15% fold change. Furthermore, we 

showed that the inclusion of 8-10 contrasting molecules in the OPLS-DA models can produce 

enough specificity for drug target deconvolution, which offered a miniaturization opportunity. 

Therefore, we built three deeper datasets using 9 compounds that showed the most diverse 

proteome changes in the orthogonal space in three cell lines from major cancer types: A549 

lung, MCF-7 breast and RKO colon cancers. These datasets provide a unique depth of 7398, 

8735 and 8551 respectively, with no missing values. Subsequently, a Shiny package was 

created in R, which can employ these datasets as a resource and merge it with user data and 

provide OPLS-DA output and target deconvolution opportunity for new compounds. Finally, 

using the original ProTargetMiner data, we also built a first of its kind proteomic correlation 



database which can find applications in deciphering the function of uncharacterized proteins. 

Moreover, the resource helped to identify a set of core or untouchable proteins with stable 

expression across all the treatments, revealing essential functions within the cells. Such proteins 

could be used as house-keeping controls in molecular biology experiments. 

In paper III, we combined FITExP with other chemical proteomics tools Thermal Proteome 

Profiling (TPP) and multiplexed redox proteomics, to study the target and mechanism space of 

auranofin. This would also allow to assess the power, orthogonality and complementarity of 

these techniques in the realm of chemical proteomics. TPP is a recently developed technique 

that can monitor changes in the stability of proteins upon binding to small molecules. Redox 

proteomics is a method by which the oxidation level of protein cysteinome can be quantitatively 

analyzed. Auranofin is an FDA-approved anti-inflammatory drug for treatment of rheumatoid 

arthritis, but due to its potent antitumor activity, it is currently in clinical trials against cancer. 

Although several MOAs have been suggested for auranofin, uncertainties exist regarding its 

cellular targets; therefore, this molecule was chosen as a challenging candidate to test the 

chemical proteomics tools. A combination of the above mentioned tools confirmed thioredoxin 

reductase 1 (TXNRD1) (ranking 3rd) as the cognate target of auranofin and demonstrated that 

perturbation of oxidoreductase pathway is the main route of auranofin cytotoxicity. We next 

showed that changes in the redox state of specific cysteines can be linked to protein stability in 

TPP. Some of these cysteines were mapped to the active sites of redox-active enzymes. 

In Paper IV, using quantitative multiplexed proteomics, we helped to show that b-AP15, a bis-

benzylidine piperidone compound inhibiting deubiquitinases USP14 and UCHL5, produces a 

similar perturbation signature as bortezomib in colon cancer cells. However, in comparison 

with bortezomib, b-AP15 induces chaperone expression to a significantly higher level and leads 

to a more extensive accumulation of polyubiqutinated proteins. The polyubiqutinated proteins 

co-localize with mitochondrial membrane and subsequently reduce oxidative phosphorylation. 

These results help define the atypical cell death induced by b-AP15 and describe why this 

molecule is effective against apoptosis resistant cells in variety of tumor models.  

Finally, in Paper V, we extended the applications of TPP and combined it with specificity 

concept for proteome-wide discovery of specific protein substrates for enzymes. We developed 

a universal method called System-wide Identification of Enzyme Substrates by Thermal 

Analysis (SIESTA) that relies on the hypothesis that enzymatic post-translational modification 

of substrate proteins can potentially change their stability against thermal denaturation. 

Furthermore, we applied the concept of specificity similar to the above papers, to reveal 

potential substrates using OPLS-DA. SIESTA was applied to two enzyme systems, namely 

TXNRD1 and poly-(ADP-ribose) polymerase-10 (PARP10), identifying known and putative 

candidate substrates. A number of these candidate proteins were validated as PARP10 

substrates by targeted mass spectrometry, chemiluminescence and other assays. SIESTA is an 

unbiased and system wide approach and its broad application can improve our understanding 

of enzyme function in homeostasis and disease. In turn, specific protein substrates can serve as 

readouts in high throughput screening and facilitate drug discovery.   
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Taken together, in this thesis, FITExP methodology was improved in two directions. In paper 

I, we improved the performance of FITExP by combining the proteomics data from detached 

and attached cells. In Paper II, we demonstrated how the proteomics data on a multitude of 

drugs in a single cell line enables the discovery of compound targets and MOA. Furthermore, 

we built an R Shiny package which can serve as a resource for the cancer community in target 

and MOA deconvolution. In Papers III and IV, we applied an arsenal of chemical proteomics 

tools for characterization of two anticancer compounds. In Paper V, we expanded the 

applications of TPP to identification of specific protein substrates for enzymes in a system-

wide manner. 
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1 INTRODUCTION 

1.1 OF ANTICANCER DRUGS AND TARGETS: WHY PHENOTYPIC 
SCREENING? 

Despite advances in cancer diagnosis and therapy, International Agency for Research on 

Cancer projected 18.1 million new cases of cancer and 9.6 million deaths from cancer in 2018 

worldwide (Bray, Ferlay et al. 2018). Furthermore, although the total cancer death rate has 

dropped by 26% since 1991 till 2015, some types of cancers such as liver and brain have 

increased death rates (Siegel, Miller et al. 2018). With significant reduction in heart disease, 

according to WHO estimates in year 2015, in 91 of 172 countries studied, cancer has taken the 

first or second ranking as the leading cause of death and in an additional 22 countries, ranks 

third or fourth. 

Although some cancer types such as acute lymphoblastic leukemia (ALL) in children can be 

mostly treated (around 98% remission) (Vora, Goulden et al. 2013), some cancer types are 

irresponsive or resistant to the available treatments or are prone to relapse. Many if not most 

existing therapies only extend the patient lifespan by a limited time (Weigmann 2016). Taken 

together, drugs and methodologies aiming at cancer treatment and eradication are highly 

desired and sought for. 

For discovery and development of novel anticancer drugs, several paradigms exist, which 

mainly include targeted high throughput screening (Broach and Thorner 1996) and 

phenotyping screening (Moffat, Rudolph et al. 2014). On the contrary to targeted high 

throughput screening where a massive number of compounds are surveyed for binding to a 

given protein, in phenotypic screening, compounds inducing a certain biological effect are 

identified through cell-based assays. The other major advantage with phenotypic screening is 

that the chosen compounds are already bioactive, and have drug-like properties such as the 

potential to penetrate cell membrane (Moffat, Rudolph et al. 2014). Furthermore, the 

compounds are given a chance to induce the phenotype of interest by acting on multiple targets 

(Medina-Franco, Giulianotti et al. 2013), and therefore, they can in return, help identify novel 

drug targets, as “Determining the causal relationships between target inhibition and phenotypic 

effects may well open up new and unexpected avenues of cancer biology” (Moffat, Rudolph et 

al. 2014). The merits and disadvantages of each approach is summarized in Figure 1. Since 

these cell based screens are disease relevant and cover multiple targets in a single screening, 

they are believed to have higher success rates than the targeted approach. Statistically, during 

the period between years 1999-2008, compounds derived from phenotypic screening 

comprised about 37% of the first-in-class drugs approved by FDA, while targeted screening 

contributed 23%. However, targeted screening had a better success rate in follower drugs 

comprising 51% of approved drugs (vs. 18% from phenotypic screening) (Swinney and 

Anthony 2011; Lee, Uhlik et al. 2012). The higher success rate for the follower drugs is not 

surprising, since recognizing a feasible protein target facilitates the screening and drug 

development process. Although a recent study has noted a substantial increase in the approval 

of first-in-class drugs discovered by targeted screening covering the period of 2008-2013 (Eder, 
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Sedrani et al. 2014), phenotypic screening is still an essential and viable source of novel key 

compounds.  

Sophisticated and parallel analytical 

methods are usually required for 

deconvolution of the targets for 

molecules discovered in phenotypic 

screening and off-targets of those from 

high-throughput screening. Target and 

MOA deconvolution can be a time- and 

labor intensive process, if not even 

fruitless. These challenges have left many 

promising experimental compounds 

without a known MOA. Even among the FDA approved drugs, 7% have no known primary 

target, and around 18% lack a clear MOA (Gregori-Puigjané, Setola et al. 2012). In addition, 

some MOAs might have been wrongly associated with a number of molecules in the past 

(Somlyai, Collins et al. 2017) and off-targets are being identified on a routine basis (Klaeger, 

Gohlke et al. 2016; Van Esbroeck, Janssen et al. 2017). Thus, there is a huge unmet need for 

developing new methods for identification of the target and deconvolution of MOA in 

anticancer drug discovery and development (Schirle and Jenkins 2016). The majority of 

compounds act by binding and modulating the activity of target proteins; therefore, mass-

spectrometry based proteomics has become an indispensable tool in drug development (Schirle, 

Bantscheff et al. 2012). 

1.2 ADVANCES IN MASS-SPECTROMETRY BASED PROTEOMICS AND ITS 
UNIQUE APPLICATIONS 

Advances in mass spectrometry in the last decades have turned it into an unprecedented means 

to investigate the proteome (Aebersold and Mann 2003). Proteomics is now routinely used to 

study variations in protein abundances, modifications, stability and etc. between different 

conditions. The realm of applications will be vastly expanded even further with the advent of 

single cell proteomics (Budnik, Levy et al. 2018).  

Milestone studies have extended the proteome coverage captured by mass spectrometry. Over 

a three-year period from 2011, the number of detected proteins in a single LC-MS analysis 

improved from 3000 yeast proteins in 8 hours (Thakur, Geiger et al. 2011) to 4000 proteins in 

1.1 hours (Hebert, Richards et al. 2014). That significant improvement was mainly due to the 

introduction of new MS platforms with enhanced MS/MS acquisition rate as well as a higher 

resolution and mass accuracy. However, the advancements in sample preparation techniques, 

chromatographic separation, quantification algorithms and data processing also played a part. 

Currently, single-shot proteomics experiment can routinely sample half of the expressed 

mammalian cell proteome, i.e. exceeding 5,000 proteins (Pirmoradian, Budamgunta et al. 

Figure 1. The attributes of high-throughput vs.

phenotypic screening

High-throughput screening Phenotypic screening

Target-centric
Reductionist view
Validation in cell
based assays 

needed

Target-agnostic
Holistic view

Higher physiological 
relevance

Hits have drug-like
properties

Multiple targets might be 
engaged

Target identification and
validation needed
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2013; Scheltema, Hauschild et al. 2014). Very recently, it has become possible to quantify 

10,000 proteins in 100 minutes, although special set-ups and specific high resolution mass 

spectrometers are required (Meier, Geyer et al. 2018).  

In parallel, various labeling technologies have made it possible to multiplex samples in a single 

analysis. Not only has this made direct comparison between the proteomes possible within the 

same LC-MS run, but it has also reduced the variation between experimental replicates. 

Labeling also provides an opportunity to fractionate the pooled samples to obtain higher 

proteome coverage. Orthogonal fractionation of a sample reduces the sample complexity, 

which allows one to take deeper snapshots of the proteome, reaching more than 10,000 proteins 

(Sabatier, Saei et al.) (paper not included in this thesis). Extensively used fractionation 

techniques include high pH reversed-phase chromatography (Batth, Francavilla et al. 2014) 

and isoelectric focusing (Branca, Orre et al. 2014; Pirmoradian, Astorga-Wells et al. 2015). 

As a result of these advances, proteomics is now routinely used in biomarker discovery (Zhan, 

Li et al. 2018), protein network analysis (Bennett, Rush et al. 2010; Tan, Go et al. 2018), cell 

type comparison (Gholami, Hahne et al. 2013), analysis of protein stability (Leuenberger, 

Ganscha et al. 2017; Becher, Andres-Pons et al. 2018; Dai, Zhao et al. 2018) and turnover 

(Savitski, Zinn et al. 2018), as well as investigation of post-translational modifications (PTMs) 

(Christophorou, Castelo-Branco et al. 2014; Weinert, Narita et al. 2018), proteoforms (Ntai, 

Fornelli et al. 2018) and proteogenomics (Zhu, Orre et al. 2018). Arguably, one the most 

important applications of mass spectrometry is drug target and MOA deconvolution, in line 

with the chemical proteomics paradigm (Savitski, Reinhard et al. 2014; Browne, Jiang et al. 

2018).  

A routine question from biologists is: “what can proteomics do in comparison with other high-

throughput technologies e.g. RNA sequencing?” There are inherent differences in the type of 

information obtained from proteomics compared to RNA sequencing. First and foremost, 

proteomics is the only system-wide tool that provides information on both protein production 

and degradation. Such information is not reflected in genomics or transcriptomics data. Several 

studies have shown that the global mRNA levels are not strongly correlated with protein 

abundances even under steady state (Edfors, Danielsson et al. 2016; Liu, Beyer et al. 2016). 

Furthermore, some particular proteomic applications exist that are by default not amenable to 

genomics and transcriptomics. For example, proteomics can be used to observe and quantify 

myriad of PTMs on proteins (Savitski, Nielsen et al. 2006; Chick, Kolippakkam et al. 2015). 

Metabolic labeling can be applied to quantify protein degradation, translation and overall 

turnover (Boisvert, Ahmad et al. 2012). Redox proteomics, on the other hand, utilizes cysteine 

labeling to quantify the oxidation state of the proteins (Checconi, Salzano et al. 2015). 

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) can be employed to study the 

binding site of various molecules on proteins or to validate ligand-protein interactions (Visnes, 

Cázares-Körner et al. 2018). 



 

4 

A major recent development was combining Cellular Thermal Shift Assay (CETSA) (Molina, 

Jafari et al. 2013) with multiplexed proteomics to establish the TPP technique which is capable 

of proteome-wide monitoring of protein stability in response to different conditions or small 

molecule treatments in living cells (Savitski, Reinhard et al. 2014). Protein stability is thus a 

new dimension in proteomics, inaccessible to genomics and transcriptomics, which sparked 

new interest in studying protein thermal unfolding and structural parameters dictating thermal 

stability in different organisms (Leuenberger, Ganscha et al. 2017).  

Overall, such parameters as protein presence and abundance, sequence, stability, mutations 

(proteogenomics), PTM type and occupancy, protein degradation/turnover rate, oxidized-

reduced states, interactions, binding sites and even isotopic composition can be investigated by 

mass spectrometry. 

 

1.3 PROTEOMICS BASED DRUG TARGET DECONVOLUTION STRATEGIES 

Chemical proteomics can be used to study the relationship between the drug molecules and 

cellular phenotype (Kwon and Karuso 2018). Classically, chemical proteomics refers to mass 

spectrometry–based affinity chromatography approaches to identify the protein interactors of 

small molecules or probes in the system-wide scale (Rix and Superti-Furga 2009). Recently, 

chemical proteomics is extended to other techniques, where changes in the proteome state –

such as stability, expression, oxidation state and covalent modification, can be connected to the 

targets or functions of small molecules (Savitski, Reinhard et al. 2014; Chernobrovkin, Marin-

Vicente et al. 2015; Browne, Jiang et al. 2018; Piazza, Kochanowski et al. 2018). Although 

identification and characterization of the efficacy target, the protein through which the 

compound exerts the desired phenotype, is very challenging and at times fruitless (Kotz 2012), 

it is indeed of paramount importance. Characterization of target and MOA can help simplify 

the prediction of efficacy and side effects and later on contribute to optimization of the lead 

compound scaffold. In parallel, for already approved drugs with poorly known targets, drug 

target studies can facilitate the design of next generation compounds with reduced side effects 

and perhaps higher efficacy. Target characterization can also reduce the chance of failure 

during clinical trials, as many drug candidates fail due to lack of efficacy in humans (Bunnage, 

Gilbert et al. 2015).  

Taken together, unbiased techniques are required for uncovering drug target and MOA, 

especially those that exert a phenotype of interest. Several technologies exist for characterizing 

the direct and indirect target space of a given anticancer compound. Individual methodologies 

harbor different resolutions, strengths and weaknesses (Schirle and Jenkins 2016). Since these 

methods usually provide complementary information, it is imperative to use them in concert 

(Schenone, Dančík et al. 2013). In this section, we will only focus on drug target deconvolution 

strategies based on mass spectrometry. 
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1.3.1 Small-molecule affinity proteomics 

Affinity based approaches were first introduced in the early 1950s and aimed to identify 

protein-binding spectrum of a molecule (Campbell, Luescher et al. 1951). Today, chemical 

proteomics encompasses mass spectrometry-based affinity chromatography approaches for 

identification of ligand-protein interactions in the whole proteome background. The first step 

in affinity purification for target identification is the modification of compound of interest with 

a linker and its subsequent immobilization on a solid support to produce a compound display. 

Subsequently, the immobilized drug is exposed to the protein of interest or the disease relevant 

cell lysate. After several wash steps to remove the non-binding proteins, the binders are 

digested and subjected to LC-MS analysis and the enriched interactors are identified. In this 

paradigm, the advantage of using a cell lysate over purified protein is that the reaction will take 

place with the specific proteoforms with natural sequences, PTMs and potential protein 

interactors which might be important in compound binding. A drawback of this technique is 

that direct and indirect targets cannot be differentiated, as accessory proteins interacting with 

the real target might also be enriched. Another downside of the lysate-based non-covalent 

affinity pulldown methods for identification of drug targets is the incompatibility of integral 

membrane proteins, as such proteins might lose their native binding conformation through the 

experimental workflow (Bassilana, Carlson et al. 2014; Akbulut, Gaunt et al. 2015).  

Since the linker should be attached on a permissive site to retain compound activity, the 

synthesis of these tool compounds can be challenging. For some compounds, it might even be 

impossible to introduce such a linker. To ensure that the compound is still specific after the 

modification, its activity must be investigated in comparison with the parent compound. 

Alternatively, photo-crosslinker matrices can be irradiated together with the parent compound 

to produce a random compound display, which can presumably include orientations compatible 

with target protein binding (Kanoh, Honda et al. 2005). Furthermore, assessing active and 

inactive probes sharing the same scaffold can help to identify the most phenotypically-relevant 

interactors (Oda, Owa et al. 2003). To rule out false interactions, competitive-binding 

experiment can be performed, in which the free probe competes with immobilized probe for 

binding to the target proteins. Affinity purification has been used to identify the complexes 

targeted by histone deacetylase inhibitors (Bantscheff, Hopf et al. 2011). Such a methodology 

has also been used to characterize oxysterol binding proteins as the cellular carriers of OSW-1 

-a highly potent natural anticancer lead compound, and to show that these proteins are essential 

for cell survival (Burgett, Poulsen et al. 2011). A miniaturized version of these affinity 

pulldowns has been optimized for profiling of the targets of clinical kinase inhibitors in tumor 

biopsies (Chamrád, Rix et al. 2013).  

On the contrary to non-covalent methods, covalent approaches can freeze the interaction of an 

affinity probe with its target. In this approach, a reactive group and an affinity handle (e.g. 

biotin) are conjugated to the compound. This strategy has been used for validation of Sec61a 

as a target of cyclodepsipeptide (MacKinnon, Garrison et al. 2007). Covalent approaches also 

allow for using denaturing conditions, since the preservation of protein binding conformation 

is not necessary. As the interactors are identified though proximity-driven labeling events, this 
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methodology can be used to eliminate indirect accessory proteins enriched with the target 

proteins in complexes. For example, while a non-covalent suberanilohydroxamic acid (SAHA, 

a class I/IIb HDAC active-site inhibitor) probe gave several HDAC-containing complexes as 

specific targets (Bantscheff, Hopf et al. 2011), the covalent SAHA–BPyne probe was more 

specific in finding core HDACs as direct binders (Salisbury and Cravatt 2007). The covalent 

approaches sometimes suffer from low affinity of interactions and low efficiency of labeling, 

which can be ameliorated by performing further assays such as competition with free 

compound or probe titration, to enhance the specificity of detected interactions. A challenge in 

the latter technique is its uncertain applicability to live cells and membrane fractions. 

Browne et al. recently developed a method called CITe-Id (Covalent Inhibitor Target site 

IDentification) for proteome-wide target-site identification of covalent inhibitors (Browne, 

Jiang et al. 2018). This chemoproteomic approach employs covalent inhibitors for enriching 

cysteine-thiols across the proteome, and therefore provides direct, amino acid level readout in 

a dose-response manner. Using this method, they discovered that PKN3 is covalently inhibited 

by JZ128. 

Kinobead technology for target profiling might also be classified as an affinity-based 

technique, but is based on a different methodology. In this method (Figure 2), broad spectrum 

kinase inhibitors or ATP mimetics are immobilized on beads and incubated with the lysate of 

interest. The addition of a desired kinase inhibitor (new compound) to the experiment, will 

compete with beads for binding to the present kinases. After 

capturing the tissue kinome on matrix, the enriched proteins 

are identified by proteomics (Bantscheff, Eberhard et al. 

2007). The kinobead methodology was recently applied to 

243 kinase inhibitors (Klaeger, Heinzlmeir et al. 2017). One 

of the limitations of this technology is that it currently does 

not apply to the full human kinome. Furthermore, the 

potential non-kinase targets of the compound are ignored. 

Moreover, since a priori knowledge about the compound –

being a kinase inhibitor is assumed, kinobead technology 

cannot be categorized as a target deconvolution strategy. 

Figure 2. Kinobead technology. Broad spectrum kinase inhibitors or 

ATP mimetics are immobilized on beads and incubated with the lysate. 

The added kinase inhibitor will compete with kinase binding to beads. 

After capturing the tissue kinome on matrix, the enriched proteins are 

identified by proteomics. A reduction of kinase binding to beads is a 

measure of compound binding to the respective kinase. Redrawn from 

(Klaeger, Heinzlmeir et al. 2017), with permission from The American 

Association for the Advancement of Science. 
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1.3.2 Functional expression based-approaches 

Chernobrovkin et al. developed a method in 2015, called Functional Identification of Target 

by Expression Proteomics (FITeXP) (Chernobrovkin, Marin-Vicente et al. 2015). FITExP is 

an expression proteomics-based strategy for deconvolution of potential drug targets and MOA. 

Unlike other methods, expression proteomics takes protein degradation into account, and it can 

prove highly useful for investigating drug target and MOA. In FITExP, at least three cell lines 

are treated with the test compound at LC50 concentrations for about two doubling times and 

subsequently, differentially expressed proteins with consistent behavior in all tested cell lines 

are deciphered (Figure 3). In brief, all proteins are sorted by their regulation upon treatment in 

different cell lines and the rankings are combined. To increase the specificity, and to filter out 

the generic and/or stochastically behaving proteins involved in cell death or detoxification, a 

few known drugs are added to the compound panel for contrast. A collateral advantage of 

FITExP is that co-regulated proteins with biggest abundance changes can be subjected to 

pathway analysis to characterize the compound MOA. Another advantage of FITExP is that 

chemical modification of the parent molecule is not necessary and no a priori knowledge about 

the drug MOA is required. Furthermore, FITExP allows for rank ordering of the putative 

targets. In the proof of principle experiments, FITExP could identify the target of several 

known small anticancer molecules among more than 4000 proteins (Chernobrovkin, Marin-

Vicente et al. 2015). Besides the analysis of the target and MOA of chemotherapeutics 

(Chernobrovkin, Marin-Vicente et al. 2015), FITExP has been also used to deconvolute the 

target and MOA of metallodrugs to help 

finding optimal drug combination (Lee, 

Chernobrovkin et al. 2017). The 

approach was also applied to 

nanoparticles to investigate their 

cytotoxic and pro-inflammatory effects 

(Tarasova, Gallud et al. 2016). 

The underlying principle in FITExP is based on the exceptional abundance change of the drug 

target and compound-specific mechanistic proteins upon treatment. Various phenomena can 

underlie the exceptional up-regulation (or in rare cases down-regulation) of the target protein 

in response to drug binding. First and perhaps the most important, are the feedback mechanisms 

Figure 3. FITExP methodology. A) At least three 

cell lines are treated at LC50 concentrations with 

a compound panel including the molecule of 

interest and B) the proteomes are analyzed. C) 

Proteins are ranked based on their fold change in 

different cell lines, culminating in a combined 

ranking. The top proteins are potential target 

candidates. D) The target protein profile for 

compound of interest (Drug 1 here) usually has a 

higher regulation in majority of cell lines. E) 

Finally, a list of top ranking proteins can be 

subjected to pathways analysis in StringDB or 

similar databases to reveal compound MOA.  −0.5
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which induce the up-regulation of proteins with suppressed activity (Legewie, Herzel et al. 

2008). Second, drug binding can alter the stability of protein and accelerate or decelerate its 

turnover (Cohen, Geva-Zatorsky et al. 2008). Such feedback loops are not limited to higher 

organisms; for example, inhibition of the cholesterol pathway in yeast transcriptionally induces 

the expression of several genes in this pathway (Daum, Lees et al. 1998). Such level of protein 

expression control have also been observed in more primitive organisms (Smits, Kuipers et al. 

2006; Palmer and Kishony 2014). 

 

1.3.3 Discovery of covalent binders 

Proteomics might also be used for direct discovery of covalent protein-compound adducts. 

Such a strategy has been used to study covalent modifications of β-lactoglobulin A and human 

serum albumin by reactive metabolites from paracetamol, amodiaquine, and clozapine 

(Lohmann, Hayen et al. 2008). Furthermore, mass spectrometry has been used in a high-

throughput format to identify protein-inhibitor adducts for discovery of irreversible inhibitors 

(Campuzano, San Miguel et al. 2016).  

 

1.3.4 Methods based on target stability 

Stability is a new dimension in proteomics. A number of methods exist for monitoring protein 

stability changes upon ligand binding. An important advantage of these techniques, similar to 

expression proteomics based strategies such as FITExP, is that the modification of the parent 

compound is not required.  

One of the early stability-based methods called Pulse Proteolysis is based on the fact that urea-

induced unfolding enhances protein susceptibility to proteolysis. This feature can be exploited 

to monitor the level of protein unfolding in the presence and absence of a ligand, which can be 

detected by SDS-PAGE and mass spectrometry. In the proof-of-principle experiments, the 

authors showed the applicability of this method to confirm the binding of maltose and other 

cognate ligands to maltose-binding protein (Park and Marqusee 2005). 

The first technique that could be utilized for drug target identification in the whole proteome 

was drug affinity responsive target stability (DARTS) (Lomenick, Hao et al. 2009). The 

underlying concept in DARTS is that binding of a ligand can locally or globally stabilize the 

target protein, which can also be accompanied by covering protease recognition sites, and 

diminish the proteolysis of the target protein. This is highly similar to, for example, the 

resistance of transcription factor-bound DNA sites to DNAases (Maniatis and Ptashne 1973). 

In proof of principle studies, DARTS could confirm the binding of several molecules to their 

target proteins in the cell lysate background and establish proteins in translation machinery as 

targets for resveratrol. However, the applicability of DARTS for monitoring dynamic 

interactions in intact cells is yet to be proven.  
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A highly similar technique called Limited Proteolysis (LiP-MS) has been used to investigate 

the effects of metabolite binding on protein structure in Escherichia coli (Piazza, Kochanowski 

et al. 2018). This method relies on limited proteolytic digestion of proteins in the bound and 

unbound state and does not require the modification of small molecules. Although this method 

can only detect the conformational change of a fraction of the proteome and has never been 

applied to deconvolution of targets for drug molecules, it is envisioned that with further 

advances it can potentially find applications in such studies.  

Cellular Thermal Shift Assay (CETSA) was recently developed to monitor ligand binding to 

potential target proteins in living cells and lysate (Molina, Jafari et al. 2013). This methodology 

is using the well-established fact of the thermal stabilization (or occasional destabilization) of 

a target protein upon ligand binding, which results in a shift in the melting curve of the protein 

(Pantoliano, Petrella et al. 2001). CETSA experiments are performed in a Western blot format, 

in which antibodies are used to individually detect soluble protein content after heating cells to 

different temperatures and removing the aggregated proteins by centrifugation (Molina, Jafari 

et al. 2013). The advantage of CETSA over other target engagement methods is that it can be 

performed in living cells and tissues and as such, confirms the drug target engagement in a 

physiological context. Such aspect can be particularly important for drug metabolites or 

prodrugs that are activated after cellular entry. However, a priori knowledge about the target 

is needed and thus CETSA cannot be classified as a target deconvolution technique, but 

CETSA can still be used for screening. For example, CETSA screening was used to identify 

novel thymidylate synthase (TYMS) inhibitors from a compound library (Almqvist, Axelsson 

et al. 2016). 

More recently, Savitski et al. (Savitski, Reinhard et al. 2014) have coupled CETSA with 

quantitative multiplexed proteomics to study potential drug binding in the whole proteome, in 

a method called TPP. Since TPP measures the concentration of thousands of proteins 

simultaneously, it can also be used for drug target deconvolution. Different modes of TPP can 

be used to detect targets, off-targets and proteins which are affected down-stream of the target 

in the cells. In the TR-TPP (temperature range) experiments (Figure 4), TPP is performed in a 

fixed biologically relevant concentration of the compound over a temperature range. The 

readout is the melting point (Tm) of proteins and the shift in melting curves of a potential target 

protein between treatment and control (ΔTm). In most cases, TPP can identify the direct and 

indirect targets of a drug in live cells. In addition, TR-TPP experiments in cell lysate can help 

differentiate the proteins which are directly binding the compound, as the majority of 

downstream pathways are absent in the lysate. Furthermore, lysate experiments might also help 

to differentiate the compounds which engage their targets after metabolic transformation. 

Alternatively, CCR-TPP (compound concentration range) experiments, are performed at a 

fixed temperature (Tm of the target proteins) over a compound concentration range (Franken, 

Mathieson et al. 2015). The output of CCR-TPP is usually used to confirm the TR-TPP data, 

and the approach touches upon compound potency when comparing a panel of molecules 

within the same experiment (Franken, Mathieson et al. 2015).  
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Figure 4. TPP methodology. 
Living cells or lysate aliquots are 

heated step-wise within 37-67 °C, 

in the presence and absence of 

compound. Ultracentrifugation of 

the samples after heating leaves 

only the soluble non-aggregated 

fractions, which are multiplexed by 

TMT10 and quantitatively analyzed 

by mass spectrometry. The change 

in stability of a protein can be 

detected by tracking ΔTm. Reused 

from (Savitski, Reinhard et al. 

2014), with permission from The 

American Association for the 

Advancement of Science. 

A shortcoming of CETSA and TPP is that they are only applied to a) proteins soluble at normal 

conditions or non-denaturing buffers (this excludes, e.g., the majority of membrane proteins –

although this issue can be partially ameliorated with mild detergents (Reinhard, Eberhard et al. 

2015)), and b) proteins whose stability decreases with temperature. Also, the magnitude of shift 

in thermal stability is not predictable and is largely specific to the target protein and the binding 

event. Not all bindings lead to detectable changes in protein stability. Overall, these issues 

make the rank ordering of putative targets difficult.  

Very recently, a similar methodology, based on the same principles of thermal stability, has 

identified the target for small molecule compounds by in-gel fluorescence. The authors were 

able to identify and validate nucleophosmin as the target of hordenine, which is a natural 

compound known to up-regulate in vitro translation (Park, Ha et al. 2017). 

Despite the fact that TPP provides valuable information on protein state in a system wide level, 

low throughput and cost are major drawbacks of this technique, limiting its applications to labs 

specializing in mass spectrometry or core facilities. Our group recently developed a technique 

called Proteome Integral Stability Alteration (PISA) assay with 10x higher throughput, where 

TPP is reformatted by concatenation of the samples over the temperature range (Gaetani, 

Sabatier et al. 2018) (paper not included in this thesis). PISA circumvents the need to perform 

fitting of melting curves. The simplicity, lower expense and significantly higher throughput of 

PISA guarantee its widespread use in chemical biology and drug development. Furthermore, 

since samples are combined, PISA can be easily performed in multiple replicates (unlike TPP 

which is mostly performed in 2 replicates), allowing for more rigorous statistics. The rationale, 

schematics and workflow of PISA are shown in Figure 5. 
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Figure 5. Schematics of PISA. A) In PISA, individual samples heated to different temperature points are pooled, 

circumventing the need for curve fitting. B and C) ∆Sm can be easily calculated as the difference of the integral 

abundances of the protein between treated and untreated samples. D) Presentation of PISA results in a simple 

volcano plot allowing for a test of significance and highlighting potential targets of the compound. E) PISA 

workflow in living cells: incubation with compound, aliquoting, heating, freeze-thaw for lysing cells, pooling of 

samples, ultracentrifugation, collection of supernatant, digestion, TMT labeling, fractionation, high resolution LC-

MS/MS analysis, and subsequent data processing. Figure adapted with permission from (Gaetani, Sabatier et al. 

2018). 

1.3.5 Computational techniques and connectivity maps 

There have been several attempts to create computational in silico target identification 

methods, based on chemical similarity database searches and/or monitoring bioactivity 

fingerprint similarity. For example, Chemical Similarity Network Analysis Pulldown 

(CSNAP) is a computational drug target identification algorithm that exploits chemical 

similarity for recognition of chemotypes and identification of drug targets (Lo, Senese et al. 

2015). Using this method, the authors were able to identify novel compounds targeting 

microtubules.  

Reference genomic, transcriptomic, metabolomic and proteomic profiles can be potentially 

employed to discover functional connections among diseases, perturbations and drug action. 

Although proteomics databases are yet to be built, connectivity maps have already been created 

for gene expression signatures to connect small molecules sharing a MOA (Hughes, Marton et 

al. 2000; Lamb, Crawford et al. 2006; Rees, Seashore-Ludlow et al. 2016; Subramanian, 

Narayan et al. 2017; Readhead, Hartley et al. 2018; Ye, Ho et al. 2018). Such databases, in 

ideal case, must be able to cover all biological states that can be induced by chemical entities, 

in terms of genomic and/or proteomics profiles. Pattern-matching tools can be subsequently 

used to detect similarities among compound signatures. The assigned similarity scores can be 

used for rank ordering of the fingerprints. In a landmark study, such a gene expression database 

was built for 300 diverse mutations and chemical treatments in S. cerevisiae (Hughes, Marton 
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et al. 2000). The authors showed that the affected cellular pathways can be determined by 

pattern matching. Investigation of the gene expression profiles caused by deletion of 

uncharacterized genes led to functional annotation of eight previously uncharacterized open 

reading frames. Moreover, the authors could identify the dyclonine target.  

A similar attempt has led to the generation of commercial databases embedded with expression 

profiles from rat tissues upon systemic drug administration (Ganter, Tugendreich et al. 2005). 

This database, in 2005, had gene expression profiles for approximately 600 different 

compounds in 7 rat tissues (approximately 3200 different drug-dose-time-tissue combinations). 

In this study, combining the clinical pathology assessments with gene expression profiles could 

explain why carmustine, methotrexate, and thioguanine had similar effects on the 

hematopoietic tissues, while they induced diverse hepatotoxicity.  

Lamb et al. created the first connectivity map database in human cells (Lamb, Crawford et al. 

2006). They created a gene expression profile database of 164 distinct small-molecule 

perturbagens, representing diverse functions, including FDA–approved drugs and nondrug 

bioactive tool compounds. The database was used to show that drugs with similar MOA will 

have similar genomic fingerprints (Figure 6). They reported that drugs with similar MOAs 

(estrogen receptor modulators and genistein) showed positive connectivities, while an 

antagonist (fulvestrant) demonstrated negative connectivity. The dataset could also be used as 

a discovery tool, for example by identification of gedunin as an HSP90 inhibitor. Ever since, 

connectivity map has been successfully used for deconvolution of compound MOA (D'arcy, 

Brnjic et al. 2011), lead discovery (Hieronymus, Lamb et al. 2006) and drug repurposing 

(Sirota, Dudley et al. 2011). 

Figure 6. Connectivity map is a reference database of gene expression profiles built for hundreds of 

perturbagens in cultured human cells. A query gene expression signature (for a new compound) is scored for 

similarity/dissimilarity to/against each reference profile in the database using pattern matching algorithms. The 

‘‘connectivity score’’, as a measure of similarity, is used to rank the profiles that are connected to the query. Figure 

reused from (Lamb, Crawford et al. 2006), with permission from The American Association for the Advancement 

of Science. 
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Very recently, a new generation connectivity map (CMap-L1000v1) was introduced with 

400,000 signatures using the L1000 platform (Subramanian, Narayan et al. 2017). Since 

standard library construction with RNA sequencing of many compounds can be costly, 

miniaturized approaches are desired. L1000 is a strategy involving ligation-mediated 

amplification of 1,000 landmark transcripts followed by capturing the amplified products on 

fluorescently addressed microspheres (Peck, Crawford et al. 2006). The data on the 1,000 

landmark transcripts was used to computationally infer the expression level of non-measured 

transcripts. Since the new connectivity map is relatively new, its efficiency and applicability is 

yet to be determined.  

Ye et al. published another strategy called DRUG-seq (Digital RNA with pertUrbation of 

Genes) for miniaturized high-throughput transcriptome profiling that can be used in drug 

discovery (Ye, Ho et al. 2018). DRUG-seq reduces the cost of RNA sequencing by 100 fold. 

In the proof-of-concept experiments, the authors profiled the transcriptional changes of 433 

compounds across 8 doses. The transcriptional signatures could group the compounds into 

MOA clusters based on known targets. 

However, all connectivity map efforts have been based on gene expression (mRNA) profiles, 

despite the fact that the cellular levels of proteins often differ significantly from those of 

mRNAs (Edfors, Danielsson et al. 2016; Liu, Beyer et al. 2016). A major reason for the lack 

of proteomics connectivity maps is the cost and labor of the analysis with respect to the required 

depth, which can be significantly higher in proteomics. Only recently, a proteomics 

connectivity map was built comprising the phosphoproteomic and chromatin signatures, 

quantitating 100 phospho-peptides and 59 histone modifications for 90 drugs in 6 human cancer 

cell lines (Litichevskiy, Peckner et al. 2017). However, such signatures might be irrelevant for 

most compounds. Due to the fact that proteins are the factual functioning biological entities in 

the cells, and most drug targets are proteins, analyzing proteomes can furnish further 

information and be more specific to drug MOA. After all, the biological systems are defined 

by protein expression and degradation collectively (Li and Biggin 2015; Savitski, Zinn et al. 

2018). The balance between protein production and degradation is only reflected in proteomics 

data and cannot be assessed by genomics and transcriptomics in principle. Also, mRNA levels 

are not strongly correlated with protein concentrations even under steady state conditions 

(Edfors, Danielsson et al. 2016; Liu, Beyer et al. 2016), and this correlation must be even worse 

in dynamic situations, for example during programmed death, where many caspases-enhanced 

degradation pathways are activated (Nuñez, Benedict et al. 1998). Therefore, cataloging the 

proteomics fingerprints in response to a large number of diverse perturbations (compounds and 

treatments) can be the next step in building connectivity maps, by which drug targets and MOA 

of drugs can be studied in high detail, and new drugs can be characterized.  

It should be noted that any mechanistic prediction resulting from the above computer-based 

analyses such as connectivity maps and other pattern-matching tools is just that – a prediction. 

Such predictions must be tested and validated by follow-up experimental approaches. 
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Furthermore, a major issue with these tools is that all imaginable perturbations must be 

recorded to build an ideal system. This means that specific inhibitors of all cellular proteins 

must be profiled, which can be practically impossible. In majority of cases, these inhibitors do 

not exist or if so, they are unspecific. Another disadvantage is that a large perturbation database 

would make it difficult to interpret the results, as a multitude of perturbations might be scored 

as similar to the query signature. 

One of the main purposes of the current investigation was to build a proteomic signature 

resource of anticancer compounds to assess the feasibility of target and MOA deconvolution. 

We have tried to take a step back and rather focus on miniaturization, where a minimal number 

of experiments would be enough for overall assessment of compound MOA and identification 

of its potential targets. We consider this resource called ProTargetMiner, not a rival, but a 

complement for preceding drug target deconvolution databases such as connectivity maps. The 

modeling paradigm used in ProTargetMiner can be also employed in transcriptomics, as long 

as the biological endpoint used is identical, as in ProTargetMiner. 
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2 AIMS 

2.1 BROAD AIMS OF THE THESIS 

A major part of this project was devoted to further development of FITExP methodology and 

other chemical proteomics techniques. Subsequently, FITExP was coupled with other drug 

target deconvolution techniques such as TPP and redox proteomics to reveal the target and 

MOA of novel and interesting anticancer compounds. Where needed, complementary 

techniques were used to validate the findings of the above-mentioned techniques. 

We tried to further enhance the FITExP performance by inclusion of matrix-detached cells in 

the proteomics analysis (Saei, Sabatier et al. 2018). This is while previously in FITExP and the 

majority of molecular biology experiments, only matrix-attached cells were included and 

detached cells were usually ignored. 

The main building block of this project was on making a deep proteomic database of model 

major cancer cell line response to a library of FDA-approved drugs with known targets and 

MOA, as well as several novel anticancer compounds with unknown mechanisms. 

Features were adopted from original FITExP method (Chernobrovkin, Marin-Vicente et al. 

2015) to identify drug targets and deconvolute the MOA of the compounds in the 

library. The projection of proteome signatures in the multidimensional space or 

hierarchical clustering revealed the drugs which had similar gross mechanisms. OPLS-

DA methodology was used to determine compound-specific proteins. Furthermore, a 

public R shiny package was built for merging with user queries for novel compound.  

Along with building this database, we opted to apply chemical proteomics tools to investigate 

in detail the mechanism of interesting compounds auranofin and b-AP15. For this purpose TPP 

and FITExP were used in parallel. Redox proteomics as well as time and concentration series 

experiments were also used to further look in post-treatment proteome dynamics. 

Finally, we developed a method called System-wide Identification of Enzyme Substrates by 

Thermal Analysis (SIESTA) for extending the applications of TPP to discover novel specific 

protein substrates for enzymes. The underlying assumption in SIESTA is that the enzymatic 

post-translational modification of a substrate protein can change its stability profile. The 

substrates identified in SIESTA can serve as building blocks of high throughput screenings. 

2.2 SPECIFIC AIMS 

The specific aims of the current thesis, as presented in five scientific publications (Papers I-

V), are the following: 

• Objective 1 (Paper I): To finalize the development of a general proteomics-based method for

identification of targets and molecular processes triggered by anticancer treatments. 
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• Objective 3 (Paper II): To make a deep proteomic database of model cancer cell line response

to a library of FDA-approved anticancer library and novel anticancer compounds with 

unknown or complicated mechanisms. Develop tools to predict the target and the MOA of the 

compounds in the library. Finally, make a package by which user data can be merged and 

analyzed. 

• Objective 3 (Papers III and IV): To apply the developed method along with other available

target deconvolution strategies to a number of interesting anticancer compounds to unravel 

their targets, off-targets and cellular effects in detail.  

• Objective 4 (Paper V): To extend TPP for identifications of specific substrate proteins for

enzymes. As many enzyme are potential drug targets, information on specific protein substrates 

can be used to design and develop compound screening platforms for drug discovery. 
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3 METHODS 

3.1 CHEMICAL PROTEOMICS PARADIGMS 

Routine chemical proteomics methods used in the current thesis and their applicability areas 

have been covered in Figure 7. Apart from FITExP and TPP which were discussed in the 

introduction, other complementary methods such as redox proteomics as well as time- and 

concentration-series proteomics were used in this thesis to further dig into compound-induced 

cellular effects.  

3.2 LABEL FREE SAMPLE PREPARATION 

Label-free quantification is used to determine the relative amount of proteins in different 

samples and is thus mostly comparative. On the contrary to other protein quantification 

schemes, label-free strategy does not involve labeling of the proteins or peptides prior to 

quantification. In this approach, proteins are extracted, reduced with DTT, and subsequently 

alkylated with IAA. The proteins are then digested to peptides with specific enzymes such as 

trypsin and LysC, which are then cleaned and subjected to analysis (Figure 8). The classic 

label-free approach was used for all the experiments in Paper I, in FITExP experiment for 

auranofin (Paper III), and in the validation of ADP-ribosylation for SIESTA (Paper V).  

Figure 7. Complementary chemical 

proteomics strategies for deconvolution 

of targets and characterization of 

cellular downstream effects. While TPP 

provides information related to stability 

change of the target and downstream 

proteins, FITExP reveals disturbed 

cellular pathways and shortlists the target 

and mechanistic proteins. Redox 

proteomics reveals the changes in the 

oxidation state of cysteinome, which can 

correlate to stability change of the 

corresponding proteins in TPP. 
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Figure 8. Label-free scheme for sample preparation for LC-MS/MS analysis. 

3.3 TMT10 MULTIPLEXING 

TMT10 multiplexing was the main proteomics scheme used throughout this work. The protocol 

is similar to label-free technique till digestion. Afterwards, the peptides are labeled with amine-

reactive isobaric mass tags, pooled, cleaned and analyzed. TMT10 reagents consist of ten 

different isobaric labels with the same mass and chemical structure and are therefore 

isotopomeric (the general structure in shown in Figure 9A). Each tag has three constituents: 

amine-reactive NHS-ester group, a spacer arm and a mass reporter. In the mass reporter section, 

these labels contain a unique number and combination of 13C and 15N isotopes (TMT10 126-

131Da), and can therefore be measured in the low-mass region of a high-resolution MS/MS 

spectrum upon peptide fragmentation (Figure 9B). 

Figure 9. TMT10 labeling concept and workflow. A) Structural design of the TMT10 reagents. B) The relative 

abundance of peptide fragment in 10 different samples can be quantitated by comparing the reporter ion intensities 

which are generated by MS/MS fragmentation of the mass tags. C) Sample preparation with TMT10 multiplexing 

for LC-MS/MS analysis. HCD = higher-energy collisional dissociation and ETD = electron transfer dissociation. 
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Peptides from different samples are labeled with different tags, and therefore, the samples can 

be multiplexed and combined prior to analysis. Due to the multiplexed nature of samples, they 

can also be fractionated into peptide populations. This separation significantly simplifies the 

peptide mixture and enhances the proteome coverage captured by mass spectrometry. The 

overall workflow is given in Figure 9C. 

3.4 SEQUENTIAL IODOTMT LABELING FOR REDOX PROTEOMICS 

Within this thesis, redox proteomics was only applied in Paper III, where the changes in the 

redox state of proteins was measured in presence of auranofin in living cells. IodoTMT labels 

are currently six plex isobaric reagents which are used for covalent and irreversible labeling of 

sulfhydryl (—SH) groups. The concept is similar to TMT10, but he iodoTMT labels only react 

with reduced cysteines. The major application of these labels is in relative quantitation of 

cysteine modifications such as oxidation and disulfide bonds. In this approach, after extraction 

of cellular proteins, the already reduced cysteine are labeled with the first set of iodoTMT 

reagents and after reduction of disulfide bonds, the remaining cysteines are labeled with the 

second set of iodoTMT. The samples are then combined, digested, fractionated and subjected 

to mass spectrometry analysis (workflow in Figure 10). The oxidation of a peptide can thus be 

measured within the same sample by dividing the intensity of second label to the sum of the 

first and second label intensity.  

Figure 10. The redox proteomics workflow based on sequential labeling with iodoTMT reagents. 
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All samples analyzed in this thesis were digested in solution. Proteins were reduced with DTT 
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multiplexing, the peptides were fractionated either using Pierce High pH Reversed-Phase 

Peptide Fractionation Kit (Thermo) or by a XBrigde BEH C18 2.1x150 mm column (Waters), 

using a Dionex Ultimate 3000 2DLC system (Thermo) for higher coverage (96 fractions 

concatenated to 16-24 based on the desired depth). 

 

3.6 LC-MS/MS 

Samples were loaded (in random order) with buffer A (0.1% formic acid (FA) in water) onto 

an EASY-Spray column (75 µm internal diameter, packed with PepMap C18, 2 µm beads, 100 

Å pore size, 50 cm) connected to either the EASY-nLC 1000 (Thermo; Cat#LC120) or to a 

nanoflow Dionex UltiMate 3000 UPLC system (Thermo) and eluted with a buffer B (98% 

ACN, 0.1% FA, 2% H2O) gradient from 2% to 26-35% of at a flow rate of 250-300 nL/min. 

Mass spectra were acquired with Orbitrap Elite, Orbitrap Q Exactive, Orbitrap Q Exactive Plus, 

Orbitrap HF or Fusion mass spectrometers (Thermo) in the data-dependent mode (various 

instruments were used in different studies and details can be found in relevant papers). Peptide 

fragmentation was mostly performed via higher-energy collision dissociation (HCD) with 

energy set at 33-35 NCE.  

 

3.7 QUANTIFICATION 

The raw data from LC-MS were analyzed by MaxQuant (Cox and Mann 2008) in all the papers. 

The Andromeda engine (Cox, Neuhauser et al. 2011) searched MS/MS data against Uniprot 

complete proteome database. Cysteine carbamidomethylation was set as a fixed modification, 

and methionine oxidation was used as a variable modification. Trypsin/P was selected as the 

enzyme and less than two missed cleavages were allowed. A 1% false discovery rate (FDR) 

was applied to filter the results at both protein and peptide levels. Match between runs was 

enabled in all the analyses, when applicable. Default settings were used for all the other 

parameters.  

In Paper V, for identification of ADP-ribosylation, mass spectra were converted to Mascot 

generic format (MGF) files using in-house written RAWtoMGF v. 2.1.3 package. The resulting 

MGFs files were searched against the UniProtKB human database (v. 201806) including 

71,434 sequences. Mascot 2.5.1 (Matrix Science) was used for identification of peptide 

sequences. Enzyme specificity was set to trypsin, and only two missed cleavages or less were 

allowed. ADP-ribosylation of C, D, E, K, N, R and S residues as well as methionine oxidation 

were chosen as the variable modification, while carbamidomethylation was set as a fixed 

modification on cysteine. 
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3.8 DATA ANALYSIS 

After removing all the contaminants, only proteins with at least two peptides were included in 

the final datasets in all the studies. Proteins with missing values were ignored in most of the 

analyses. Protein abundances were normalized by the total protein abundance (total intensity) 

in each sample. For multidimensional data analysis, a second normalization was performed by 

average protein abundance in different samples. Data were processed by Excel, R, Python, and 

SIMCA (Version 15, UMetrics, Sweden). All reported p values throughout the studies were 

from two sided student t-test.   

OPLS-DA models were used throughout this thesis and were built either in SIMCA 14-15 or 

R. OPLS-DA method allows for supervised grouping of the compounds before analysis. Using

these model, the signature of a given compound or set of compounds can be contrasted against 

the other molecules in the dataset. In these models, the compound-induced specifically up- or 

down-regulated proteins can be found on the extremities of the loading plot, where each protein 

is represented by a dot. All the other components are cast off to the second dimension. A tutorial 

example is detailed in Figure 11. 

Figure 11. OPLS-DA modeling scheme. The proteomic signature of the compound (or any other perturbation) 

of interest (CLASS I) is contrasted against those of all other compounds (or a desired subset of compounds) 

(CLASS II). Proteins are represented by gray dots on the plot. Proteins on the right and left extremities of the x 

axis are most specifically up- and down-regulated proteins, respectively. Note that besides the magnitude of 

the effect, OPLS-DA takes reproducibility (significance) into account. Therefore, even proteins with 

minimal but reproducible changes can be identified using this strategy. Figure reused with permission 

from (Saei, Chernobrovkin et al. 2018). 
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4 RESULTS AND DISCUSSION 

4.1 PAPER I. COMPARATIVE PROTEOMICS OF DYING AND SURVIVING 
CANCER CELLS IMPROVES THE IDENTIFICATION OF DRUG TARGETS 
AND SHEDS LIGHT ON CELL LIFE/DEATH DECISIONS 

 

In Paper I, we focused on improving FITExP by inclusion of proteomics data obtained from 

matrix-detached cells in the analyses. Chemotherapeutics usually cause the detachment of 

adherent cancer cells, culminating in cell death. The original FITExP methodology and most 

molecular biology studies are based on the proteomic analysis of only matrix-attached cells 

after treatment and usually ignore matrix-detached cells. We hypothesized that since detached 

cells are more sensitive, they might reflect the chemotherapeutic-induced proteome changes in 

a better way. Furthermore, the proteomes of detached cells would possibly provide additional 

information on cell life and death decisions as well as sensitivity or resistance mechanisms to 

anticancer compounds. To test these hypotheses, we treated HCT-116, A375 and RKO cells 

for 48 h with 5-fluorouracil, methotrexate and paclitaxel and separately analyzed the proteomes 

of attached and detached cells.  

Interestingly, the most obvious finding was that the proteomes of detached cells showed a 

higher dispersity than attached cells in the principal component analysis (PCA) (Figure 12), 

indicating that the extent of proteome change during cell death is higher than even cell type or 

the applied treatments. The bottom-line of such an observation could be that life exist within 

specific proteome boundaries and harsh distortion of the proteome space can lead to cell death.  
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Figure 12. PCA of the whole proteome dataset of attached and detached cells (Q2 = 0.705). A) The first 

component separated the different states based on their attachment status, while the second component separated 

the tested cell lines. B) The third component apparently separated the proteomes based on carbohydrate metabolic 

parameters. Reused from (Saei, Sabatier et al. 2018) with permission from American Society for Biochemistry 

and Biophysics. 

The separate proteomics datasets on attached and detached cells performed comparably 

in target and drug MOA deconvolution, and when used in combination improved the target 

ranking for paclitaxel significantly and for 5-fluorouracil marginally. 

To discover proteins that specifically respond to a treatment of interest, we borrowed 

the specificity concept from FITExP method (Chernobrovkin, Marin-Vicente et al. 

2015). It is known that the molecular components of a pathway targeted by a compound 

present differential regulation. However, simple differential regulation (ratio of protein 

abundances in cell treated with drug divided by vehicle control) is not an efficient 

way to approach drug target deconvolution, as similar generic effects such as stress 

response, detoxification or death pathways can be triggered by different molecules. 

Therefore, we introduced specific regulation as: “the ratio of protein regulation in response 

to the drug of interest, to the median regulation in all other drugs or treatments in the 

library” (Chernobrovkin, Marin-Vicente et al. 2015). This approach can thus highlight the 

proteins that are specifically responding to a particular molecule. Although specificity 

values can be easily calculated, for visualization purposes, we also employ a 

sophisticated supervised classification method called OPLS-DA for characterization 

of specific proteins (Bylesjö, Rantalainen et al. 2006).
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Since these models were very useful in visualization of proteome responses, they were 

used throughout the whole project. OPLS-DA models were therefore built for the 

compounds in the study and their targets could be identified in top positions (Figure 13). 

Figure 13. OPLS-DA loading enables the (discovery and) visualization of drug targets and mechanistic 

proteins in FITExP. OPLS-DA loadings for A) methotrexate, B) 5-fluorouracil and C) paclitaxel vs. all other 

states in different cell lines. The drug targets and other proteins directly involved in drug MOA are shown in red. 

Adapted from (Saei, Sabatier et al. 2018) with permission from American Society for Biochemistry and 

Biophysics. 
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regulation in either class, regardless of the cell line or the drug used. Six proteins consistently 

up- or down-regulated in the attached vs. detached cells were selected (a representative 

example has been shown in Figure 14) and knocked down each by two specific (functionally 

verified or predesigned) siRNAs in the presence and absence of compounds to decipher their 

roles in cell death/survival. The rationale and workflow of the siRNA experiments in 

summarized in Figure 15A-B and the results of siRNA experiments in three cell lines in 

presence and absence of the test compounds is given in Figure 15C. 

Figure 14. EIF4H as a representative 

protein which is down-regulated in 

all types of dying treated cells with all 

the treatments. Error bars not 

available for detached AF and HF, as 

EIF4H was not quantified in 1-2 

replicates (H = HCT116 cells, A = 

A375 cells, R = RKO cells, F = 5-

fluorouracil, M = methotrexate and P = 

paclitaxel). Reused from (Saei, 

Sabatier et al. 2018) with permission 

from American Society for 

Biochemistry and Biophysics. 
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Figure 15. The rationale and design of follow-up siRNA experiments. A) The rationale and methodology for 

selection of 6 proteins potentially differentiating cell death vs. survival. B) siRNA experiments workflow for 

functional validation. C) The effect of different siRNA knockdowns on the viability of cells in the presence or 

absence of compounds. Silencing CTTN, USP11, ACAA2 and EIF4H did not affect the cell viability in the 

presence of drugs (error bars represent the SD in 4 replicates). Reused from (Saei, Sabatier et al. 2018) with 

permission from American Society for Biochemistry and Biophysics.  

Conclusions 

In summary, this study showed for the first time, that on the contrary to the common line of 

thought, the proteomes of matrix-detached cells can be studied. As shown in this work, the 

transition to cell death had a larger impact on cell proteome than different cell type or changes 

exerted by anticancer compounds. It was shown that data from matrix-detached cells are a 
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valuable companion to attached cells in studying drug target behavior and MOA. The study 

also led to the discovery of proteins characteristic of cell death or survival irrespective of the 

cell line and type of treatment. Some of these proteins could be potential drug 

targets. 

However, there are a number of inherent limitations. This method can only be applied 

to adherent cells. Moreover, although this approach provides more information, it also 

doubles the number of samples in comparison with classic FITExP. Finally, some 

anticancer agents or treatments might disrupt the integrity of cell membrane and cannot 

be studied through this method.  
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4.2 PAPER II. PROTARGETMINER: A PROTEOME SIGNATURE LIBRARY OF 
ANTICANCER MOLECULES FOR FUNCTIONAL DISCOVERY 

As a further development of FITExP method, we built a publicly available expandable 

proteome signature library of anticancer molecules in A549 adenocarcinoma cells, called 

ProTargetMiner. The objectives of this study was to demonstrate the general applicability of 

FITExP methodology for different classes of compounds and to provide a public platform 

where the MOA of new compounds can be analyzed at the protein level. The main objective 

of ProTargetMiner is depicted in Figure 16. This resource contains the data on 287 proteome 

signatures for 56 compounds. The main dataset contains 7,328 proteins and 1,307,859 refined 

protein-drug data points.  

Figure 16. Objectives of ProTargetMiner. A) ProTargetMiner task, among other things, is to identify 

compounds with similar MOA in multidimensional space and provide specific information on drug targets, and 

protein involved in the cellular processes connected to the compound under study. B) The basic assumption is that 

drug targets and mechanistic proteins are specifically regulated. C) Compound-specific targets and proteins are 

pulled out using OPLS-DA-enabled specificity analysis. Figure adapted with permission from (Saei, 

Chernobrovkin et al. 2018). 
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is extensively characterized in the literature; and second, in the viability experiments this cell 

line showed a higher sensitivity to the compound library than the MCF-7 and RKO cells. The 

compound library comprised of 118 molecules cherry picked for cancer indication from 

Selleckchem FDA-approved drug library. Having compounds with known targets and MOAs 

was a prerequisite to successful establishment and benchmarking of the ProTargetMiner 

methodology. Filtered by sensitivity, 56 compounds were finally chosen (plus some 

compounds from collaborators with undefined or less defined targets or MOAs). The 

compounds grossly belonged to 19 different classes with versatile targets (112 known targets 

in total) and mechanisms, according to available information curated from DrugBank 

(https://www.drugbank.ca/) in January 2019. For each molecule, a concentration was used 

killing 50% of the cells (LC50) after 48 h and the respective proteomes were analyzed in at 

least three replicates. Methotrexate, paclitaxel, and camptothecin were included in each 

multiplexed experiment for normalization and quality control purposes (ProTargetMiner 

workflow in Figure 17). 

Figure 17. ProTargetMiner workflow. LC50 values were determined for the compound library (n=118) plus 

some other compounds in three cell lines; A549 cells were chosen based on their higher sensitivity; compounds 

were selected based on their cytotoxicity; cells were treated with 56 compounds and samples were prepared for 

shotgun proteomics in at least three independent biological replicates; samples were multiplexed in each 

experiment (methotrexate, paclitaxel and camptothecin were included in all 9 experiments); samples were lysed, 

digested, and labeled with TMT-10plex; pooled within each experiment and fractionated to increase the proteome 

coverage; individual fractions were analyzed by LC-MS/MS, followed by protein identification, quantification 

and data post-processing. Figure reused with permission from (Saei, Chernobrovkin et al. 2018). 
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was thus related to dissimilarities in targets, MOA and cell death. Therefore, a special attribute 

of ProTargetMiner vs. connectivity map efforts, is the normalization of the biological endpoint. 

In other connectivity map efforts, fixed or random concentrations of compounds have been 

used which might not be biologically relevant.  
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4.2.2 Proteomic dissection of cell death trajectories 

It is known that compound signatures can be successfully separated by mapping the whole 

proteome or using even a subset of 1000 most abundant proteins (Chernobrovkin and Zubarev 

2016). Since the ProTargetMiner library is composed of >50 molecules with diverse MOA, it 

can potentially probe most cell death pathways. We would like to envision that these pathways 

are represented by cell death trajectories in the proteome space, which encompasses all possible 

cell states. We define cell death trajectory as a track in the proteome space, which is caused by 

a cytotoxic agent and passes from a normal living state to a death state (Saei, Chernobrovkin 

et al. 2018). The proteome space and death trajectories are shown in schematics in Figure 16. 

In the cell death community, there is a long-term debate and controversy on the number, nature 

and the molecular characteristics of cell death modalities (Galluzzi, Bravo-San Pedro et al. 

2015). For approaching this problem statistically with proteomics, we set to determine the 

number of orthogonal dimensions in the dataset. At least 11 independent dimensions were 

discovered in the original ProTargetMiner dataset using factor analysis. Cyclin-dependent 

kinase inhibitor 1 (CDKN1A) and PCNA-associated factor (PCLAF) were the most 

contributing proteins with opposite signs to the first dimension. Interestingly, CDKN1A plays 

a role in p53 mediated suppression of cell proliferation (Harper, Adami et al. 1993), and 

PCLAF is a cell cycle-regulated protein that regulates DNA repair (Emanuele, Ciccia et al. 

2011). The top 30 proteins of the first three dimensions mapped to “p53 signaling pathway and 

cell cycle”, “focal adhesion and angiogenesis” and “chromatin assembly and fatty acid 

metabolism”. The dimensions discovered in this dataset represent cell death trajectories as 

orthogonal pathways, or in other words theoretical constructs, and some of them might have 

little or no resemblance to the classical death modalities from textbooks (Zubarev, Nielsen et 

al. 2008). Expectedly though, some dimensions already corresponded to classic cell death 

modes, such as dimension 1 (p53-dependent apoptosis), dimension 4 (autophagy), and 

dimension 6 (macromitophagy). However, the other dimensions were hard to assign to known 

death modalities. Attributing the top proteins defining each dimension with the classic or novel 

cell death modalities can be an interesting subject for future research. Therefore, these 

dimensions and at least their top contributing proteins deserve detailed follow-up 

bioinformatics analysis and experimental validation.  

 

4.2.3 Similar compounds produce similar proteome signatures 

The nonlinear dimension reduction method t-SNE was used for dimension reduction of the data 

(Maaten and Hinton 2008). On this t-SNE plot that we call “death map”, all compound 

proteome signatures are projected as points. The proximity of signatures on this plot can be 

used to assess compound similarities. The compounds grouped by their proteomic signatures 

into expected clusters based on known targets and MOAs (Figure 18). As anticipated, well-

known compounds with similar MOAs (e.g., tubulin depolymerization inhibitors, pyrimidine 
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analogues, thioredoxin reductase inhibitors auranofin, TRi-1 and TRi-2 (Stafford, Peng et al. 

2018) and topoisomerase inhibitors) were close on the t-SNE plot.  

Figure 18. Drugs with similar MOAs have similar proteomics fingerprints and were mostly adjacent on the 

t-SNE plot (“death map”). Compound classes are shown with different colors. Figure reused with permission

from (Saei, Chernobrovkin et al. 2018).

Since tomatine was an obvious outlier in t-SNE and PCA, its data was not included in the 

following analyses. The extraordinary proteome changes in response to tomatine happen in 

both directions (up- and down-regulation) and are likely associated with proteasome inhibition 

(da Silva, Andrade et al. 2017) and unspecific membrane damage (Roddick and Drysdale 

1984), as reported before.  

Hierarchical clustering was also used to separate the compounds into clusters. As shown in 

Figure 19, the compounds were mostly separated in mechanistic clusters based on known 

targets/MOAs. Compounds known to directly or indirectly induce DNA damage were 

separated from the rest of the molecules. Tubulin inhibitors paclitaxel, docetaxel, vincristine 

and 2-methoxyestradiol, proteasome inhibitors b-AP15 and bortezomib, as well as thioredoxin 

reductase inhibitors TRi-1 and TRi-2, grouped together, indirectly validating the approach. The 

proteins in each cluster were subjected to GO enrichment. Interestingly, some of these clusters 

map to high density protein networks. For example, cluster 13 mapped to ribosome. Four 

compounds showed down-regulation of the ribosomal proteins, which is an indicator of 

ribosomal stress. Three of those molecules were pyrimidine analogues 5-fluorouracil, 
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floxuridine and carmofur. Therefore, floxuridine and carmofur potentially induce ribosomal 

stress, similar to 5-fluorouracil (Marin-Vicente, Lyutvinskiy et al. 2013). The fourth compound 

was an alkylating agent oxaliplatin. A recent paper actually showed that oxaliplatin mechanism 

is peculiar and not similar to other platinum analogues and that it involves induction of 

ribosome biogenesis stress (Bruno, Liu et al. 2017). Cluster 12 mapped to pathways related to 

protein folding and mainly shows up-regulation with proteasome inhibitors bortezomib and b-

AP15. Interestingly, a number of compounds particularly kinase inhibitors such as lapatinib, 

bosutinib and gefitinib showed an up-regulation of (chole)sterol synthesis pathways in cluster 

14. 

Figure 19. Hierarchical clustering separates the compounds into mechanistic clusters (compound classes are 

highlighted with colors; for simplicity of coloring, the compound classes affecting the same targets are grouped 

together). Compounds with similar well-known mechanisms mostly grouped together (left panel). Proteins in each 

cluster were subjected to pathway analysis and the corresponding three top enriched gene ontology (GO), 

molecular function (MF) or cellular component (CC) are shown. Cluster 9 did not map to any specific pathways.  
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4.2.4 Functional discovery in a compendium of proteome signatures 

As shown in Figure 19, there are specific features for every compound that must be pulled out 

using statistical approaches. We employed OPLS-DA modeling scheme presented in Paper I 

to identify specifically regulated proteins, among which drug target and mechanistic proteins 

are found. In the original FITExP method and Paper I, a panel of cell lines and a number of 

contrasting compounds were used to increase the specificity for deconvolution of targets and 

mechanistic proteins. The hypothesis of Paper II was to investigate if an equivalent increase 

in specificity can be achieved by a multitude of contrasting compounds in a single cell line. 

This would dramatically facilitate the applicability of the method for characterization of novel 

compounds. Therefore, we built OPLS-DA models for every molecule in this study, contrasting 

its proteome signature (class I) against all the other compounds (class II). OPLS-DA model 

loadings for methotrexate, paclitaxel, and vincristine show the deconvolution of cognate targets 

in Figure 20A-C. DHFR was found as a straightforward target for methotrexate. Paclitaxel and 

vincristine affect tubulin depolymerization and polymerization, respectively. Tubulins could 

be found among top-regulated proteins for both compounds. 30 top specifically regulated 

proteins close to x axis extremities were submitted to StringDB and the enriched pathways are 

shown in the right panel in Figure 20. These pathways reflect the known MOAs for the 

corresponding compounds.  

The OPLS-DA models also revealed compound effects on protein complexes. For example, 

for bortezomib, which is a proteasome inhibitor, specific up-regulation of proteasome subunits 

was noted (Figure 20D). The average fold change of proteasome subunits was 1.15 vs. control. 

Not only this shows the efficiency of OPLS-DA in pulling out subtle effects, but it also shows 

how a small perturbation in proteasome expression can have deleterious consequences for the 

cell. Likewise in sorafenib model (Figure 20E), NADH dehydrogenases and mitochondrial 

ribosomal proteins were specifically down-regulated, validating previous findings in human 

neuroblastoma cells (Bull, Rajalingam et al. 2012). These results demonstrate that 

ProTargetMiner results can also be carefully generalized to other cell lines.  
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Figure 20. ProTargetMiner reveals the targets, MOA and affected cellular complexes. A-E) 
Exemplary OPLS-DA model loadings for several compounds show the successful deconvolution of targets and 

MOA. The results of pathway analysis for the 30 top specifically up- or down-regulated proteins is shown on 

the right panel: KEGG pathways for methotrexate - “one carbon pool by folate and pyrimidine 

metabolism”; paclitaxel and vincristine - “tubulin”; bortezomib - “proteasome”. GO terms for sorafenib - 

“NADH dehydrogenase activity” (in red) and “mitochondrial translation” (in blue) (all p values < 0.001). RPL 

= ribosomal proteins of the large and RPS = ribosomal proteins of the small subunit. MRP = 

mitochondrial ribosomal proteins, ND = NADH dehydrogenase. Disconnected proteins not involved 

in the pathway has been omitted. Figure adapted with permission from (Saei, Chernobrovkin et al. 2018). 

4.2.5 The degree of drug-induced proteome changes 

The next hypothesis was if the extent of proteome perturbation can be associated with the 

specificity of the compounds (the number of affected targets and MOAs). Therefore, we ranked 

all compounds by the global deviation of their proteome signatures from control (Figure 21). 

As expected, proteasome inhibitors were among the compound inducing the largest deviations. 

The largest proteome deviation was induced by bortezomib, while on the other side of the 
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spectrum, tubulin inhibitors caused the smallest proteome perturbation. While the large 

proteome deviation can be the result of protein accumulation upon inhibition of the proteasome, 

the small perturbation of the proteome with tubulin inhibitors at LC50 concentrations, 

potentially indicates the high specificity and a lack of off-target effects for the latter. 

Furthermore, the slightest proteome change induced by dasatinib is unexpected, as this drug 

has 23 annotated targets in DrugBank as of January 2019. There was no particular correlation 

between compound LC50 and the extent of proteome changes. 

Figure 21. The extent of proteome deviation in response to each molecule, might be an indicator of 

compound specificity. Center line, median; box limits contain 50%; upper and lower quartiles, 75% and 25%; 

maximum, greatest value excluding outliers; minimum, least value excluding outliers; outliers, more than 1.5 times 

of upper and lower quantiles. Figure reused with permission from (Saei, Chernobrovkin et al. 2018). 
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4.2.6 Assessing the miniaturization possibility of ProTargetMiner concept 

Connectivity map efforts aim to saturate the mechanistic space by profiling myriad of 

compounds (Subramanian, Narayan et al. 2017). There are certain inherent limitations to these 

approaches. First, this would be an open-end project, as inhibitors of every cellular protein is 

not available. Even if inhibitors were available, most would be multi-targeted and unspecific. 

Second, the results of a connectivity map is a ranking of perturbations, which if too many would 

hamper the interpretation of results.  

Furthermore, in drug discovery and development, a detailed characterization of target and 

mechanism space, especially at the proteome level is desirable. Compound-induced effects are 

most advantageous if obtained in the most relevant biological models and cell types. However, 

building databases such as ProTargetMiner can be time-consuming, expensive and therefore 

not rational, at least not with the current technological platforms. Therefore, we tested if 

ProTargetMiner methodology could be miniaturized to a minimal compound panel size for 

effective deconvolution of drug targets and MOA. To obtain the optimal number of contrasting 

molecule needed for effective target and MOA characterization, we built PLS-DA models in 

R by using only a subset of contrasting compounds in the model (n = 1-54, 50 molecule 

combinations randomized for each n). In each iteration, the ranking of known targets for 

representative molecules camptothecin (target: TOP1), paclitaxel (target: tubulins), 

methotrexate (target: DHFR) and OSW-1 (target: OSBP1) and was calculated and the mean 

ranking for each n was obtained. As expected, the deconvolution process was more efficient 

with higher number of contrasting compounds (and not for randomly chosen non-target 

proteins) (Figure 22). Encouragingly, 8-10 contrasting signatures were already efficient for 

obtaining target rankings below 10.  
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Figure 22. Assessing the miniaturization possibility of ProTargetMiner concept by calculating the optimal 

number of contrasting molecules. PLS-DA models were built in R for 4 representative compounds, where they 

were contrasted vs. 50 random combinations of 1-54 compounds and the drug target ranking was averaged for 

each number. NDUFV2 and CARS2 proteins were randomly selected as non-target proteins. Figure reused with 

permission from (Saei, Chernobrovkin et al. 2018). 

4.2.7 Miniaturization of ProTargetMiner 

With miniaturization opportunity at hand, we decided to make ultra-deep proteomic databases 

in three extensively used cancer cell lines, A549, MCF-7 and RKO, for 9 molecules 

representing most diverse MOAs for providing optimal contrast. These datasets could then be 

merged with external data from users interested in target deconvolution for their compounds. 

These 9 molecules were chosen from different orthogonal dimensions in the factor analysis of 

the original ProTargetMiner dataset with 56 compounds, and include 8-azaguanine (target: 

PNP), raltitrexed (target: TYMS), topotecan (target: TOP1), floxuridine (target: TYMS), nutlin 

(target: MDM2), dasatinib (target: at least 23 kinase targets), gefitinib (target: EGFR), 

vincristine (target: tubulin) and bortezomib (proteasome). 

These deep dataset have a total depth of 11562 proteins, out of which 11293 are quantified with 

at least two peptides. The number of refined proteins with at least two peptides and no missing 

values in all the treatments was 7398, 8735 and 8551 in A549, MCF-7 and RKO cell lines, 

respectively. Therefore in total, 6496 proteins were quantified in all cell lines with no missing 

values. 

Once again, we used the leave-one-out approach for confirming the validity of the databases 

and their applicability in target/MOA deconvolution. First OPLS-DA models were built for 

compounds in single cell lines and the representative examples are shown in Figure 23. TYMS 
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was among the top three protein for raltitrexed in MCF-7 cells (Figure 23A) and the four top 

proteins mapped to KEGG pyrimidine metabolism (3 proteins, p = 0.0003), which is basically 

the drug MOA. Similarly, tubulins were among the top proteins for vincristine in A549 cells 

(Figure 23B), and several kinase targets were identified as top proteins for dasatinib in different 

cell lines (Figure 23C, F and G). Interestingly, CYP1A1, which is involved in dasatinib 

metabolism (Wang, Christopher et al. 2008), was identified as the top specifically up-regulated 

protein in MCF-7 cells (Figure 23C) and its expression level was extraordinary compared to 

other drugs in this cell line (Figure 23D). The top specifically down-regulated protein in 

response to dasatinib in MCF-7 cells was Poly(ADP-ribose) glycohydrolase (PARG) (Figure 

23C) which was specifically down-regulated in comparison to the other compounds (Figure 

23E). Specific down-regulation of PARG was also noted in the other two cell lines (Figure 

23F-G). While in all the cell lines, the (30) top specifically up-regulated proteins for 

bortezomib show an enrichment of ubiquitin (RPS27A) and other proteins involved in 

ubiquitination (Figure 23H and J), in MCF-7 cells, the top first and fifth most specifically 

down-regulated proteins were dipeptidyl peptidase 2 (DPP7) and dipeptidyl peptidase 3 

(DPP3) respectively, which are known non-proteasomal targets of the proteasome inhibitor 

bortezomib (Arastu-Kapur, Anderl et al. 2011). The specific down-regulation of these two 

proteins in comparison with other compounds is shown in Figure 23I. However, these proteins 

were specific to MCF-7 cells and were not among the top proteins in A549 or RKO cells. These 

results clearly show that inclusion of 9 compounds in a single cell line provides enough 

specificity for drug target and MOA deconvolution in majority of cases. Furthermore, due to 

the special depth of and diversity of cell lines in the dataset, cell-specific targets, low-abundant 

targets (such as kinases), and drug-metabolizing enzymes might also be found.  
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Figure 23. Miniaturized ProTargetMiner captures the targets of compounds in single cell lines with 8 

contrasting compounds. OPLS-DA loadings for A) raltitrexed in MCF-7 cells and B) vincristine in A549 cells. 

The 4 top up-regulated proteins in OPLS-DA loading map to KEGG pathway pyrimidine metabolism (3 proteins, 

p = 0.0003). The targets are highlighted. C) OPLS-DA loading for dasatinib shows multiple kinase targets on top 

rankings in MCF-7 cells; CYP1A1 and PARG as the top most specifically up- and down-regulated proteins, 

respectively. The expression pattern of D) CYP1A1 and E) PARG in the panel of compounds in MCF-7 cells. F-

G) The identification of multiple targets for dasatinib in A549 and RKO cells. H) Bortezomib targets DPP7 and 

DPP3 in MCF-7 cells, but still induces the expression of proteins involved in ubiquitination as shown in the 

pathway (30 top proteins, protein ubiquitination pathway proteins in red). I) The specific down-regulation of DPP7 

and DPP3 in response to bortezomib in comparison with other compounds in MCF-7 cells. J) Up-regulation of 

protein ubiquitination pathway in response to bortezomib in A549 cells and the corresponding pathway analysis 

of 30 top proteins (protein ubiquitination pathway proteins in red). Disconnected proteins not involved in the 

pathway has been omitted. 

4.2.8 Merging deep datasets to obtain a general picture of drug targets and 
MOA 

Next we merged the deep datasets in three cell lines (6496 proteins) to evaluate the performance 

of OPLS-DA in drug target and MOA characterization. Of course, merging would offset the 
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cell-specific targets and MOA, but would provide a general cell-unspecific MOA for 

compounds. When all cell lines were used in the OPLS-DA model, TYMS could be identified 

on first position for raltitrexed and 16th for floxuridine (Figure 24A), showing that inclusion 

of two compounds with similar targets/MOA does not drastically hinder the target 

deconvolution in OPLS-DA. Furthermore, down-regulation of ribosomal proteins in response 

to floxuridine in Figure 24A is a feature of pyrimidine analogues as discussed before (Marin-

Vicente, Lyutvinskiy et al. 2013) and observed in Figure 19. The OPLS-DA loading showed 

the general dasatinib targets and topoisomerase 1 (TOP1) as the target of topotecan among the 

top proteins (Figure 24A). Dasatinib also shows specific up-regulation of CYP51A1 and 

down-regulation of PARG. 

OPLS-DA loading for vincristine in the merged dataset gave microtubule cytoskeleton 

organization (6 proteins, p=0.0105) (Figure 24B) and showed an enrichment of tubulins as 

specifically down-regulated proteins. The down-regulated proteins also mapped to a tight 

pathway representing “poly(A) RNA binding” (13 proteins, p=7.47e-06) and 

“ribonucleoprotein complex biogenesis” (6 proteins, p=0.0444). These pathways are in good 

agreement with previous research showing that vincristine affects RNA synthesis in human 

cells (Wagner and Roizman 1968). The final OPLS-DA model represents nutlin and could 

highlight the cognate target MDM2 at 9th position. While the top specifically up-regulated 

proteins (n=30) mapped to KEGG “p53 signaling pathway” (5 proteins, p < 1.15e-05), the 

specifically down-regulated proteins mapped to multiple pathways in DNA replication 

and repair (GO “DNA repair” (8 proteins, p=0.0001) is highlighted in blue in Figure 
24C). In Figure 24D, we show a dip in the expression of multiple proteins involved in 

DNA repair in response to nutlin compared to other compounds in A549 cells (similar 

results were obtained in other cell lines). Nutlin activates the p53 pathway by antagonizing 

MDM2 (Vassilev, Vu et al. 2004) and is known to slow down DNA repair (Verma, Rigatti 

et al. 2010). Furthermore, DNA repair processes are now known to mediate the p53-

dependent tumor suppression (Janic, Valente et al. 2018). Therefore, the subtle down-

regulation of these proteins can explain why nutlin slows down DNA repair. The subtlety of 

this effect might be the reason why this effect has not been observed before. The 

expression of p53 and MDM2 is shown in Figure 24E. While some other compounds 

also activate p53, the up-regulation is significantly higher in response to nutlin, which 

directly affects p53.  
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Figure 24. Merging deep datasets from three cell lines improves the target ranking in ProTargetMiner.  A) 
OPLS-DA loadings for raltitrexed, floxuridine, dasatinib and topotecan. The known drug targets are highlighted. 

For floxuridine, specific down-regulation of ribosomal proteins is shown. B) OPLS-DA loading for vincristine 

showing the up-regulation of microtubule cytoskeleton organization (6 proteins, p=0.0105) and down-regulation 

of poly(A) RNA binding (13 proteins, p=7.47e-06). The known tubulin targets are shown with red circles. C) 

OPLS-DA loading for nutlin shows the up-regulation of p53 signaling pathway (5 proteins, p=1.15e-05), and 

specific down-regulation of proteins in DNA replication and repair (7 proteins, p = 0.0001). D) The subtle down-

regulation of top DNA repair proteins specifically down-regulated with nutlin in A549 cells. E) The expression of 

p53 and MDM2, the cognate target of nutlin in response to the panel of compounds in A549 cells. Panels D and E 

reused with permission from (Saei, Chernobrovkin et al. 2018). 

4.2.9 ProTargetMiner R Shiny package as a public tool 

The original and deep ProTargetMiner datasets can be easily extended with novel compounds 

in pursuit of their targets and MOA. This possibility was actually shown in the original 

ProTargetMiner dataset when 9 experiments were combined. Therefore, to make the resource 

directly available to the community, a Shiny package was written in R, which provides an 
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interface for integration of user data, matching the proteins with the datasets and OPLS-DA 

modeling in the desired cell line or in the merged dataset (schematics of Shiny package are 

shown in Figure 25). The OPLS-DA loading ranking of all proteins for the submitted 

compound can be extracted. In summary, the user will obtain the proteome signature of a 

compound of interest at LC50 concentration in 48h in any of the above cell lines (or all of them 

for obtaining more power) and feed the gene names and regulations in three replicates to the 

Shiny package. The package output will be an OPLS-DA model contrasting the given 

compound against the other proteome signatures in that cell line, from which a ranking of 

specificity for proteins can be extracted. The state-of-the-art depth of our dataset would 

accommodate the majority of proteome signatures.  

Figure 25. The ProTargetMiner R Shiny package for drug target and MOA deconvolution. In summary, the 

user could obtain the proteome signature of a compound of interest at LC50 concentration in 48h in any of the 

above cell lines (or all of them for obtaining more power) and feed the gene names and regulations in three 

replicates to the Shiny package. The package output will be an OPLS-DA model contrasting the given compound 

against the 9 diverse proteome signatures in that cell line (or 55 in the original set), from which a ranking of 

specificity for proteins can be extracted. Clicking on the interactive PLS-DA plot gives the attributes of the selected 

proteins, e.g. name, number of peptides and sequence coverage, and will show the expression of that protein in the 

relevant dataset compared to the other perturbations. 
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4.2.10 The first human protein correlation database uncovers unexpected 
complexity in protein regulation 

Due to the resource demanding nature of protein synthesis, cells spatiotemporally control 

protein expression (Scott and Pawson 2009). Thus cells reinforce the coordinated expression 

of genes in the same protein complex or pathway (DeRisi, Iyer et al. 1997). Since such co-

expression can indicate functional relationship, “Guilt by association” (Stuart, Segal et al. 

2003) approach has been used for characterization of protein function by analyzing co-

expression (Hughes, Marton et al. 2000). Such databases have so far been based on transcripts 

expression (Stuart, Segal et al. 2003; Zuberi, Franz et al. 2013; van Dam, Craig et al. 2014), 

while it is known that proteomics is more accurate in capturing co-regulation (Wang, Ma et al. 

2017). To the best of our knowledge, no large-scale proteomics-based protein correlation 

database exists. 

As the 55 compounds used in this study perturbed the majority of the proteome, 

ProTargetMiner presented the opportunity to build the first human protein pairwise correlation 

database solely based on proteomics data (Figure 26).  

Moreover, such a database can provide information on the complexity of protein regulation. 

Furthermore, the pair-wise anti-correlation of protein abundances is usually neglected in such 

databases. This is while there is a lower chance for negative correlations (than positive 

correlations) to result from technically-induced artifacts (Lee, Hsu et al. 2004). Such protein 

anti-correlation can potentially represent opposing biological processes, where they are wired 

for example in active transcriptional repression, transcriptional activation or even canceling of 

such events (Struhl 1999). Protein pairwise anti-correlation was therefore included in the 

current study, and physical interpretation of anti-correlation is an open opportunity.  

After refining, removal of the batch effects and data filtering, a 4212 x 4212 correlation matrix 

was made for the original ProTargetMiner dataset (Figure 27). At least 11 clusters could be 

recognized in the matrix. For instance, the 129 proteins present in cluster 8 mapped to 

ribosomal proteins (n=72) and ribosome biogenesis (n=10). From the 17,740,944 correlation 

pairs in the matrix, a high-confidence set (FDR<0.001) of 103,928 positively and 51,137 

negatively correlating protein pairs were chosen. The lower frequency of negative in 

comparison with positive correlations was expected and was consistent with a previous study 

(Lee, Hsu et al. 2004).  

Figure 26. Analyzing pair-wise protein correlation in 

ProTargetMiner. The proteome perturbation by 55 anticancer 

compounds will uncover protein co-regulation and anti-

correlation networks and facilitate the functional annotation of 

uncharacterized proteins. Figure adapted with permission from 

(Saei, Chernobrovkin et al. 2018). 

Co-regulation

Correlations

Anti-correlation Co-regulation
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4.2.11 The database pulls out dense regions of protein interaction networks 

The 10 top correlating pairs (r>0.98) mostly mapped to dense interaction networks and protein 

superfamilies, e.g., protein complexes, such as MCM, condensin, ribosome, chaperonin-

containing T and mitochondrial respiratory chain as well as tubulins. In Figure 28 we mapped 

the top 2500 co-regulated pairs, which clearly form functionally coherent groups of genes.  

For making the database available for network visualization and pathway analysis, we mapped 

the data to StringDB entities and created a set of external payload data. These payload data can 

thus be uploaded to StringDB as nodes and edges. Known StringDB interactions and 

ProTargetMiner correlations can be visualized simultaneously using this approach.  

Figure 27. Analyzing pairwise protein 

correlations in ProTargetMiner 

across 55 perturbations. A correlation 

matrix of 4,212 proteins. Vertical axis: 

broken-down to 11 clusters. Note the 

high abundance of anti-correlations 

(blue color) and the existence of clear 

cut corners in the matrix. Figure reused 

with permission from (Saei, 

Chernobrovkin et al. 2018). 
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Figure 28. Top co-regulating proteins in ProTargetMiner. The top 2500 correlating pairs map to dense 

protein interaction networks, indirectly validating the approach. Figure reused with permission from (Saei, 

Chernobrovkin et al. 2018). 
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4.2.12 Protein anti-correlation, true or false? 

TIGAR (TP53-inducible glycolysis and apoptosis regulator) was one of the top and enriched 

anti-correlating proteins. Therefore, we set out to examine its expression pattern against its 

most anti-correlating pair NCAPG (condensin complex subunit 3) (r=-0.84) (Figure 29A). A 

pathway analysis was performed for TIGAR and NCAPG, along with 5 most correlating 

proteins for each (Figure 29B). While 3 proteins from the TIGAR group gave p53 signaling 

pathway (p < 0.002), 5 proteins from the NCAPG group mapped to condensin complex and 6 

to cell division (p < 0.001). This result is in good agreement with the observation that p53 

inhibits entry into mitosis upon a blockage of DNA synthesis. Furthermore, TIGAR is 

known to protect from accumulation of genomic damage in a p53-dependent manner 

(Bensaad, Tsuruta et al. 2006). Interestingly, one of the proteins strongly co-regulating 

with TIGAR (r=0.89) was CMBL, but this protein was not annotated in the p53 

signaling pathway in StringDB. However, CMBL has been identified as a p53-inducible 

protein in a microarray screen (Jiang, Kon et al. 2015). These findings confirm the 

predictive power of the database and serve as an in silico proof-of-concept.  
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Figure 29. Comprehensive analysis of protein pairwise correlation considering up- and down-regulation. 
A) The anti-correlation of TIGAR with NCAPG. B) All the top proteins which are co-regulating with TIGAR anti-

correlate with those co-regulating with NCAPG. The blue links reflects information available in StringDB and the

red links reflects newly established links in ProTargetMiner. C) The anti-correlation of up or down-regulated

TIGAR vs. NCAPG (plots 1 and 2) and up- or down-regulated NCAPG vs. TIGAR (plots 3 and 4). D) Any protein
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pairs give two sets of correlations separately considering their up and down-regulation status. E) Map of pairwise 

correlations between proteins A and B, separately for up- and down-regulation states of protein A. The red circles 

reflect the positions (center) and volumes of 5 fitted 2D Gaussian distributions. The green boxes reflect protein 

pairs that only have strong correlations in one direction. F) 2D Gaussian fitting performs best with 5 components. 

G) Similar analysis as in panel F using scrambled protein abundances. Caption adapted from Paper II (Saei, 
Chernobrovkin et al. 2018). Figure adapted with permission from (Saei, Chernobrovkin et al. 2018).

4.2.13 Adding complexity to protein regulation 

However, this was not the whole story. While the overall TIGAR vs. NCAPG anti-

correlation coefficient was significant (r=-0.84) (Figure 29A), the slope was -0.75 and not 

-1, signifying an underlying complexity. When TIGAR’s regulation was above-average, it 

anti-correlated more strongly with NCAPG (r=-0.75, plot 1 on Figure 29C) than when it 

had a regulation below average (r=-0.52, plot 2). Also, in the first scenario, the slope was 

close to -0.97, as if in perfect association; but with TIGAR down-regulated, the slope 

reduced to -0.56. On the contrary, when NCAPG had a regulation above average, the anti-

correlation with TIGAR was weak (r=-0.23, plot 3), whereas when down-regulated, it had 

a strong anti-correlation with TIGAR (r=-0.80, slope -1.01, plot 4). 

These findings revealed an expected but neglected bimodality in anti-correlation. This 

prompted us to calculate two correlation coefficients for every protein pair (Figure 29D). 

Therefore, we calculated two separate correlations for above and below the median abundance 

of protein A (in the pair A vs. B). The heatmap of these correlations on a 2D plot with a cutoff 

of |r|>0.54 (Figure 29E) unexpectedly revealed five dense areas (circles 1-5 in Figure 29E), 

which were confirmed by fitting symmetric 2D Gaussian distributions (Figure 29F). The 

positions of these Gaussians are shown as the centers of red circles in Figure 29E, and their 

volumes (frequency of pairs) correspond to circle areas. Scrambled protein abundances gave a 

single central spot (Figure 29G) rather than an elliptic symmetry, confirming that spots 2-4 are 

not artifacts.  

Entity 1 or “highly co-regulated” (average r=0.52) contains 12% of the total number of (anti-) 

correlating protein pairs, and the 300 top protein pairs (r ≥ 0.90) map to ribosome, MCM, 

condensin, chaperonin-containing T, NADH dehydrogenases and pyruvate dehydrogenase 

complexes as well as tubulin superfamily, some integrins and spectrins. The center of entity 1 

is above the diagonal, indicating a higher co-regulation when the protein pairs are down-

regulated that up-regulated. This asymmetry can be explained by the fact that down-regulation 

can reach zero, whereas up-regulation cannot reach infinity. Another biological explanation is 

that there is usually no natural stopper for up-regulation, while degradation is under a higher 

level of control, and slows down or stops with only strongly bound stoichiometric complexes 

remaining in the system.  

In general, positive and negative components account for 55% and 33% of total protein pairs, 

respectively. The protein pairs in entity 2 or “co-down-regulated” show better co-regulation 

when down-regulated (average r=0.5 vs. average r=0.3). Entity 2 harbors 23% of correlating 

pairs. Entity 3 or “co-up-regulated” proteins is composed of proteins correlating more when 
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up-regulated (average r=0.5) than when down-regulated (average r=0.28). Entity 3 possesses 

32% of correlating pairs. 

The protein pairs in entity 4 or “anti-correlating” exhibit a higher anti-correlation when protein 

A regulation is below average (average r=-0.29 vs. r=-0.46), while entity 5 or “negatively 

regulated” displays higher anti-correlation when protein A is up-regulated (average r=-0.45 vs. 

r=-0.29). Entities 4 and 5 have a comparable frequency of protein pairs (16% and 17%, 

respectively). These findings are discussed in more detail in Paper II (Saei, Chernobrovkin et 

al. 2018).  

In Figure 29E, a number of protein pairs show strong anti-correlation in one and around zero 

correlation in the other direction. For example, in region 1’, out of the 50 top pairs, 28 proteins 

(both “A” and “B” type) map to negative regulation of cellular processes (p < 0.03). In region 

2’, 11 “A” proteins from 50 pairs give “cell cycle” (p < 0.005), while 5 “B” proteins gave 

“nucleotide excision repair” (p < 2.1E-06) and 7 “B” proteins – mapped to “cellular response 

to DNA damage stimulus” (p < 0.022), exposing the former and the two latter pathways as 

potentially opposing ones (Hustedt and Durocher 2017). The top 50 pairs in region 4’ give 

“ribosome” (16 proteins, p < 2.3E-15) and “ribosome biogenesis” pathways (14 proteins, p < 

1.0E-12). 

4.2.14 Anti-correlation provides further information on protein regulation 

The anti-correlation data can potentially furnish further information on protein regulation. For 

instance, TRIM28 when regulated above average, strongly (r<-0.61) anti-correlates with 34 

proteins mapping to focal adhesion (7 proteins, p < 8.1E-06). Interestingly, a recent study has 

directly linked TRIM28 to cell adhesion (Klimczak, Czerwińska et al. 2017). Furthermore, the 

other enriched pathway was that of ErbB signaling (4 proteins, p < 0.001). TRIM28 is known 

to directly interact with ErbB4 and inhibit its transcriptional activity (Gilmore-Hebert, 

Ramabhadran et al. 2010). 

4.2.15 Untouchable proteome reflects essential cell functions 

We further analyzed to data to investigate if there are proteins with steady expression in 

response to the compound panel, designating the untouchable or core proteome (Figure 30). 

Figure 30. The core and variable proteomes. The 

untouchable or core proteome is defined as a set of proteins 

with steady expression across the treatments. Figure reused 

with permission from (Saei, Chernobrovkin et al. 2018). 

Core or
untouchable 

proteome

Variable
proteome
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To identify core proteins, the standard deviation of expression for all the proteins was 

calculated in the original ProTargetMiner dataset. The 100 most stably expressed proteins 

mapped to proteasome (9 proteins, p < 2E-10), spliceosome (8 proteins, p < 3E-05), and mRNA 

surveillance pathway (6 proteins, p < 0.001). These pathways might represent the core cellular 

functionalities. The fact that proteins from the proteasome and spliceosome were among the 

enriched pathways is remarkable, as we had a number of proteasome inhibitors and proteins 

targeting components of the spliceosome in the library. This shows the great level of control 

and buffering of expression in these complexes and networks. 

 

4.2.16 Untouchable proteome unravels house-keeping proteins 

In comparative proteomics and other molecular biology techniques, and in particular Western 

blots, specific proteins are used as internal references, assuming that they have a steady 

expression. Examples of such housekeeping proteins (HKPs) include GAPDH, β-tubulin and 

β-actin. Such proteins have been selected because of their high mRNA expression levels and 

consistent expression in different cells and tissues. However, stable expression under treatment 

conditions has not been studied for most of these proteins. Indeed, in practice, a number of 

these HKPs show inconsistent expression levels under different treatments (Vigelsø, Dybboe 

et al. 2014; Janes 2015; Lee, Jo et al. 2016). For example, GAPDH, one of the most extensively 

used HKPs showed variable expression in our compound panel especially for bortezomib 

(Figure 31A). These inconsistencies can lead to inaccurate estimation of protein abundance, 

as reported before (Dittmer and Dittmer 2006; Li and Shen 2013; Collins, An et al. 2015; 

Gough 2015). Therefore, characterization of ideal HKPs is an active area of research 

(Eisenberg and Levanon 2013). 

ProTargetMiner presented an opportunity to identify reliable HKPs. We used standard 

deviation across all the treatments for rank ordering of most stably expressed proteins (Figure 

31B). The exemplary expression profiles of two proteins with most steady and variable 

expression are depicted in Figure 31C. More analysis will be done to assess the reliability of 

potential HKPs (with regards to abundance, number of peptides, presence in various cell lines 

and tissues, availability of reliable antibodies, etc.) and presenting a shortlist of top candidates.  
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Figure 31. In search for more reliable housekeeping proteins. A) GAPDH expression across the treatments. B) 

Distribution of standard deviations of 6,032 proteins across the compounds panel. C) Typical proteins exhibiting 

highest and lowest stability across the compound panel. Data are represented as mean±SD. Figure adapted with 

permission from (Saei, Chernobrovkin et al. 2018). 

Conclusions 

In summary, ProTargetMiner can be considered as a resource of proteome signatures for a 

panel of FDA-approved compounds. ProTargetMiner R Shiny package serves as a platform for 

deconvolution of targets, MOA, resistance factors and other specific effects for novel 

compounds. The specificity concept enabled by OPLS-DA modeling can be a viable approach 

in characterization of subtle but biologically meaningful phenomena in target deconvolution in 

proteomics and other big data, as well as nuances of differences in protein expression 

potentially involved in tissue diversification (Silva and Vogel 2016).  Furthermore, the analysis 

of ProTargetMiner data provided insight on the complexity of protein regulation. The 

correlation database can be used for characterization of proteins with unknown functions. 

Finally, the most stably expressed proteins in the ProTargetMiner data can be used as HKPs in 

molecular biology experiments. 
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4.3 PAPER III. COMPREHENSIVE CHEMICAL PROTEOMICS PREDICTS 
DRUG TARGETS: AURANOFIN AS EXAMPLE 

In Paper III, we used a series of chemical proteomics tools –namely TPP, FITExP and 

multiplexed redox proteomics for prediction of targets and characterization of mechanism 

space for auranofin. Auranofin was approved by FDA in 1985 as an antirheumatic agent, but 

recent studies have shown its potent antitumor activity (Rios Perez, Roife et al. 2016) and is 

therefore being evaluated in clinical trials against ovarian cancer (NCT03456700), chronic 

lymphocytic leukemia (NCT03456700) and lung cancer (NCT03456700) (Roder and Thomson 

2015). Auranofin is known to bind to the selenocysteine- (Sec-) active site in thioredoxin 

reductase 1 (TXNRD1). However, surprisingly several different mechanisms have been 

proposed for auranofin and controversies exist regarding its cellular targets and potentially 

important off-targets remain unexplored. Full characterization of auranofin mechanistic space 

can help adjust and justify its repurposing context. 

 

4.3.1 Unbiased prediction of auranofin targets using a combination of 
chemical proteomics tools  

Since each chemical proteomics methods yields both false positives and false negatives, 

multiple tools must be explored and combined to get a reliable list of target proteins, each 

supported by one or more technique. Therefore, a series of experiments were performed for 

auranofin: Two TR-TPP experiments in cells (2 and 3 µM in HCT116 cells for 2h), a TR-TPP 

experiment in lysate (500 nM in HCT116 cells), a FITExP experiment (HCT116, RKO and 

A375 cell lines treated for 48h with LC50 concentrations; methotrexate, OSW-1 and paclitaxel 

were used as contrasting compounds) and a redox experiment (3 µM in HCT116 cells for 2h). 

An overview of the results in shown in Figure 32A-C. 

For de novo and unbiased identification and validation of auranofin targets, we ranked the 

proteins in each chemical proteomics experiment. In TR-TPP experiment in cells (3 µM 

auranofin) and lysate, the proteins were ranked based on the ∆Tm between auranofin and 

control treatments, and in FITExP, absolute magnitude of consistent regulation in three cell 

lines was used for ranking of proteins. In redox proteomics, the proteins were ranked based on 

the difference in oxidation level and p values of auranofin vs. vehicle-treated samples. The 

rankings from all mentioned experiments were combined to shortlist candidate drug targets 

(Figure 32D). Proteins with the lowest cumulative ranking are therefore the best drug target 

candidates.  
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Figure 32. Unbiased prediction of auranofin targets by chemical proteomics tools. A) Overview of 

FITExP data for auranofin and three contrasting compounds from three cell lines. B) Redox proteomics 

revealed an increase in the oxidation level of many peptides and a decrease in some upon treatment with 

auranofin. C) TPP data for 1887 proteins with ≤1 °C difference between the two replicates in 3 µM auranofin 

treatment of HCT116 cells shows stabilization of several proteins. Some of these proteins, including 

GABPB1, RRM1 and SRXN1 are known to be regulated by thioredoxin system. D) The cumulative ranking of 

target candidates in four different types of analysis (FITExP, TR-TPP in cells and lysate, as well as redox 

proteomics). Proteins with the lowest overall rankings are top candidate targets (TXNRD1 is the cognate 

target). E-G) Changes in the expression, oxidation of top constituent peptides and stability of three top target 

proteins in cells (none of these proteins changed their stability in cell lysate). H) Top 15 proteins were 

analyzed with Functional Annotation Clustering tool in DAVID. Top pathways enriched with minimal 

redundancy (fold enrichment >5 and p < 0.01), representing the dominant mechanisms for auranofin, are 

shown. 

The expression vs. control in three cell lines, the oxidation level of the most oxidized 
peptide as well as the melting of three top proteins in cells in response to auranofin are 

shown in Figure 32E-G. Using this unbiased approach, TXNRD1 was on found on the 

3rd position. Since  TXNRD1 is the cognate target for auranofin, the predictive power of 

chemical proteomics is  confirmed. This was an impressive result, as the lowest ranking 

for auranofin in any method was in FITExP, where TXNRD1 was ranked 15th. TXNRD1 

had a cell line dependent up-regulation. CDYENVPTTVFTPLEYGACGLSEEK was 

the top oxidized peptide for TXNRD1 with a ratio of 2.53 (p = 0.051) 

auranofin:DMSO. TXNRD1 was slightly but reproducibly stabilized in cells (1.14 °C 

with 3 µM and 1.02 °C with 2 µM auranofin) and not in the lysate, perhaps indicating a 

chemical transformation prior to attachment to TXNRD1. Indeed, it is known that 

auranofin  binds to  TXNRD1  selenocysteine and  subsequently  gold  is  transferred  to the  
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redox active cysteine couples inside the protein (Angelucci, Sayed et al. 2009). The 

slight change in TXNRD1 stability though might be linked to auranofin binding to the 

penultimate amino acid, which may not induce a significant stability change in the 71 kDa 

macromolecule.  

The other two top shortlisted proteins were not known as auranofin targets. The top 

protein was Nuclear factor NF-kappa-B p100 subunit (NF-kB2), the inhibition of which is 

responsible for the anti-inflammatory effects of auranofin (Jeon, Jeong et al. 2000; Youn, 

Lee et al. 2006). Although the direct binding of auranofin to NF-kB2 has not been 

reported in literature, the appearance of this protein in the list cannot be by chance. 

Therefore, we will examine if NF-kB2 is a direct target of auranofin by follow-up 

experiments. CHORDC1 or cysteine and histidine-rich domain-containing protein ranked 

second before TXNRD1 and is known to be involved in HSP90 chaperone complex and 

stress response (Ferretti, Palumbo et al. 2010). CHORDC1 is rich in cysteines, but it is 

an unknown protein in the context of thiol-reactive metal compounds. 

4.3.2 Pathway analysis reveals the major auranofin mechanism 

To lower the risk of false negatives stemming from taking the interception of top results 

from different analyses, we selected fifteen top proteins from each of the four methods and 

subjected the combined list to pathway analysis by Functional Annotation Clustering tool 

in DAVID. This new tool helps reduce the number of redundant biological pathways by 

grouping similar annotations together (Huang, Sherman et al. 2008). The top enriched 

pathways by p value were “oxidoreductase”, “nucleotide phosphate binding region (NAD)” 

and “NADP”, in line with the MOA of auranofin (Figure 32H). 

We looked further in the expression data to decipher which proteins are involved 

in oxidoreductase pathways. The expression data for auranofin were clustered (Figure 

33A). The clustering grouped the data first based on the three cell lines. Interestingly, 

the cluster 6 consisted of 15 proteins up-regulated in all three cell lines, demonstrating 

that FITExP is an effective approach for discovery of proteins with consistent behavior in 

a panel of cell lines (Chernobrovkin, Marin-Vicente et al. 2015). These 15 proteins 

formed a tight group, irrespective of the chosen number of clusters (n=6-10) and 

mapped to “glutathione (GSH) metabolic process” (4 proteins, p < 0.0004) and “response 

to oxidative stress” (4 proteins, p < 0.0005). Although auranofin induced different proteome 

signatures in different cell lines, the up-regulation of GSH metabolism related proteins was 

noted in all cell lines. The induction of enzymes playing a role in GSH metabolism is 

consistent with the backup role of GSH in the absence of TXNRD1 activity (Du, Zhang et 

al. 2012). Furthermore, interestingly, most of the proteins in cluster 6 are Nrf2 target 

proteins (highlighted in red in Figure 33A). TXNRD1 inhibition is known to activate 

Nrf2 (Cebula, Schmidt et al. 2015), which in turn induces the expression of genes involved 

in the response to oxidative stress such as GCLM and GCLC (GSH synthesis enzymes) 

(Malhotra,  Portales-Casamar  et al.  2010). The  biological  pathways  enriched  for  30  top 
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up-regulated proteins from FITExP are shown in Figure 33B. 

Figure 33. The over-representation of Nrf-2 targets and oxidoreductase pathways in response to auranofin. 
A) The clustering of auranofin expression in three cell line gave a tight cluster (6), consisting of 15 proteins up-

regulated in all cell lines. The pathways enriched for top 30 proteins in FITExP (B) and proteins changing stability

in TPP (C).

Next we analyzed the stability data in cells for finding proteins responding to auranofin 

treatment by a change in stability. We subjected the proteins (with at least three peptides) with 

≥1.5 °C ΔTm between auranofin and DMSO treatments in the TR-TPP with 3 µM auranofin 

to pathway analysis. These proteins mapped to “antioxidant activity” (Figure 33C). Therefore, 

both FITExP and TPP methods showed the perturbation of oxidoreductase pathways in cells 

treated with auranofin indicating that perturbation of oxidoreductases is the main MOA for 

auranofin. 

4.3.3 Redox proteomics links cysteine oxidation and protein stability 

Another hypothesis that we pursued in this study was if protein oxidation in the peptide level 

(measured with redox proteomics) can be linked to change in stability of the respective proteins 

(measured in TPP). Cellular thioredoxin system is tasked with reduction of specific substrate 

proteins (Arnér and Holmgren 2000), which in turn reduce other cellular proteins. Auranofin-

mediated inhibition of this system could consequently lead to stabilization of these substrates 

and perhaps down-stream proteins. Therefore, the redox proteomics experiment was performed 

under similar conditions to TPP, treating HCT116 cells with 3 µM of auranofin for 2h. The 

higher oxidation of peptides in auranofin vs. DMSO treatment was obvious in the asymmetric 

volcano plot (Figure 34A) in favor of more oxidation. We could link the oxidation/reduction 

of 11 to increased or decreased thermal stability in TPP (shown in red in Figure 34A). 

Interestingly, the active sites of SRXN1 (Cys99) –which is the only cysteine residue in this 

protein, (Sunico, Sultan et al. 2016) and PRDX5 (Cys100) (Seo, Kang et al. 2000; Hall, 

Parsonage et al. 2010) were among these sites (Figure 34B). The melting curves of SRXN1 
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and PRDX5 along with two other representative proteins with simultaneous change in 

oxidation and stability is shown in Figure 34C. Therefore, a combination of TPP and redox 

proteomics can be used for discovery of potential redox regulatory switches in proteins, and 

extend the applications of both techniques. 

Figure 34. Peptide oxidation state can be potentially linked to protein stability. A) The oxidation rate of 

cellular peptides after treatment with 3 µM auranofin for 2h. The highlighted peptides with significant change in 

oxidation state are those for which the respective proteins change stability in TPP. B) Significant oxidation and 

reduction of SRXN1 and PRDX5 active sites in redox proteomics. C) Change in the stability of SRXN1 and 

PRDX5 in TPP. PHF5A and RRM1 as other representative proteins which had significantly oxidized peptides and 

higher stability in response to auranofin. 

Conclusions 

Taken together, we showcased the efficiency of chemical proteomics for prediction of the target 

and MOA of auranofin. As expected, different techniques have various strengths and 

weaknesses, and must be used in parallel for obtaining the most reliable targets. Another 

important finding of this study was that redox proteomics can be combined with TPP to 

discover downstream redox events with effect on protein stability, and potentially map them to 

redox-active or generally active sites. 
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4.4 PAPER IV. THE DEUBIQUITINASE INHIBITOR B-AP15 INDUCES STRONG 
PROTEOTOXIC STRESS AND MITOCHONDRIAL DAMAGE 

In Paper IV, we applied quantitative multiplexed proteomics to delineate the phenotypic 

response of colon cancer cells to b-AP15 in comparison with another proteasome inhibitor 

bortezomib. b-AP15 belongs to the bis-benzylidine piperidone compound family, which have 

been shown to effectively kill apoptosis-resistant cells, as shown in several tumor models. b-

AP15 is known to inhibit deubiquitinases USP14 and UCHL5. Although the mRNA and 

protein expression profiles for b-AP15 and bortezomib were quite similar, b-AP15 induced a 

more significant expression of chaperones. Furthermore, polyubiqutinated proteins 

accumulated to a higher degree in response to b-AP15 than bortezomib, which were shown to 

co-localize with organelle membranes such as mitochondria. Such a phenomenon reduced the 

mitochondrial oxidative phosphorylation. This reduction was exacerbated by severe 

proteotoxic stress, down-regulation of VCP/p97 and inhibition of endoplasmic reticulum 

translocation. The overall results indicated that the co-localization of misfolded proteins with 

mitochondrial membrane might underlie the atypical cell death mode. The effect of b-AP15 on 

mitochondrial cluster of proteins was also obvious in Paper II. Therefore, compounds 

targeting mitochondria might be promising for eradication of apoptosis resistant tumors. 
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4.5 PAPER V. SYSTEM-WIDE IDENTIFICATION OF ENZYME SUBSTRATES 
BY THERMAL ANALYSIS (SIESTA) 

Many proteins modify their specific substrates by post-translation modification. In addition to 

expression level, protein regulation and numerous cellular processes are modulated with PTMs 

(Mann and Jensen 2003). PTMs are capable of changing several protein attributes such as 

function, stability, hemostasis and localization (Houde, Peng et al. 2010), and can ultimately 

dictate cellular diversification as an independent regulator along with protein expression. 

Therefore, the identification and characterization of PTMs and their biological consequences 

has emerged as a growing and lively research area (Weinert, Narita et al. 2018).  

A central paradigm in PTM research is characterizing enzyme-substrate associations. Such 

knowledge is crucial for the fundamental understanding of cell biology in general and disease 

mechanisms in particular. In addition, modified substrates provide an output and are an integral 

component of many high-throughput screening assays in drug discovery (Von Ahsen and 

Bömer 2005). The development of therapeutics for several conditions such as Parkinson's 

disease (Steger, Tonelli et al. 2016) and cancer (Byrd and Blagg 2018) is in certain cases 

hampered by the lack of knowledge on the physiological substrates of enzymes for developing 

such screens.  

In spite of the importance of enzyme-substrate associations, generic proteome-wide methods 

for characterizing the molecular entities partaking in these reactions are not available. Specific 

substrates for enzymes can be experimentally identified by several techniques such as creating 

substrate-trapping mutants (Flint, Tiganis et al. 1997), peptide immunoprecipitation 

(Matsuoka, Ballif et al. 2007), affinity purification-mass spectrometry (Low, Peng et al. 2014), 

employing peptide (Köhn, Gutierrez‐Rodriguez et al. 2007) or protein arrays (Feilner, 

Hultschig et al. 2005), using genetic and pharmacologic perturbations (Yen and Elledge 2008) 

and client proteins tagging by substrate analogues using engineered enzymes (Ubersax, 

Woodbury et al. 2003). However these methods are developed for a certain enzyme (class), 

take long to optimize and are not straightforward. Furthermore, engineered enzymes might 

change the biology of the system under study, and are prone to false positive discoveries. 

Therefore, developing an unbiased system-wide tool for discovery of specific enzyme 

substrates can be a significant advance.  

It was previously known that protein stability can shift upon interaction with metabolites, 

proteins and nucleic acids (Park and Marqusee 2005; Niesen, Berglund et al. 2007; Molina, 

Jafari et al. 2013; Savitski, Reinhard et al. 2014). Proteome-wide techniques such as TPP can 

be used to measure protein stability changes arising from such interactions (Savitski, Reinhard 

et al. 2014). PTMs have also been postulated to alter thermal stability of substrate proteins 

(Becher, Andres-Pons et al. 2018; Dai, Zhao et al. 2018; Drake, Hou et al. 2018). Therefore, 

one could theoretically add a recombinant enzyme and its co-factor to the cell lysate and 

monitor the thermal stability of proteins in a proteome-wide manner, to reveal enzyme substrate 

proteins with shift in stability (Savitski, Reinhard et al. 2014). A PTM-induced shift in stability 

can hypothetically arise from conformational transitions, promoting or disruption of protein-

protein interactions, etc. 
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However, the enzyme-protein and co-factor-protein interactions can also happen and mask the 

substrate proteins. In our method called System-wide Identification of Enzyme Substrates by 

Thermal Analysis (SIESTA), we solved this problem by tracking specific thermal stability 

changes of substrate proteins (Saei, Astorga Wells et al. 2018). Meaning that stability changes 

in the candidate substrate proteins induced by a combination of enzyme and co-factor are 

contrasted to stability changes induced by enzyme or co-factor alone in OPLS-DA. The method 

workflow is shown in Figure 35.  

Figure 35. SIESTA workflow. Cell lysate is prepared in a non-denaturing buffer by several freeze-thaw cycles 

to preserve the native conformation of proteins. Cell lysate aliquots are then treated with vehicle, co-factor, enzyme 

or both. After the treatment period, each condition is split into 10 microtubes, and each microtube is heated to a 

temperature point in the 37-67 °C range. After ultracentrifugation to remove unfolded proteins, identical volumes 

of supernatants are taken for digestion with trypsin. Thereafter, the samples are labeled with 10-plex TMT, pooled, 

cleaned by SepPak and fractionated by reversed-phase chromatography. The fractions are then analyzed by LC-

MS/MS to quantify the proteins. Finally, after sigmoid curve fitting, melting temperature Tm is determined for 

each protein. The candidate substrate proteins for an enzyme are thus those that show a larger stability change 

upon addition of enzyme-co-factor combination and should be validated by orthogonal methods. Figure reused 

with permission from (Saei, Astorga Wells et al. 2018). 

4.5.1 SIESTA identifies known and putative TXNRD1 substrates 

We used the thioredoxin reductase 1 (TXNRD1) as a proof of principle system. Using NADPH 

as a co-factor, TXNRD1 reduces the disulfide bonds in a limited number of specific substrate 

proteins (Arnér and Holmgren 2000). Such a reduction should destabilize the structure of 

substrate proteins and may lead to negative ∆Tm. We therefore treated the HCT116 cell lysate 

with vehicle, 1 mM NADPH, 1 µM TXNRD1, or both. Samples were prepared according to 

the workflow in Figure 35. 

As expected, NADPH treatment stabilized several proteins known to interact with this co-factor 

(Figure 36A-B). TXNRD1+NADPH treatment specifically destabilized known substrate 

proteins (Figure 36C). Furthermore, as observed in Figure 36C, an expected asymmetry in 

Tm shifts was noted in favor of destabilization, in line with TXNRD1 function. In an OPLS-

DA model, TXNRD1+NADPH treatment was contrasted with the three other treatments to 

reveal the specifically destabilized proteins (Figure 36D). The melting curves for a number of 

known and putative TXNRD1 substrates are shown in Figure 36E. In total, 28 candidate 

substrates were found and mapped to the following INTERPRO Protein Domains and Features 
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pathways: “thioredoxin-like fold” (8 proteins) and “peroxiredoxin, C-terminal” (4 proteins) (p 

< 0.001). These pathways are in line with the key physiological functions of TXNRD1 (Arnér 

and Holmgren 2000).  

The protein showing the largest shift in stability was GPX1 (Figure 36C-E), which

is a selenoprotein usually supposed to be GSH-dependent (Brigelius-Flohé and Maiorino 

2013). However, TXNRD1 can directly reduce some GPX isoenzymes (Björnstedt, Xue et 

al. 1994). Several identified candidates such as peroxiredoxins (PRDXs) (Chae, Kim et al. 

1999), TXNL1 (or TRP32) (Jiménez, Pelto-Huikko et al. 2006), NXN (Funato, Michiue et 

al. 2006), as well as GSTO1 and GSTO2 (Board, Coggan et al. 2000) are well-known 

substrates of TXNRD1 or TXNRD1-dependent enzymes. The other proteins identified in 

this screen are thus putative substrates of TXNRD1. 

Figure 36. SIESTA experiment on the proof-of-principle TXNRD1 system revealed a number of known and 

putative substrates. A) A linear regression was performed on SIESTA results for control and NADPH (95%-

prediction interval as a cutoff). The outlier proteins are known (purple circles) or putative NADPH binders. B)  

Thermal stability shifts for known NADPH binding proteins IDH1 and NMRAL1. C) A Tm differences scatterplot 

shows the shifts occurring only after adding a combination of TXNRD1 and NADPH; these shifts arising from 

enzymatic modifications (known and putative substrates as red circles). D) An OPLS-DA model contrasting the 

“TXNRD1+NADPH” Tm vs. all other treatments reveals potential substrates (red circles) located on the negative 

extremity of x axis (black square). E) Exemplary melting curves of known (GPX1 and PRDX6) and putative 

substrates (COPS5, GULP1, ETHE1 and RNASET2) for TXNRD1. Figure reused with permission from (Saei, 

Astorga Wells et al. 2018). 
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4.5.2 SIESTA identifies many novel putative substrates for PARP10 

Poly-(ADP-ribose) polymerase-10 (PARP10) was the second system where we applied 

SIESTA. PARP10 belongs to the PARP family of proteins and is only capable of performing 

mono-ADP ribosylation (Kleine, Poreba et al. 2008). This reaction takes place in the presence 

of NAD as a co-factor. ADP-ribosylation is involved in signaling, DNA repair, regulation of 

gene expression and cell death (Gupte, Liu et al. 2017). The glycosidic and thus the labile 

nature of this modification makes it difficult to detect this PTM by MS/MS, as the ADP-ribose 

can be lost during sample processing. Different strategies have focused on enrichment of the 

modified peptides, and gentle MS/MS methods have been optimized (Carter-O’Connell, Jin et 

al. 2014; Martello, Leutert et al. 2016). Mono-ADP-ribosyltransferases such as PARP10, 

unlike the poly-ADP-ribosyltransferases family members, have not been studied extensively 

and require further characterization.  

On the contrary to the TXNRD1 system, we expected the change in stability of substrates in 

both direction in the PARP10 system. The stability shift of several proteins known to interact 

with NAD verified the experiment quality. 28 potential protein substrates were found to change 

stability only when a combination of PARP10 and NAD was added to the lysate (16 stabilized 

and 12 destabilized proteins) (Figure 37A). Exemplary melting curves for these proteins are 

shown in Figure 37B. The OPLS-DA model was also capable of identifying these substrates 

by contrasting the Tm of “PARP10+NAD” Tm vs. those from all other treatments. Out of the 

28 identified putative substrates, 7 proteins mapped to “ribonucleoprotein complex” (p < 0.02), 

and 19 were localized to the “nucleus” (p < 0.05), which is in good agreement with the cellular 

roles and localization of PARP10 (Bock, Todorova et al. 2015). Several of these proteins such 

as ILF2 and 3 are already known substrates of PARP10 (Carter-O’Connell, Jin et al. 2016). 



62 

Figure 37. SIESTA identified known and novel protein substrates for PARP10. A) A Tm differences 

scatterplot reveals shifts occurring only upon simultaneous addition of NAD and PARP10 to the cell lysate. Red 

circles represent potential substrates melting reproducibly. B) Exemplary melting curves of putative PARP10 

substrates. C) Targeted MS/MS analysis of a RFK peptide showed the mono-ADP-ribosylation of a glutamic acid 

residue (the site with the highest sequence-fitting score). The fragments carrying the ADP-ribose are shown with 

an asterisk. D) HDAC2 mono-ADP-ribosylation was validated in two independent experiments using recombinant 

HDAC2 and two PARP10 catalytic subunit constructs (n=2 recpliates and mean±SD; *p<0.02 and **p<0.005 

two-sided student t-test). Figure reused with permission from (Saei, Astorga Wells et al. 2018). 

To validate a number of putative substrates, we manually checked their melting curves and 

extracted their rankings from OPLS-DA model loadings. Another criterion was the availability 

of high purity recombinant proteins. Finally, caspase-6 and RFK (stabilized) as well as PDRG1 

 I   I   I   K   I   I   I   I   II   I  

c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10

y 4 y 2z 10

A
D

Pr

A

D

Adenosine 
monophosphate

Adenosine 
diphosphate

Adenine

CASP6

EPN2

RFK

CTBP2

SNX8

MTMR6

SDF2L1
HNRNPA1

RSU1

CIAPIN1PTEN

HDAC2
PDRG1

DNAJA2
PFKP

YBX1
ILF3

−2

−4

−6

0

2

4

6

8

10

12

−4 4 6 8

D
iff

 (T
m

_P
AR

P1
0+

N
AD

 - 
Tm

_N
AD

)

−2 0 2
Diff (Tm_PARP10+NAD - Tm_PARP10)

APRT

PM20D2NPEPPS

ECH1
KIF5B

0

1

2

3

4

5

*

*

P10-
c04

9
HDAC2

P10-
c04

9+H
DAC2

P10-
c05

3
HDAC2

P10-
c05

3+H
DAC2

Lu
m

in
es

ce
nc

e 
(c

ps
, x

10
e5

)

200 400 600 800 1000 1200 1400 1600 1800
m/z

428.037
z=1

1158.388
z=11044.344

z=1 1452.522
z=1

883.844
z=2

1767.673
z=1

234.145
z=1 1580.584

z=1

136.062
z=1

348.070
z=1

z*10

c*9

8

c7

6
c*5

c*4

3

c10

y4
461.272

z=1

y2

929.317
z=1 1305.455

z=1

z=1
1679.650

1.00

0.75

0.50

0.25

6737 5341 44 47 50 56 59 63

Temperature (oC)

So
lu

bl
e 

fra
ct

io
n

PAXX
1.00

0.75

0.50

0.25

6737 5341 44 47 50 56 59 63

Temperature (oC)

EPN2

1.00

0.75

0.50

0.25

6737 5341 44 47 50 56 59 63

TFRC
1.00

0.75

0.50

0.25

6737 5341 44 47 50 56 59 63

So
lu

bl
e 

fra
ct

io
n

PFKP

B

1.00

0.75

0.50

0.25

6737 5341 44 47 50 56 59 63

CASP6
1.00

0.75

0.50

0.25

6737 5341 44 47 50 56 59 63

PDRG1

1.00

0.75

0.50

0.25

6737 5341 44 47 50 56 59 63

RFK

So
lu

bl
e 

fra
ct

io
n

1.00

0.75

0.50

0.25

6737 5341 44 47 50 56 59 63

HDAC2

So
lu

bl
e 

fra
ct

io
n

PAXX

Potential 
PARP10-interacting 

proteins

Potential 
NAD-interacting 

proteins

c*
*

c*
c*

*

948.888

ILF2

*

* * * * * * * *

−8 −6

MRPL4

TFRC

URI1

DLGAP4

TOX4

PIN4

1897.776

632.592

M+••

M2+•

[M+3H]3+

C

2+

Control

NAD
PARP10

PARP10+NAD

*

E   N D F F Q V S K 



63 

and HDAC2 (destabilized) were chosen to verify the presence of PARP10-catalyzed mono-

ADP-ribosylation. These proteins were incubated with PARP10 and NAD, and then digested 

and analyzed by LC-MS/MS.  

The MS/MS events were monitored in real time for signature ions of adenine, adenosine-18 

and adenosine monophosphate (m/z 136.0623, 250.094 and 348.0709, respectively). The 

presence of these signatures would initiate a second MS/MS event using electron-transfer 

dissociation (ETD) with a supplementary HCD activation. Using this method, we could prove 

the mono-ADP-ribosylation of RFK on four sites Glu140, Glu131, Glu113 and Arg14 

(sequence coverage of 94%), ordered by the peptide score and PDRG1 on Glu110, Glu75 and 

Asp32 (sequence coverage of 74%). The ETD MS/MS spectrum of a RFK peptide (Glu140 

ADP-ribosylation) is shown in Figure 37C. Due to the incomplete sequence coverage of 

HDAC2 with trypsin (with and without LysC) digestion, an in vitro chemiluminescence assay 

was used for validation of mono-ADP-ribosylation on HDAC2. HDAC2 was significantly 

modified with both PARP10 catalytic domain constructs (Figure 37D). 

Although caspase-6 exhibited the largest specific stabilization (10.4 °C, Figure 37A-B) as 

a putative substrate for PARP10, we could not verify its modification in the two in vitro 

assays. A review of literature showed that PARP10 is actually a substrate for 

caspase-6 during apoptosis (Herzog, Hartkamp et al. 2013), having a major cleavage site 

for this protease at D406 (Herzog, Hartkamp et al. 2013). Therefore, the huge thermal shift 

specifically observed for caspase 6 might be related to induction of a conformational 

change in caspas-6 upon PARP10 binding. The conformational change in caspase-6 when 

binding to its substrates has been reported before (Vaidya, Velázquez-Delgado et al. 

2011). However, the auto-modification of PARP10 is required for effective binding, 

as a thermal stability shift for caspase-6 was not noted in the absence of NAD.  

Conclusions 

Based on the above results, we believe that SIESTA can be used as a universal approach for 

unbiased identification of protein substrates for specific enzymes in a proteome-wide manner. 

SIESTA can also be applied to discover cell- or tissue-specific substrates by comparative 

stability monitoring of lysates from different sources. Therefore, SIESTA is likely to enhance 

our understanding of enzyme systems in hemostasis and disease and facilitate the incorporation 

of substrates in high throughput screening in drug discovery and development. 
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5 CONCLUSIONS AND FUTURE PERSPECTIVES 

In the past decade, proteomics-based target deconvolution technologies have evolved to 

system-wide methods in which all human proteins are scrutinized for binding or correlation 

with efficacy of unmodified compounds in living cells. The availability and evolution of several 

techniques for drug target and MOA characterization indicates that a single method is not 

capable of –or should not be trusted to, exclusively pinpointing the efficacy targets responsible 

for the compound effects. Although the readout from each technique is a list of potential targets, 

a long list of candidate protein can also confound the identification of central efficacy targets. 

Combining different methods allows for shortlisting the highly potential candidates. 

The inclusion of matrix-detached cells in the proteomics experiments such as FITExP was 

against the mainstream, but showed that specific information about drug targets, survival 

pathways and processes differentiating life from death can be obtained. We believe that this 

research will have an impact in later works and contribute to our understanding of cell death.   

ProTargetMiner is a resource for catering to the research community and for assisting the 

phenotypic drug discovery paradigm. This database can also open up an opportunity for reverse 

chemical proteomics for even linking known targets to novel biological phenomena by 

interpretation of compound-induced phenotypes, which can prove valuable in drug 

repurposing. ProTargetMiner can be expanded in future by profiling more cell lines, more 

drugs (also non-anticancer agents) and different biological concentrations. 

The protein pairwise correlation database based on ProTargetMiner dataset uncovered 

unexpected complexity in protein regulation that might not be an artefact. It is yet to be seen if 

this database can be used for characterization of proteins and their functions. Furthermore, the 

pairwise protein anti-correlation might reveal novel regulatory pathways, especially in the 

context of cancer. The set of proteins with most stable expression in ProTargetMiner is also a 

resource which must be analyzed in more detail to shortlist a number of top candidates with 

lowest standard deviation, high abundance and consistent expression in tissues. This goal can 

be partly achieved with the deep data available in MCF-7 and RKO cell lines in 

ProTargetMiner. 

Finally, the lack of knowledge on specific protein substrates for enzymes hampers the design 

of high-throughput screening assays in drug discovery. Furthermore, such knowledge in 

fundamental in the understanding of biology in homeostasis and disease. So far, we 

have demonstrated the application of SIESTA in the reactions involving electron transfer

(TXNRD1 system) and ADP-ribosylation. We also have positive results that SIESTA can 

be applied to identify phosphorylation events (in the AKT1 system) driving protein 

stability. Furthermore, SIESTA can be applied to different cell lines and tissues to 

discover cell- or tissue-specific PTMs. Another focus could be on delineating the 

isoform specificity in enzyme families (Gonzalez and McGraw 2009). Elucidation of 

substrate specificity is the key to targeted therapy (Toker 2012).
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