
From DEPARTMENT OF ONCOLOGY-PATHOLOGY 

Karolinska Institutet, Stockholm, Sweden 

MICRORNAS AND THEIR PROCESSING 
FACTORS IN CAENORHABDITIS 

ELEGANS AND HUMAN CANCERS 

Roger Kae-Jia Chang 

 

Stockholm 2018 
 



 

All previously published papers were reproduced with permission from the publisher. 

Published by Karolinska Institutet. 

Printed by AJ E-print AB, 2018 

© Roger Kae-Jia Chang, 2018 

ISBN 978-91-7676-929-4 



MicroRNAs and their processing factors in 
Caenorhabditis elegans and human cancers 

 
 
 

THESIS FOR DOCTORAL DEGREE (Ph.D.) 

By 

Roger Kae-Jia Chang 

Principal Supervisor: 

Weng-Onn Lui, Associate Professor 

Karolinska Institutet 

Department of Oncology-Pathology 

 

 

Co-supervisor(s): 

Klas Wiman, Professor 

Karolinska Institutet 

Department of Oncology-Pathology 

 

 

Opponent: 

Carlos Rovira, Associate Professor 

Lund University 

Department of Clinical Sciences 

 

 

Examination Board: 

Neus Visa, Professor 

Stockholm University 

Department of Molecular Biosciences 

 

 

Andrea Hinas, Assistant Professor 

Uppsala University 

Department of Cell and Molecular Biology 

 

 

Angelo De Milito, Associate Professor 

Karolinska Institutet 

Department of Oncology-Pathology 

 

 

 





 

 

To my friends and family, this would not be possible without you! 

 

It is difficult to sum up the contributions all of you made into realizing this thesis. I am grateful 

for your encouragement and support for allowing me to follow science. 

To borrow the words of Sir. Isaac Newton: 

“If I have seen further, it is by standing upon the shoulders of giants”. 

Thanks for letting my see further than I could imagine. Thanks for letting me stand on your 

shoulders. 

  





 

 

ABSTRACT 

MicroRNAs (miRNAs) are small noncoding RNAs approximately 20-22 nucleotides (nt) long. 

These small RNAs (sRNAs) was initially discovered in Caenorhabditis elegans (C. elegans), 

but is conserved in over 50 animal species. According to miRbase, a database of miRNA 

sequences from various species, humans have over 2500 different miRNAs and estimated to 

regulate over 60% of the protein coding genes in humans. Due to their role in gene regulation, 

they are important for controlling key processes in the cell, and changes in miRNA expression 

in cell can have catastrophic consequences.  

In this thesis we explore the role of miRNA and their biogenesis factor. We begin by studying 

the first miRNA to be identified in humans, let.7. We use the C. elegans model system with 

different genetic strains to describe an unknown role for this miRNA. The unravelling of this 

new role highlights the importance of miRNA as important regulator in cells not only for 

protein coding transcripts but also transcripts that do not code for proteins. The findings of this 

study opens up new and exciting research possibilities for miRNAs. 

Because of miRNAs importance in controlling key cellular processes in cells. Changes in their 

expression patterns can lead to severe effect. In study II we explore one such event, 

development of human tumors. We characterize the miRNA profile of different types of 

ovarian tumors to identify biomarkers that can be used in clinics and to understand the 

pathology of the tumors to find an effective cure. Using only a few miRNAs we can 

characterize different types of ovarian tumors based on their miRNA profile. We also identify 

a miRNA target that could potentially be explored for therapy. 

The miRNA biogenesis factors are important to ensure proper production of miRNAs. Their 

role in the miRNA biogenesis is well characterized, but very little is known if they possess 

other biological function besides miRNA production. In study III we describe a new role for 

TARBP2, which is responsible for miRNA maturation. Hundreds of thousands RNAs are 

transcribed from a single cell, and each RNA molecule have different sequences or structures 

that are important for their function/regulation. We used computational biology to predict all 

the potential TARBP2-interaction sites on messenger RNAs, and found several in the 5’ 

untranslated region (5’UTR). The 5’UTR are just upstream of the initiation site of protein 

synthesis, and usually contain important regulatory sequences. We explore how the TARBP2 

interaction with the 5’UTRs can affect gene expression. In particularly we found a gene that is 

important for regulation of a process in the cell called autophagy. 

In this thesis we investigate the role of miRNAs and their processing factors in C. elegans and 

humans. We describe a new role for miRNA as regulator of noncoding transcript, and we 

explore the possibility of using them as biomarkers in ovarian tumors. Finally, we describe a 

new role for the miRNA biogenesis factor TARBP2 as a regulator of autophagy.     
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1 CAENORHABDITIS ELEGANS AS A BIOLOGICAL 
MODEL SYSTEM 

In 1963 Sydney Brenner expressed his concern for the future of molecular biology in a letter 

to Max Perutz, the chairman of the medical research council’s laboratory of molecular biology. 

He was concerned that the classical problems of molecular biology could not be solved using 

conventional methods, and if molecular biology would progress we needed to look beyond the 

prokaryotic genetic. He proposed that a small eukaryotic model organism, the roundworm with 

notable development and nervous system would take molecular biology into the next phase of 

molecular biology1.  

In fact, the thought of using nematodes as model system was already born in 1940s. Two 

research groups, Nigon and Doherty, worked close together to refine cultivating conditions for 

nematodes by analyzing the animal’s reproduction and nutrition. Despite their success, they 

were unable to receive funding for their projects. At the time, Sydney Brenner was a well-

known bacterial geneticist who understood the limitations of bacteria and was inspired by the 

work of Richard Goldschmidt’s work on neuronal cell invariance and nervous system 

connectivity of small intestinal roundworm. Sydney Brenner experimented with many species 

of nematodes, and managed to refine the cultivating methods for C. elegans1. Sydney Brenner’s 

fame helped him secure funding where his predecessors failed, but thanks to his work we have 

procured critical insight into many key cellular and biological processes including cell death2-

5, temporal cell fate determination6, RAS signaling7; 8, nonsense-mediated decay9 and RNAi 

mechanism10.  

C. elegans are small, inexpensive, easy to store, short life span, and has the ability of self-

fertilization, which make it an ideal genetic model system to cultivate and study in labs. The 

transparent body of C. elegans together makes it ideal to track developmental processes (cell 

differentiation and proliferation). Having the entire C. elegans genome sequenced makes it 

extremely useful to understand human genetics, due to its extensive homology with our genome 

11-13. The ease of performing forward and reverse genetics in C. elegans have made it an 

invaluable model system to understand basic human cellular and biological processes. The use 

of tagged fluorescent proteins allows one to follow developmental processes, screen for 

mutants affecting cell development and function, isolate cells, and characterize protein 

interactions in vivo14-16. 

The ease of cultivating and maintaining genetic strains of C. elegans makes it a popular model 

organism among geneticist. The animals are cultivated on agar plates containing a lawn of 

Escherichia coli (E. coli) which they feed on. Usually the animals are cultivated in 20⁰C, but 
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by altering the temperature, one can control the rate of development of the animals. Shorter 

exposures to higher temperature can aid in the production of male progenies. To study 

biochemical processes, it can be advantageous to synchronize the animals to ensure they are in 

the same developmental stage. This is achieved by dissolving the cuticle of gravid adult animals 

with bleach. After removing the bleach, eggs are harvested and incubated until they hatch into 

L1 larvae. Putting the animals on agar plates with bacteria allow them to develop through all 

the life cycles of the animals1.   

1.1 LIFE CYCLE OF C. ELEGANS 

Embryogenesis starts with cell division from a single cell to over 600 undifferentiated cells17. 

After the larvae crawls out of the eggshells the animals have a functioning feeding apparatus, 

gut, nervous system and muscles. The animals begin to eat and develop through four larval 

stages (L1-L4). Lethargus is a sleep-like stage, which marks the end and the beginning of each 

larval stage. During lethargus the animals remain in a quiescent state18. After L4 stage, adult 

animals will produce progenies either asexually or sexually, and the adults can continue living 

for several weeks before dying of senescence. Scarcity of food can push L2 larvae into a larval 

stage called dauer19. During dauer, animals form cuticles throughout their body, which protect 

them from environmental stress. However, the cuticle also prevents the animals from eating 

and causes developmental arrest. While in dauer, the animals can survive for months without 

food, but once they are transferred to agar plates with food the cuticle starts to molt, and they 

progress into L4 stage (Figure 1).  

The ability to self-fertilize makes C. elegans a highly attractive model organism to study 

genetics. Genetic changes introduced in adult animals (P0) can be easily maintained and 

propagated in first (F1) and second (F2) generations progenies without mating1. The animals 

can also be frozen, which make the recovery and maintenance of different genetic strain 

simpler. The Caenorhabditis Genetics Center (CGC) was formed in 1978 with the aim of 

curating and distribute different genetic strains of C. elegans20. Today, any C. elegans lab can 

request thousands of different genetic strains, submitted by others, in their studies. 
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2 MICRORNA 

MicroRNAs (miRNAs) are endogenous small RNAs ~21 nucleotides (nt) that regulate gene 

expression post transcriptionally by binding to 3’ untranslated (UTR), coding sequences or 

5’UTR of target messenger RNAs (mRNAs), and can lead to translational inhibition or 

degradation of mRNA21. Before the discovery of miRNAs, the scientific efforts have been 

mainly focused on protein coding transcripts. After it was discovered that miRNA can act as 

gene regulators that control various processes such as cell fate specification22, apoptosis23 and 

metabolism24. It became evident that the noncoding regions of the genome contained genetic 

material that are important for cell’s functions. 

2.1.1 lin-4, the first miRNA discovered in C. elegans 

In C. elegans lin-14 expression levels are important for stage-specific cell fate in the L1 through 

L3 stage. Animals without lin-14 retain L1 specific cells in L3 stage. LIN-14 protein levels 

oscillate in L1 through L2 while the mRNA remain constant. Suggesting that post 

transcriptional regulation of lin-14 was important for temporal fate of stage-specific cells6. 

Genetic studies of lin-4 revealed it is a regulator of lin-1425. Furthermore, animals with 

mutations in the 3’UTR of lin-14 showed no decrease in LIN-14 levels when lin-4 was 

expressed, suggesting that the mechanism of lin-4-mediated downregulation of lin-14 mRNA 

is a post transcriptional event and lin-14 3’UTR is necessary for this mechanism26; 27.  

Surprisingly, when Lee and colleagues cloned the lin-4 gene they discovered that the gene does 

not encode for any proteins26. Instead it contains two 22 nt long untranslated RNAs, and the 

more abundant form is expressed during early L1 stage28. Coincidentally this is the time when 

LIN-14 protein decreases, implicating that lin-4 RNA might be directly involved in reducing 

the level of LIN-14 protein. The discovery that the lin-4 noncoding RNA can interact with the 

lin-14 3’UTR through complementary Watson-Crick base-pairing was the first evidence that 

small noncoding RNAs can regulate expression of genes26; 27. 

2.1.2 let-7, the first miRNA discovered in humans 

In 1999, lethal-7 (let-7), a small noncoding RNA was discovered in C. elegans that could 

control the expression of several heterochronic genes. let-7 is expressed during L3 stage but 

peaks at L4 stage, and genetic strains of let-7 mutants revealed that let-7 was important for L4-

to-adult transition. Without the expression of let-7 in L4 the animals die due to bursting of the 

vulva29. The let-7 became the second known miRNA after lin-4, but more importantly let-7 

was the first miRNA to be identified in humans. Bioinformatical analysis further revealed that 

let-7 was conserved across several species, suggesting that miRNAs have a gene regulatory 
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role that expands beyond C. elegans30. Although let-7 is well conserved from C. elegans to 

humans, several differences can be found between various animal species. For example, 

nematodes and fruit flies have one copy of let-7 miRNA, while higher animals have several 

copies of let-7 miRNAs throughout their genome. The copies of let-7, found in higher animals, 

usually have overlapping function and share sequence similarity, and are categorized as let-7 

family members31-34. Studies have shown that let-7 family members can promote 

differentiation during development and function as tumor suppressors in various cancers29; 35-

38. 

2.2 MIRNA BIOGENESIS PATHWAY 

MiRNA are endogenous small RNAs that are produced from non-coding transcripts with 

hairpin structure. miRNAs are first transcribed as a long RNA transcript called primary-

miRNA (pri-miRNA). The secondary structures of pri-miRNAs are recognized and bound by 

DGCR8 (Pasha in flies and worms) and Drosha. Drosha is an endoribonuclease that will release 

the precursor-miRNA (pre-miRNA) from the pri-miRNA. Exportin 5 exports pre-miRNAs 

from the nucleus to the cytoplasm. In the cytoplasm the pre-miRNA is processed into mature 

miRNA duplex by the endonuclease Dicer together with TARBP2 and PACT. The mature 

miRNA is loaded into Argonaute protein by strand selection, and the miRNA guides the 

Argonaute protein to its targets by forming an imperfect binding to the target mRNA that lead 

to translation repression either by degradation of the mRNA or blocking of translational 

initiation/elongation39 (Figure 2). 

2.2.1 The non-canonical miRNA biogenesis pathway 

While the majority of miRNAs are generated through the canonical miRNA biogenesis 

pathway, a small subset of miRNAs is processed independent of Drosha or Dicer. 

Mirtrons are encoded in intronic regions, and is generated through an mRNA splicing 

mechanism independent of Drosha. The spliced-out intron is converted to a pre-miRNA-like 

structure that can be cleaved by Dicer40-42. 

miR-451 is an unique miRNA, it requires Drosha but not Dicer for its biogenesis43-45. Drosha 

processed pre-miR-451 is too short for Dicer cleavage. Instead, pre-miR-451 is loaded directly 

onto Argonaute and the 3’ end is trimmed to generate the mature miR-45146. 
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2.3 MECHANISMS OF MIRNA REGULATION 

MiRNAs are described as regulators of gene expression. miRNAs recruit RISC complex to 

target mRNAs through Watson-Crick base-pairing between miRNAs 5’-proximal “seed” 

(nucleotide 2-8) sequence to matching sequences in the mRNA39. Argonaute and glycine-

tryptophan repeat-containing protein of 182 kDa (GW182) are central components in the 

miRISC complex. The biological outcome of the miRISC-mRNA interaction leads to several 

consequences. The most common are either mRNA degradation or translational repression47-

53. 

2.3.1 mRNA degradation 

mRNAs usually contain a 7-methylguanylate cap (m7G) at their 5’ end and a stretch of 

adenosine monophosphates (poly(A)) at their 3’ end. Both the m7G and poly(A) are required 

for stabilization of mRNA and cap-dependent translation of mRNAs, and removal of either of 

the two initiates degradation of mRNAs54-56. Functional studies show that GW182 recruit 

Figure 2. Canonical miRNA biogenesis pathway 

 
Primary miRNAs are transcribed, and processed into precursor miRNAs by Drosha and DGCR8, Pasha in flies 

and worms. Precursor miRNAs are transported to the cytoplasm by Exportin 5. Dicer and TARBP2, 

Loquacious in flies, cleaves precursor miRNA to produce a mature miRNA duplex. The miRNA is loaded into 

Argonaute, and the miRNA guides Argonaute to its target transcript where it either initiates translational 

repression or mRNA degradation.  
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CCR4-NOT and PAN2-PAN3 deadenylase complexes, which facilitates mRNA decay via 

deadenylation of poly(A) followed by subsequent decapping of m7G57; 58. Without m7G and 

poly(A) the mRNA is vulnerable to degradation by exonucleases59. 

2.3.2 Translational repression 

Poly(A) binding proteins (PABP) interact with eukaryotic initiation factor 4G (eIF4G) to 

initiate translation60; 61. GW182 blocks the PABP-eIF4G interaction thus preventing 

translational initiation62; 63. Another study demonstrated that mammalian Ago2 can associate 

with m7G, and outcompete eIF4E to associate with m7G of mRNAs, which also leads to 

translational initiation block64. Fruit flies have five different Argonaute proteins: Ago1, Ago2, 

Ago3, piwi and aub65. AGO1 and AGO2 display different mechanism of miRNA-mediated 

mRNA regulation66. AGO1 elicit deadenylation and lead to degradation of target mRNA 

whereas AGO2 induces translational repression through interaction with eIF4E66; 67. Humans 

have eight different Argonaute proteins68, but it does not seem humans employ the same 

strategy for miRNA-mediated mRNA regulation as flies. It is still unclear how miRNAs initiate 

mRNA degradation or translational repression in humans. 
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3 TARBP2, A RNA BINDING PROTEIN INVOLVED IN 
MIRNA BIOGENESIS 

TARBP2 (Trans-Activation-Responsive RNA binding protein 2) was first discovered as a 

cellular protein that activates expression of the HIV-1 virus through binding to the TAR RNA 

loop structure of the LTR (long terminal repeat) together with the viral tat-protein69. The 

TARBP2 gene is located on human chromosome 12 and produces two different isoforms. 

TARBP2 isoform 1 has additional 21 amino acids at the amino-terminus that is known to 

interact with Dicer for miRNA processing (Figure 3A). The function of TARBP2 isoform 2 is 

still unclear. TARBP2 has two double-stranded RNA (dsRNA) binding domains and a domain 

called C4 that is responsible for protein-protein interactions70.  

 

TARBP2 has been found to associate with PKR (Protein Kinase RNA-activated) through an 

RNA-independent interaction and inhibits its activities71. PKR is a dsRNA-dependent kinase 

that phosphorylates eIF2α causing a blockage of global mRNA translation in response to 

cellular stress or infection. Using a proteomic approach, Chi et al. identified numerous 

TARBP2-interacting proteins that are known to be involved in protein synthesis, RNA 

processing, DNA transcription and cell growth72. 

 

Besides its protein-protein interactions, TARBP2 is also known to bind to other RNA stem-

loop structures in addition to pre-miRNAs. One of the examples is the HIV-1 TAR RNA, as 

described above. TAR RNA element is a stable stem-bulge-loop structure that is present at the 

5’ end of all HIV-1 mRNAs73. This structure was originally discovered as the target for the Tat 

protein (the trans-activator of HIV)74 (Figure 3B). TAR-containing transcripts can be 

translationally inhibited through PKR, however the translation repression can be alleviated by 

interaction with TARBP275, La autoantigen76, Staufen 177 or DDX378. TAR RNA is not 

restricted to translational regulation; it can also interact with nuclear transcription factors79, and 

regulates transcription of viral genes80-82.  
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Interestingly, TAR RNA-like structures can also be present in cellular genes. In mouse, 

protamine RNA binding protein (Prbp), the mouse homolog of human TARBP2, can bind to 

the TAR RNA-like structure located in the 3’UTR of protamine 1 (Prm-1) and control its 

translation during spermatogenesis83; 84 (Figure 3C). Goodarzi et al. also showed that TARBP2 

binds to structural RNA stability elements (sRSE) of APP (amyloid precursor protein) and 

ZNF395, and destabilizes the transcripts85 (Figure 3D). 

  

Figure 3. TARBP2 binds to specific RNA structures 

  

A, TARBP2 binds to pre-miRNAs and regulates pre-miRNA processing by Dicer.  B, TAR RNA element is 

found in all HIV-1 mRNAs that can interact with TARBP2 for translational/transcriptional regulation. C, The 

mouse homolog of human TARBP2, Prbp, can bind to specific stem-loop structure in the 3’UTR of protamine 

1 mRNA and inhibits its translation. D, TARBP2 destabilizes the sRSE-containing transcripts APP and 

ZNF395 that promotes metastasis. 
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4 AUTOPHAGY 

Degradation of cytoplasmic components within lysosomes is orchestrated by a cellular process 

called autophagy. It is a nonselective degradation that differs from the ubiquitin-proteasome 

degradation pathway. Autophagy play many roles such as starvation-adaption, intracellular 

protein and organelle clearance, development, anti-aging, elimination of microorganisms, cell 

death, tumor suppression and antigen presentation86-90. The most notable function of autophagy 

is maintaining the homeostasis of cytosolic components in the cells, “basal autophagy”, or 

response to produce amino acids during starvation, “induced autophagy”.  

4.1 MTORC1 A REGULATOR OF AUTOPHAGY 

When cells senses low levels of amino acids, mammalian target of rapamycin complex 1 

(mTORC1) signaling is inhibited. mTORC1 is a major regulator of autophagy, which in 

presence of amino acids and growth factors inhibits the initiation of autophagy91. Inhibition of 

mTORC1 triggers autophagy activation of downstream proteins needed to execute the 

autophagic program. Once amino acids are released from autophagic breakdown of proteins, 

reactivation of mTORC1 leads to inactivation of autophagy. 

4.2 AUTOPHAGOSOME BIOGENESIS 

The autophagosome biogenesis consists of initiation of autophagy signaling sequestration of 

cytoplasmic components by the phagophore or isolation membrane, and the formation of the 

autophagosome followed by fusion with the lysosome. Once the autophagosome-lysosome 

forms degradation process can begin92.  A number of proteins are involved in autophagosome 

biogenesis, and the process of autophagy is tightly controlled. Genetic studies of autophagy 

machinery in yeast have identified 37 factors known as ATG (autophagy-related genes), less 

than half of these are thought to be involved in autophagosome biogenesis93; 94. 

Autophagosome biogenesis can be broken up into three stages: initiation, nucleation and 

expansion (Figure 4). 

4.2.1 Initiation 

Three main complexes are required for the initiation and formation of an autophagosome. The 

first complex is the unc-51-like kinase 1 (ULK) complex, which consist of ULK1, ATG13, 

FAK family kinase-interacting protein of 200 kDa (FIP200) and ATG101. Induction of 

autophagy releases the ULK complex from mTORC1, the ULK complex translocates to 

autophagy initiation sites, and regulates recruitment of a second kinase complex, vacuolar 

protein sorting 34 (VPS34) complex95-97.  
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4.2.2 Nucleation 

The VPS34 complex consist of VPS34, Beclin 1, VPS15 and ATG14-like (ATG14L), and 

leads to production of phospholipid phosphatidylinositol 3-phospate (PI3P) where 

autophagosome formation is initiated. The PI3P acts as a signaling molecule for the recruitment 

of WD repeat domain phosphoinositide-interacting protein 2 (WIPI2B) and double FYVE 

containing protein 1 (DFCP1). Together with other proteins this lead to formation and 

expansion of the phagophore98-102.  

4.2.3 Expansion 

The third complex, consisting of the ATG16L1–ATG5–ATG12 conjugation machinery, is 

essential for the lipidation of microtubule-associated proteins 1A/1B light chain 3B-II (LC3-

II). The lipidated LC3-II associates with newly forming autophagosome membrane. LC3-II 

remains on mature autophagosomes until its fusion with lysosomes103; 104. 
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5 AIMS OF THE STUDY 

 

5.1 STUDY I: 

To understand the underlying mechanism of let-7 and ALG-1 binding to primary let-7. 

5.2 STUDY II: 

To characterize miRNA profile in non-epithelial ovarian tumors. 

5.3 STUDY III: 

To understand the underlying mechanism of TARBP2 binding to ATG2A. 
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6 MATERIALS AND METHODS 

 

6.1 NEMATODE CULTURE AND STRAINS 

Our study of ALG-1 and let-7 required different strains of C. elegans. The advantage 

for nematode aficionados is the availability of different genetic worm strains that are 

stored and curated by Caenorhabditis Genetics Center (CGC)20.  

Wild-type (N2 Bristol), let-7 mutant (n2853), alg-1 null (gk214) and let-7 null (mn112) 

were obtained through CGC. Other strains used in study I were generated by mos1-

mediated Single Copy Insertion (mosSCI) system and crossing. 

6.1.1 MosSCI 

The mosSCI system allow us to introduce a DNA template through homologous recombination 

to a site where DNA break occurred. This insertion is directed to a specific site in the worm 

genome105 (Figure 5). 

Worm strains PQ-320, 402 and 404 were generated by mosSCI. PQ-320 express two copies of 

wt pri-let-7, from chromosome X and II. PQ-402 and PQ-404 express wt pri-let-7 and pri-let-

7 transcript without the ALG-1 binding site (∆alg-1) from chromosome X and II respectively. 

6.1.2 Crossing 

PQ-425 and PQ-426 were created by backcrossing PQ-320 and PQ-404 with mn112 worms. 

mn112 worms are let-7 null, and adult worms without let-7 will die due to bursting of vulva. 

The viable worms are screened and crossed with n2853 worms. This creates a transgenic worm 

that express wt pri-let-7 (from PQ-320) or pri-let-7 without the ALG-1 binding site (from PQ-

404) from a single copy transgene integrated in chromosome II and the endogenous let-7 

(n2853) transcript from the X-chromosome.  
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Figure 5. MosSCI 

Plasmids containing gene of interest and positive selection marker is injected into worms together with plasmid 

expressing Mos1 transposase. Once Mos1 transposase is expressed, a double stranded break is created at a 

specific site and gene can be inserted into the chromosome of the worm.  
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6.2 RNAI TREATMENT IN C. ELEGANS 

The RNAi mechanism was first described by injecting dsRNA into C. elegans106 (Fire et al. 

1991). Later it was discovered that soaking nematodes in dsRNA solution or feeding worms 

with bacteria producing dsRNA also lead to efficient degradation of mRNA10; 107. Injection 

with dsRNA is performed on young adult hermaphrodite, and the progeny is scored for mutant 

phenotype. Injection-based RNAi is more labor intensive than soaking or feeding, and not 

suitable if you want to treat many animals. Soaking with dsRNA is favorable for high-

throughput, screening phenotypes for many animals. Feeding nematodes with dsRNA is also 

suitable for high-throughput, and is the least labor intensive and inexpensive method, but 

produces slightly more variable results compared to soaking or injection. Both soaking and 

feeding with dsRNA can be performed on worms at all larval stages. 

In study I worms was fed with E. coli producing dsRNA for xpo-1. 

6.3 RNA DETECTION METHODS 

For RNA biologists being able to detect and track the changes of expression of different RNAs 

during development and different conditions is crucial to understand their function. The early 

RNA methodologies that were developed in 1977 by James Alwine, David Kemp, and George 

Stark involved the use of electrophoresis to separate RNA species by size followed by detection 

with a hybridization probe complementary or partially complementary to the target RNA108. 

Because of the similarity the method had with a DNA detection method called Southern 

blotting, they named the RNA detection method Northern blotting. Only a few years after the 

development of Northern blot another popular RNA detection method was introduced. Thanks 

to the discovery of the enzyme reverse transcriptase (RT) from RNA viruses109; 110, scientist 

around the world were able to convert single stranded RNA into complementary single stranded 

DNA, which is more stable than RNA. This opened the possibilities to use RNA in molecular 

cloning, PCR, micro-array and RNA sequencing. The simplicity and efficacy of RT-PCR has 

made it into a popular tool to study RNAs. 

6.3.1 Northern Blotting 

In study I we used polyacrylamide gel electrophoresis (PAGE) and agarose northern blotting 

to detect smaller and larger RNA species. The major difference between these two gels lies in 

their composition and ability to allow molecules to wander. PAGE gel comprises of large 

molecules, which makes it narrower for the RNA molecule to travel, thus making it ideal to 

separate small-sized RNAs and difficult to separate large-sized RNAs compared to agarose gel. 

Northern blotting has the advantages that it is simple and relatively high specificity. Sequences 
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with even partial homology can be used as hybridization probes. mRNA transcript size can be 

detected. With one probe one can detect different sizes of splice variant and processed RNAs. 

Disadvantages are risk of RNA degradation during electrophoresis, the sensitivity of northern 

blot is relatively low in comparison with that of RT-PCR and difficult with detection using 

multiple probes.  

6.3.2 RT-PCR 

In study I, II and III we used RT-PCR with different variations. RNA template is converted to 

a complementary DNA (cDNA) with reverse transcriptase. The cDNA can be further amplified 

with PCR. RT-PCR is more sensitive than northern blot as it requires fewer RNA molecules 

for detection and quantification. The drawbacks with using RT-PCR is difficulties 

distinguishing sizes difference and modification of different RNA species. 

6.3.2.1 SYBR green 

SYBR green was used in study I and is the most economical method for quantitative PCR. It 

contains a fluorescent dye that binds to double stranded DNA molecules. The fluorescence is 

measured at the end of each PCR cycle to determine how much DNA has been amplified. 

6.3.2.2 Taqman assay 

Taqman assay was used in study III and are predesigned oligos and a gene-specific probe with 

fluorophore and a quencher attached. The close proximity of the fluorophore and the quencher 

prevents fluorescence. During amplification the fluorophore is cleaved resulting in emittance 

of light that is registered. 

6.3.2.3 miRNA taqman assay 

miRNAs are 20-22 nt long, which makes amplification impossible. To quantify miRNAs with 

RT-PCR miRNA sequences are extended by a hairpin probe with an overhang that can 

hybridize to the miRNA of interest. RT will create a chimeric cDNA with the mature miRNA 

sequence and taqman probe sequence. PCR amplification is performed with oligos spanning 

the miRNA and a sequence on the taqman probe.        

Although both Northern blotting and RT-PCR are still widely used RNA methodologies around 

the world, their limitation lies in the ability to study multiple RNA species. To truly understand 

how the RNA profile of a cell looks like or what happens within a cell during development or 

changes in condition of multiple RNA species, a high-throughput method is required. An 

example of such method used in this thesis is the sequence-based approach. 
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6.3.3 Sequence-based approach 

Sequencing technologies have played a major part in our understanding of human genome and 

transcriptome. Initial efforts on sequencing nucleotides were performed on RNA species, such 

as microbial ribosomal or transfer RNA, or the genomes of single stranded RNA 

bacteriophages. The reason for sequencing these molecules was because they could be 

produced in mass quantities, they were single-stranded, and significantly shorter to eukaryotic 

DNA. Early attempts of sequencing could only distinguish composition and not the order111. 

RNase enzymes can cut RNA chains at specific sites112. These enzymes were used to produce 

fully or partially degraded RNA pieces that could be sequenced113. In 1965 scientist managed 

to sequence the entire nucleotide sequence of alanine tRNA from Saccharomyces cerevisiae114.  

The discovery and development of recombinant DNA technologies and polymerase chain 

reaction (PCR) were the major contributors of advancing sequencing technologies. The 

Sanger’s chain termination technique utilizes dideoxynucleotides (ddNTPs) that are chemical 

analogues of deoxy ribonucleotides (dNTPs)115. Dideoxynucleotides (ddNTP) lack the 3’ 

hydroxyl group that is required for the extension of DNA chains, and therefore cannot form a 

bond with the 5’ phosphate of the next dNTP, making the extension of DNA polymerase 

impossible116. The initial method involved use of non-radioactive NTP and radioactive ddNTP 

which enabled visualization of the various sizes of DNA fragments. The technique was further 

developed, and radioactive ddNTPs were later replaced with fluorometric based detection and 

capillary based electrophoresis117-121. This lead to development of the first generation of 

automated sequencing machines to be used in sequencing genomes of various organism122.  

The early sequence-based approach used Sanger sequencing of cDNA or expressed sequence 

tag (EST) libraries123. However, this was relatively low throughput, expensive and not 

quantitative. To overcome this, tag-based sequencing approaches were being explored. Tag-

based sequencing approach like serial analysis of gene expression124 (SAGE) that relies on 

poly(A) tail, cap analysis of gene expression125 (CAGE) that relies on m7G, or RNA-Paired 

End Tag126 (RNA-PET) and Transcript isoform sequencing127 (TIF-seq) that allows sequencing 

from both 5’ and 3’ end of RNAs could offer sequencing that were cost-effective and high-

throughput. An advantage of both paired-end tag approach is the detection of fusion transcripts. 

However, they still have technical limitations obtaining information from long full-length 

transcripts. 

In 1990 the scientific community wanted to sequence the entire human genome, which consist 

of over 3 billion bases. The aim was to identify genetic variants that could increase the risk for 

common diseases like cancer and diabetes. The aim was to understand our biology but also use 
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this information in healthcare to sequence patient’s DNA to investigate if they were prone to 

certain diseases128; 129. However, sequencing the patient’s entire genome was not feasible due 

to sequencing cost. The National Institutes of Health (NIH) wanted a cost-effective sequencing 

method that would only look for genetic variants that carried diseases. Later, NIH found the 

idea of breaking up the genome into pieces (shotgun) followed by sequencing most attractive130; 

131. Shotgun sequencing is a fast and efficient method to capture the transcriptomic profile. 

RNAs are converted to cDNAs. The larger cDNAs are fragmentized into smaller fragments 

and cloned into a cDNA library followed by sequencing. The reads are pieced together like a 

giant jigsaw puzzle bioinformatically. An advantage with shotgun sequencing is that it is does 

not rely on 5’ cap or poly(A) tail. It can also distinguish expression levels of each exons within 

a transcript, and detect alternative splicing events. However, the drawbacks with shotgun 

sequencing compared to tag-based approach is that it is not strand specific, meaning that the 

read you obtain from shotgun sequencing does not discriminate the 5’ end or the 3’ end.  

The next breakthrough in sequencing technologies came during the discovery of luminescent 

method for measuring pyrophosphate synthesis132. The light produced production was 

proportional to the pyrophosphate levels. By measuring pyrophosphate production during the 

DNA polymerization reaction as each nucleotide is pumped through while the DNA template 

is attached to a solid surface it would reveal which nucleotide is being incorporated and how 

many133. The pyrosequencing technique could be performed using natural nucleotides instead 

of heavily modified dNTPs, and observed in realtime134. However, it has difficulties detecting 

stretches of DNA sequence with more than 4 identical nucleotides. The pyrosequencing 

technique was later licensed to 454 Life Sciences. 

6.3.3.1 454 sequencing 

Massive parallelization of sequencing reactions, also called Next-Generation Sequencing 

(NGS) or second-generation sequencing was led by the technology of 454 sequencing 

machines. Preparation for the 454 sequencing required attachment of DNA library to an adaptor 

sequence annealed to a bead, one molecule per bead, which is then amplified with an adaptor-

specific primer. Each bead is placed in a single well on a reaction plate. For each sequencing 

round enzymes and specific nucleotide are pumped and washed onto the reaction plate. The 

release of pyrophosphate is monitored and registered135.   
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6.3.3.2 Illumina/Solexa sequencing 

Not long after 454 sequencing technology another sequencing method was developed, Solexa 

sequencing. The Solexa technology immobilizes clusters of sequencing templates on a solid 

surface covered with complementary adapter sequences. A process called bridge amplification 

can generate clusters of amplified DNA clones within a surface. These clusters are sequences 

with nucleotides with fluorophores attached to the 3’ hydroxyl position. The fluorophores must 

be cleaved away before incorporation of a new nucleotide136; 137. The Solexa technology was 

acquired by Illumina, and the technology is referred to as Illumina sequencing.  

6.3.3.3 SOLiD sequencing 

A sequencing approach based on DNA ligase to detect and incorporate bases in a very specific 

manner was developed by George Church in 2005. The method is called small oligonucleotide 

ligation and detection system (SOLiD) and differ from the sequencing by synthesis employed 

by 454 sequncing and Illumina. Instead DNA fragments are attached and amplified on beads. 

Specific probes complementary to the adaptor sequences are hybridized to the amplified 

fragments. These probes allow ligation of fluorescently labeled probes which consist of eight 

bases, which contain ligation site and cleavage site. If the first two bases are complementary to 

the template than ligation will occur, and the rest will be cleaved of. The fluorophore is 

removed and another set of fluorescently labeled probes are added. The ligation and removal 

of fluorophore is then registered138. 

In study I and II Illumina 1G Genome Analyzer was used for sequencing of c. elegans CLIP-

sequences and small RNAs of ovarian tumor samples. In study III Illumina HiSeq 2000 was 

used. The 1G Genome Analyzer from Illumina can generate 35-bp reads and produce at least 

1 GB of sequence per run in 2-3 days. The Illumina HiSeq 2000 can generate up to 25 GB of 

100-bp long paired-end reads per day. 

6.4 BIOINFORMATICAL ANALYSIS 

In 2001 the cost of sequencing the human genome was 100 million USD. In less than 20 years 

the cost of sequencing has dropped to remarkable 1000 USD139. Advancement in sequencing 

technologies and recombinant DNA technologies, and its’ application in healthcare are the 

major reasons for this dramatic change. However, without the ability to properly interpret the 

vast output of biological data then all the advancement in sequencing would be in vain. The 

advancement in computer technology and mass production of biological data paved way for a 
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new research field in biology, using computers to understand and interpret biological data, 

bioinformatic. 

In 1969 when NASA guided a space shuttle carrying two astronauts from earth to the moon 

and safely back to earth, they had access to computing power of 64kbyte memory and CPU 

0.043MHz140. If we compare that to a smart phone in 2017, which have 256Gbyte memory and 

CPU 2.39 GHz141 it is not surprising that our computers can process more data and perform 

more difficult task which we could not 50 years ago. These advancements have contributed 

significantly to our understanding of human biology and genetic.  

Initially when human genome was sequenced with shotgun method. Billions of short reads had 

to be assembled to a complete genome. By finding reads that would overlap partially scientist 

tried to puzzle all the pieces together. This was a daunting task, and many compared it to putting 

together a million pieces puzzle with only partial information. In this case researchers used 

DNA sequences that partially overlapped to put together an entire genome. 

The major challenge in assembling reads from shotgun sequencing lied in the fact that human 

genome contains many repetitive regions, inability to distinguish orientation of each read, and 

insufficient coverage of the entire genome. During assembly step numerous problems were 

encountered. (1) Reads containing small adapter sequence, that has not been removed by the 

sequencing machine’s software. (2) Chimeric reads, that arise from separate pieces of DNA 

fused together. (3) Contaminant from other species that does not belong to the genome142. 

Since sequencing short reads was the cheapest strategy to acquire information about the human 

genome. Determining the accuracy of our mapping needed to be statistically calculated. Thanks 

to the effort of producing reference genomes we can now map reads to locations in the genome. 

However, we are still faced with several problems. 

The first problem is the practical matter. Even the most powerful computers today would need 

months to map millions of reads to the human genome, which consist of over 3 billion bases. 

The size of the reference genome imposes a problem in term of computing power. The 

algorithm needs to be memory efficient when mapping millions of short reads to the reference 

genome. The second problem is if reads comes from a repetitive region from the genome. It 

would be difficult to determine the exact location of the read with high confidence. The third 

problem is mapping of chimeric reads or alternative spliced reads with different junctions143. 

The new sequence alignment algorithms rely on building indexes (fragmentizing) of reference 

genome. By indexing the reference genome, it improves the computational time significantly. 
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The short sequence alignment tools employ different strategies to match reads to reference 

genome. One of the more common strategy is the Burrows-Wheeler alignment (bwa). In study 

II and III we mapped sequencing reads to the human genome using Bowtie and TopHat2. Both 

algorithm utilizes bwa144; 145.  

6.4.1 Burrows-Wheeler alignment  

Burrows-Wheeler alignment algorithm compresses and collapses the reference genome. This 

means that sequences are fragmentized permutated and sequences that share similarity are 

collapsed. When aligning reads, the algorithm maps short reads to all the sequences in the 

reference genome that are similar. It then sorts out the sequences with the highest possibility 

of match. If several locations in the genome matches then the algorithm assigns reads to the 

location with best alignment, but this is not always correct. 146. 

6.4.2 Tophat2, discovering splice junctions 

Tophat2 is used to identify splice junctions in RNA-seq without relying on known splice sites 

from reference genome.      

6.5 TRANSFECTION OF DNA OR RNA INTO MAMMALIAN CELLS 

6.5.1 Lipid-based transfection 

The positively charged head group of the synthetic lipid reagent forms a complex together with 

the negatively charged nucleic acid. These complexes can be delivered to the cells through 

endocytosis and then released into the cytoplasm. DNA will be translocated to the nucleus for 

transcription, while RNA and antisense oligonucleotides remain in the cytoplasm147. In study 

III, a lipid-based transfection was used to deliver plasmid DNA in HeLa, PC3, HEK293T, 

NoDice 2-20 and NoDice 4-25 cells. 

6.5.2 Polyamine-based transfection 

Polyamines have been explored for gene delivery. Compared to lipid-based transfection they 

can deliver nucleotides with minimal cytotoxicity147. In study III polyamine-based transfection 

was used to deliver siRNA to HeLa and PC3 cells. 

6.6 PROTEIN-RNA INTERACTION 

RNA binding proteins (RBP) that binds to double- or single stranded RNAs have a crucial role 

in various cellular processes, such as gene regulation, transport and cell division148; 149. They 

are especially important in post-transcriptional control of RNAs, such as alternative splicing, 

transport of RNA, RNA editing and translation148; 149. Approximately 1240 genes are annotated 
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to encode RBPs in mammals and 880 in nematodes based on the presence of domains capable 

of interacting with RNA150; 151. Comprehensive studies of mRNA-bound interactome in human 

cell lines identified several proteins that were capable of binding to mRNA without the 

presence of known RNA binding domains152. Suggesting that there are more RNA binding 

proteins in the human and nematode genome than first predicted. To study protein-RNA 

interaction biochemically, several methods can be used like RNA electrophoretic mobility shift 

assay153 (EMSA), RNA pull-down assay154, oligonucleotide-targeted RNase H protection 

assay155; 156 (RPA) and fluorescent in situ hybridization co-localization157. These methods can 

identify the proteins that interact with a specific RNA species. However, to identify the RNAs 

that are bound to a specific protein it is necessary to employ another strategy.  

A method was developed in the Darnell laboratory where they sequenced RNAs bound to Nova 

proteins from mice brains. Nova proteins regulate alternative splicing in neurons. Using this 

method, they were able to identify Nova RNA targets. Using crosslinking and 

immunoprecipitation the authors identified over 300 Nova binding sites. Because RNA targets 

were crosslinked to the proteins it was named CLIP158. The development of sequencing 

technology enabled the use of high-throughput sequencing together with CLIP (HITS-CLIP). 

miRNAs guide Argonaute to RNA targets that are partially complementary to the miRNA, and 

repress translation or degrade mRNA. HITS-CLIP of Argonaute was quickly adopted to 

identify miRNA targets in humans, mice, c. elegans and other organisms159-161.   

Years after other method appeared with variation to the original CLIP method; photoactivatable 

ribonucleoside-enhanced CLIP162 (PAR-CLIP), individual-nucleotide resolution CLIP163; 164 

(iCLIP), crosslinking, ligation and sequencing of hybrids CLASH165 and RNA hybrid and 

individual-nucleotide resolution CLIP166 (hiCLIP) to study protein-RNA interaction.   

ALG-1 HITS-CLIP was used in study I to identify the ALG-1 binding site in let-7 primary in 

c. elegans (Figure 6). TARBP2 HITS-CLIP was used in study III to identify the binding site of 

TARBP2 in ATG2A and TARBP2 in human cancer cell lines. Variation of the CLIP method 

(RNA-CLIP/RNA-IP) with or without crosslinking was also used in study I and III where 

RNase digestion, and sequencing primer ligation was omitted. Instead full-length RNA targets 

were isolated and converted to cDNAs, which were detected with either semi-quantitative RT-

PCR or quantitative RT-PCR. 
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6.7 MONITORING AUTOPHAGY IN MAMMALIAN CELLS 

To monitor the activity of autophagy three methods are mainly used. Electron microscopy, 

immunoblotting of LC3 and tandem fluorescent tagged LC3 reporter. In this study we used two 

of the methods to monitor the activity of autophagy. 

6.7.1 Monitoring LC3 turnover by immunoblotting 

LC3 is the only known protein that can be found in all autophagic membranes, including 

phagophore, autophagosome and autolysosome. The amount of LC3-II is a good indicator of 

the number of autophagosomes, which is a good index of autophagy induction. The full-length 

LC3 is cleaved by ATG4 to form cytoplasmic LC3-I. LC3-I is then conjugated to PE to form 

LC3-II, which involves ATG7 and ATG3. LC3-II binds to both the inner and outer membrane 

of autophagosome. After fusion with the lysosome LC3-II in the inner membrane is degraded 

while the outer LC3-II is deconjugated by ATG4 and returns to the cytosol. By measuring the 

Figure 6. Flow chart of ALG-1 HITS-CLIP 

Stabilization of ALG-1/RNA interaction with ultraviolet light in vivo followed by lysis and 

immunoprecipitation of ALG-1/RNA complex. RNAs bound by ALG-1 are protected from degradation by 

RNase digestion. After RNase digestion a 5’-hydroxyl group and a 3’-phospate group are formed. The 3’ ends 

of the RNA can be ligated with sequencing primers after removal of phosphate group by alkaline phosphatase. 

A radiolabeled P-γ-ATP is added to the 5’ end with polynucleotide kinase and run on native SDS-PAGE to 

isolate the band corresponding to ALG-1/RNA complexes. ALG-1 protein is digested by proteinase K to 

release the crosslinked RNAs followed by RNA extraction. After ligation of 5’ sequencing primer to RNA 

conversion to cDNA and cloned into cDNA library. 
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level of LC3-II with immunoblotting we can monitor the progression of autophagy either by 

LC3-I to LC3-II conversion or lysosomal degradation167.  

Since autophagy is a highly dynamic process. The detection of LC3-II levels at a specific time-

point is insufficient for an overall estimation of autophagic flux. Autophagic flux referring to 

the complete process of autophagy, which includes sequestration of target proteins within the 

autophagosome, the fusion of autophagosome with lysosome, and finally breakdown of the 

target proteins. An increase of LC3-II could reflect either increase of autophagosome due to 

autophagy induction or a blockage in the downstream step of autophagy, either fusion or 

breakdown of target proteins. Thus, we detect LC3-II using immunoblots together with drugs 

that alter the lysosomal pH and blocks the autophagosome-lysosome fusion, bafilomycin A1. 

An alternate to monitor autophagic flux is detecting the levels of p62, also known as SQSTM1. 

It anchors ubiquitinated proteins to the autophagic machinery and promotes clearance of 

proteins through the lysosome. Degradation of p62 occurs mainly through autophagy, which 

makes it a good marker for autophagic activity. Accumulation of p62 indicate suppression of 

autophagy while decrease of p62 indicate autophagic activation. Like LC3-II, measuring p62 

levels with immunoblotting require treatment with lysosomal inhibitor to evaluate the true 

effect of autophagy167. 

6.7.2 Monitor autophagic flux with tandem fluorescent LC3 reporter 

Using confocal microscopy, we can measure the LC3 puncta, which corresponds to 

autophagosomes when cells are transfected together with a LC3 reporter. However, the 

increase of LC3 puncta does not invariably correspond to increased levels of autophagosomes, 

because autophagy is a highly dynamic process. The accumulation of autophagosome at a 

specific time point can reflect either increase of autophagosome formation or suppression of 

autophagic flux. By using a tandem monomeric RFP-GFP-tagged LC3168 we can measure the 

levels of both autophagosome formation and autophagic flux. The GFP fluorescent signal is 

quenched by the low pH within the lysosome, whereas mRFP maintain their fluorescence in 

the lysosome. Yellow puncta (colocalization of green and red signals) on the confocal 

microscope indicate the tandem reporter is located in phagophore or autophagosome whereas 

red puncta (only red signals) indicate the tandem reporter is located in lysosome 

(autolysosome). 

6.8 STATISTICAL METHODS 

Several statistical tests were applied in this thesis, which is described below: 
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6.8.1 Student t-test 

Student t-test is used to determine if two groups or observed phenomena are significantly 

different from each other, by comparing the means between the groups or phenomena. It 

assumes that our data are normally distributed. P-value is calculated to determine if the 

outcome occurred by chance. Low P-value means that the observed outcome was not due to 

chance, and null hypothesis can be rejected. Student t-test was used in study I and III to 

calculate if the difference observed between two groups were significant. 

6.8.2 Mann-Whitney U test  

Unlike student t-test, Mann-Whitney U test is a nonparametric test of the null hypothesis, and 

applied when data do not follow normal distribution. Mann-Whitney U test was used in study 

II to calculate if the difference observed between two groups were significant. 

6.8.3 Kruskal-Wallis test 

Kruskal-Wallis test is used to assess for significant difference among three or more groups, 

which was used in Study II.       
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7 RESULTS AND DISCUSSION 

7.1 STUDY I 

In this study, we explored a novel role of miRNAs in C. elegans. The role of miRNA and 

Argonaute in regulation of protein coding transcripts and function in the cytoplasm have been 

well characterized; however, not much is known about their role in the nucleus and their 

interaction with noncoding transcripts. This is the first study to describe a new role for nuclear 

miRNA and Argonaute, in which they bind noncoding RNAs and interfere with their function.  

HITS-CLIP of ALG-1 in C. elegans revealed an ALG-1 binding site at the 3’ end of pri-let-7. 

To our surprise this site contained a let-7 complementary site (LCS), which suggested that 

interaction of pri-let-7 with ALG-1 could be mediated by its own mature let-7 miRNA. Further 

inspection revealed that the Argonaute binding site at pri-let-7 was conserved in other worm 

species and in a subset of pri-let-7s in humans, suggesting that the site might have an important 

function in other species as well.   

To understand the mechanism of ALG-1 and let-7 interaction with pri-let-7, we used various 

worm strains that either lacked ALG-1 (alg-1), ALG-1 binding site on pri-let-7 (∆alg-1) or let-

7 (n2853). This enabled us to investigate how removing one of these components would affect 

pri-let-7.  

Without ALG-1, ∆alg-1 and let-7, animals displayed an impairment in processing of pri-let-7, 

which could be seen with increase of either pri-let-7 and pre-let-7 or pri-let-7 alone. This 

suggests that ALG-1, ALG-1 binding site and let-7 are needed to ensure efficient processing 

of pri-let-7. 

Normally, the let-7 (n2853) animals display low levels of let-729. This is caused by a point 

mutation in the seed sequence of let-7, which makes the miRNA less stable but also affect the 

processing of its own pri-let-7. Introduction of wild-type let 7 resulted in an increase of mutated 

let-7 levels. Further strengthening our evidence that let-7 is needed to ensure proper processing 

of pri-let-7. 

Lastly, we demonstrate that the ALG-1 interaction to the pri-let-7 occurs in the nucleus. 

Processing of primary miRNAs occur in the nucleus. Purified nuclear extract contained both 

ALG-1 and miRNAs, and ALG-1 can retain its binding capacity to pri-let-7 in the nucleus. 

XPO-1 is a nuclear transport receptor and has been shown to decrease the levels of let-7169. 

Silencing of XPO-1 resulted in a decrease of nuclear ALG-1 and reduced association of ALG-

1 and pri-let-7, but did not affect the overall level of ALG-1. These results demonstrate that 
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ALG-1 nuclear export is mediated by XPO-1, and that ALG-1 binding to pri-let-7 occurs in 

the nucleus (Figure 7). 

 

The key findings of this study: 

1. miRNAs and Argonaute can target noncoding transcripts 

2. A new role for nuclear miRNAs and Argonaute 

3. let-7 can promote its own expression by binding to pri-let-7 

 

Since the discovery of miRNAs in 199326, their ability to bind to protein-coding transcripts and 

impose regulation have been well characterized26; 27; 29; 36; 38; 170. It was not known whether 

miRNAs could target other transcripts besides mRNA, which is surprising considering that a 

majority of eukaryotic transcriptome is noncoding RNAs171. Our study re-evaluates the role of 

miRNAs and emphasizes that miRNA targets should not only be focused on protein-coding 

transcripts but noncoding transcripts as well. Since the publication of this study numerous lab 

have demonstrated how miRNAs can bind and target noncoding transcripts. 

 

 
Figure 7. Auto-regulation of let-7 processing by mature let-7 and Argonaute 

  

The mature let-7 miRNA is loaded onto Argonaute and guides them to the let-7 complementary site (LCS) 

close to the 3’ end of the primary let-7 transcript, which promotes processing of mature let-7.  

Exportin-1 protein (XPO-1), a nuclear transport factor, shuttles Argonaute with mature let-7 to the nucleus 

thereby facilitating the interaction between Argonaute and primary let-7. 

 



 

30 

let-7 can target long noncoding RNAs in various tissues and promote their degradation172-175. 

Others have shown that noncoding transcripts contain miRNA binding site and can sequester 

and prevent miRNAs from binding to mRNAs, i.e. sponging effect176-181. For example, miR-1 

can bind to the 3’UTR of the lncRNA urothelial cancer associated 1 (UCA-1) and effectively 

inhibit its expression182. Interestingly, another study showed that UCA-1 could sequester miR-

16, and prevent it from binding to mRNAs183. Together, these findings suggest that there is a 

crosstalk between various miRNAs, and they can regulate expression and function of each 

other. 

 

To fully understand the complex network of miRNA interaction, Li and colleagues analyzed 

hundreds of CLIP-seq experiments, and combined their results into a database of miRNA 

interaction network. Although many miRNA targets were protein-coding transcripts, thousands 

of interactions between miRNAs and noncoding RNAs were also found184.  

  

7.2 STUDY II 

This study aimed to characterize the miRNA profiles of various non-epithelial ovarian tumors. 

miRNA profile is altered in various tumors185-189 and can predict outcome and classification of 

histological subtypes190. Given that non-epithelial ovarian tumors are challenging for clinicians 

and pathologists due to their histologically, genetically and clinically heterogeneous. 

Advantages of using miRNAs as diagnostic tool in cancer are several. miRNAs are stable in 

formalin-fixed paraffin-embedded (FFPE) cancer tissues191, and in serum, plasma and blood 

which could be used as a sensitive non-invasive biomarkers192; 193. 

 

Our cohort of non-epithelial ovarian tumors consists of frozen tumor tissues with different 

histology. To characterize the miRNA profiles, we isolated small RNAs and cloned them into 

small cDNA libraries. We performed RNA-seq and aligned the sequences to miRbase, which 

is a database that contain sequences of thousands of mature and precursor miRNAs. Initially 

we performed an unsupervised clustering of the tumor samples, and found a distinct miRNA 

profile for malignant ovarian germ cell tumors (mOGCT) compared to benign OGCT 

(bOGCT) and sex-cord stromal tumors (SCST). This suggests that SCST and bOGCT are 

genetically more similar than mOGCT.  



 

 31 

 

To strengthen our findings, we validated 12 miRNAs by RT-qPCR in an extended cohort of 

samples. These miRNAs were selected because they were known to be dysregulated in various 

tumors. The results from the RT-qPCR confirmed our findings from RNA-seq for many of the 

miRNAs. miR-199a-5p, which was downregulated in mOGCT, is known to target Beclin 1 

(BECN1), a key component in autophagy194; 195. BECN1 protein level was evaluated in 

different tumor groups, and BECN1 was shown to be significantly higher in the mOGCT in 

comparison to bOGCT. Autophagy plays a role in maintenance of female germ cells196; 197, 

suggesting that dysregulation of autophagy could contribute to tumorigenesis in female germ 

cells.  

 

The key findings of study II are: 

1. Potential use of miRNAs as biomarkers in non-epithelial ovarian tumors 

2. Identification of miRNAs that could be important for tumorigenesis 

3. Autophagy may have an important role in the pathogenesis of non-epithelial ovarian 

tumors 

 

The promise of using miRNAs as biomarkers in the clinics led oncologist to identify and 

validate miRNAs profile in various tumors185-189. miRNAs can also be used to diagnose 

different tumors as well as monitoring the progression of specific tumors190. Additionally, 

miRNA expression profile can help oncologist to determine the best treatment for the patient. 

Certain tumors are more difficult to classify and grade, which makes it difficult to determine a 

proper treatment. There are multiple types of ovarian cancer, which are classified by the cell 

from which the tumor originates from198. Most non-epithelial ovarian tumors are cured but a 

few persist and do not respond to traditional treatment. Understanding the genetic profile of 

different ovarian tumors can help us to understand the pathology of the disease as well as 

developing better treatments. 

 

Autophagy is important to maintain cellular homeostasis. Dysregulation of autophagy can lead 

to various pathologies199; 200. Especially in female germ cells autophagy seems to be important 

for the survival of germ cells196; 197. In aggressive female germ cell tumors, we found lower 



 

32 

expression of miR-199-5p that is a direct target of BECN1, a key component in autophagy. 

This suggests that tumor aggressiveness might be caused by dysregulation in autophagy, and 

could be explored either as a biomarker or a new treatment option. Recently, autophagy 

inhibitors have been used in combinations with other drugs to treat cancer201; 202. Perhaps 

autophagy inhibitors could be explored as a novel therapy for germ cell tumors. 

 

7.3 STUDY III 

This study uncovers a novel role of TARBP2, as a regulator of ATG2A and autophagy. 

TARBP2 is a double-stranded RNA binding protein (dsRBP), and is involved in cleavage of 

precursor miRNA to mature miRNA203; 204. It was initially discovered to stimulate expression 

of HIV-1 by binding to TAR in the viral long terminal repeats69. Approximately over 1200 

RNA binding proteins are annotated in the human genome150. They are especially important in 

posttranscriptional control of RNAs, such as alternative splicing, transport of RNA, RNA 

editing and translation148; 149. 5’UTR is a region of mRNA that is upstream of the translational 

start site. This region is often GC rich and contain secondary RNA structures that impact 

regulation of translation205; 206. However, it remains elusive how 5’UTR can impact regulation 

of translation, and which are the factors involved. In this study we attempted to address this 

question and revealed that TARBP2-bound transcripts are associated with several important 

biological processes, including gene regulation and autophagy. Autophagy is a cellular process 

that sequester and deliver cytoplasmic cargo targeted for degradation through envelopment of 

double membrane vesicle to the lysosome207. It is responsible for maintaining cellular 

homeostasis. Dysregulation of autophagy can lead to diseases, it is therefore important for the 

cell to tightly regulate this process90; 199; 200. 

 

A study by Goodarzi et al. identified several TARBP2-bound transcripts and they demonstrate 

that TARBP2 can promote metastasis in cancer cell lines by binding to ZNF395 and APP, 

which lead to destabilization of these transcripts85. We re-analyzed their data and found several 

genes with TARBP2 binding site at their 5’UTR. We noticed several of these genes are 

involved in autophagy. Among them, ATG2A is important for autophagic degradation207. 

Immunoprecipitation of TARBP2 protein showed a strong association to ATG2A mRNA, and 

surprisingly also to TARBP2 mRNA. This demonstrates that TARBP2 binds ATG2A and 

TARBP2 mRNAs. 
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To determine whether ATG2A mRNA interaction with TARBP2 have an impact on its 

expression, we modulated the levels of TARBP2 either by silencing or overexpression and 

visualized the effect with immunoblotting. TARBP2 overexpression resulted in decrease of 

ATG2A, and silencing of TARBP2 had reverse effect, increase of ATG2A. Taken together our 

results show that TARBP2 influence ATG2A expression. 

Given the role of ATG2A in autophagosome formation, we assessed whether TARBP2 

regulation of ATG2A influenced autophagy. LC3-II levels correspond with the number of 

autophagosomes, which is commonly used as autophagy marker167. Indeed, immunoblotting 

revealed that TARBP2 overexpression resulted in decrease of LC3-II whereas silencing of 

TARBP2 resulted in increase of LC3-II, which suggest that TARBP2 can regulate autophagy. 

To evaluate if autophagy regulation mediated by TARBP2 was due to inhibition of 

autophagosome formation or autophagic flux (rate of autophagic degradation) we blocked the 

autophagosome-lysosome formation by drugs and analyzed the LC3-II levels by 

immunoblotting. Blocking the autophagosome-lysosome formation also led to decrease in 

LC3-II levels upon TARBP2 overexpression and reverse effect with silencing of TARBP2 

suggesting that TARBP2 can regulate autophagic flux. The tandem mRFP-GFP-LC3 reporter 

can be used to detect the number of autophagosomes and autolysosomes in the cell. Ectopic 

expression of TARBP2 revealed a slight increase of autophagosomes and a decrease in 

autolysosomes. Together, these findings suggest that TARBP2 has a role in regulation of 

autophagic flux. 

 

Since TARBP2 is involved in miRNA biogenesis, we wanted to determine if the regulation of 

ATG2A by TARBP2 was dependent of miRNAs. Dicer is an endoribonuclease and responsible 

of cleaving precursor miRNA into mature miRNA duplex203; 204. Dicer knockout (KO) cells are 

unable to produce high levels of mature miRNAs208. Modulating TARBP2 levels in Dicer KO 

cells showed similar results as previously observed. TARBP2 overexpression resulted in 

decrease of ATG2A and LC3-II levels, and reverse effect with silencing of TARBP2. This 

suggests that ATG2A and autophagy regulation mediated by TARBP2 is miRNA-independent.    

 

The key findings of study III: 

1. TARBP2 can bind ATG2A and suppress its expression  
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2. TARBP2 can also bind TARBP2 mRNA 

3. TARBP2 is a regulator of autophagy 

 

Our genome encodes over thousands of RBPs150. They are described as important regulators 

of RNA processing148; 149. However, their role in the cell and their function remains elusive for 

majority of these proteins. In this study we describe a novel role for one such protein, TARBP2.  

 

TARBP2 is important in many cellular processes70. Perhaps it is mostly known for its role in 

miRNA biogenesis and interaction with protein kinase R (PKR)209. We found several TARBP2 

binding sites throughout the entire human transcriptome. Many of these binding sites are found 

at introns and CDS, but perhaps the most interesting sites are in the 5’UTRs and 3’UTRs. They 

are known to contain many regulatory regions and can control expression of genes205; 206. Here, 

we revealed a new mRNA target of TARBP2 and a novel function in autophagy regulation.  
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