

Karolinska Institutet http://openarchive.ki.se

This is a Peer Reviewed Accepted version of the following article, accepted for publication in Journal of Allergy and Clinical Immunology.

2017-04-28

Parental antibiotics and childhood asthma : a population-based study

Örtqvist, Anne K; Lundholm, Cecilia; Fang, Fang; Fall, Tove; Almqvist, Catarina

J Allergy Clin Immunol Pract. 2017 Sep-Oct;5(5):1451-1454.e4. http://doi.org/10.1016/j.jaip.2017.03.009 http://hdl.handle.net/10616/45908

If not otherwise stated by the Publisher's Terms and conditions, the manuscript is deposited under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. © 2017 American Academy of Allergy, Asthma & Immunology. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Parental antibiotics and childhood asthma – a population-based

2 study

3

- 4 5 Anne K. Örtqvist^a; MD, PhD
- 6 Cecilia Lundholm^a; MSc
- 7 Fang Fang^a; MD, PhD
- ⁸ Tove Fall^b; VMD, PhD
- ⁹ Catarina Almqvist^{a,c}; MD, PhD

10

11 Affiliations

- ¹² ^aDepartment of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm,
- 13 Sweden
- ¹⁴ ^bDepartment of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory,
- 15 Uppsala University, Uppsala, Sweden
- ¹⁶ ^cUnit of Pediatric Allergy and Pulmonology at Astrid Lindgren Children's Hospital,
- 17 Karolinska University Hospital, Stockholm, Sweden

- 19 Corresponding Author:
- 20 Anne K. Örtqvist MD, PhD
- 21 Department of Medical Epidemiology and Biostatistics
- 22 PO Box 281, Karolinska Institutet
- 23 SE 171 77 Stockholm, SWEDEN
- 24 T. +46 737 355 309
- 25 E. anne.ortqvist@ki.se

26	Funding	sources
----	---------	---------

27	This work was supported by the Swedish Research Council through the Swedish initiative for
28	Research on Microdata in the Social and Medical Sciences (SIMSAM) framework grant no.
29	340-2013-5867, the Swedish Heart Lung Foundation, grants provided by the Stockholm
30	County Council (ALF project), the Swedish Asthma and Allergy Association's Research
31	Foundation, FORTE grant no 2015-00289 and the Strategic Research Program in
32	Epidemiology at Karolinska Institutet.
33	
34	Clinical Implications box
35	In this population-based study on antibiotic treatment before, during and after pregnancy,
36	using paternal exposure as negative control, we confirm that associations between maternal
37	antibiotic exposure and childhood asthma is partly explained by familial confounding such as
38	genes and environment.
39	
40	
41	Key words: antibiotics, asthma, maternal, paternal, public health, register
42	Word count: 1175
43	

44 To the editor:

45 Previous studies have found positive associations between maternal antibiotic exposure in fetal life and childhood asthma.¹⁻⁴ It has been hypothesised that maternal antibiotic treatment 46 may trigger the development of the immune system of young children, and thus be an 47 important factor in asthma development.⁵ Yet, systematic reviews have highlighted that the 48 49 associations between antibiotic exposure and asthma could be due to bias such as confounding by indication, reverse causation or factors shared within families.⁶ We recently provided 50 51 evidence that the association between maternal antibiotics during pregnancy and childhood 52 asthma is due to familial confounding such as genes and environmental factors e.g. socioeconomic status, parental smoking and health seeking behaviour.⁷ Assessment of paternal 53 54 antibiotic treatment during pregnancy, as a negative control, could help to disentangle the 55 relationships further, as the intrauterine environment cannot be directly influenced by the father.³ If similar estimates are seen for paternal antibiotics as for maternal antibiotics, as well 56 57 as for exposure to antibiotics before, during and after pregnancy, then this supports our 58 previous findings that the association is at least partly explained by familial factors. 59 We aimed to address the association between parental (father's and mother's)

exposure to antibiotics from 6 months before, during and up to 6 months after pregnancy, and
subsequent childhood asthma by prospectively investigating a nationwide cohort of children.

The Swedish Medical Birth Registry (MBR) and the Multi-Generation Registry were linked through the personal identity number to identify a nationwide population-based cohort of children (N=492 700) born in Sweden to women who were pregnant between July 2005 and December 2010, along with their biological fathers. Details regarding the Swedish registers and the methodology are provided in the Online Repository.

68	We collected information on dispensed systemic parental antibiotics from the
69	Swedish Prescribed Drug Register (SPDR). Exposure windows were defined as <u>during</u>
70	pregnancy: between estimated date of conception (from gestational age in days) to date of
71	birth; <i>before pregnancy</i> : up to 6 months before estimated date of conception; and <i>after</i>
72	pregnancy: up to 6 months after date of birth. Childhood asthma was defined as having both
73	a diagnosis of asthma registered in the National Patient Register (NPR) and fulfilling criteria
74	for asthma medication from the SPDR. This proxy for asthma at 0-17 years of age has
75	previously been validated against criteria of asthma, set by the Swedish Paediatric
76	Association's section for Allergy. ⁸
77	Potential confounders were identified based on previous knowledge and
78	through directed acyclic graphs. ⁹ Information on parents' highest education, country of birth
79	and history of asthma (asthma diagnosis or asthma medication), parental cohabitation during
80	pregnancy, parity and maternal smoking during pregnancy, were obtained from the
81	Longitudinal integration database for health insurance and labour market studies, MBR, NPR
82	and SPDR.
83	The association between maternal and paternal antibiotic exposure and
84	childhood asthma was analysed using Cox proportional hazard regression with attained age as
85	analysis time scale and sandwich estimator of standard errors to account for clustering within
86	sibling groups. End of follow up was defined as the first of; positive outcome, emigration,
87	death or end of study period (December 31 st , 2011). Non-proportional hazards were found for
88	exposure to antibiotics at all exposure periods. Consequently, we allowed for time-varying
89	effects by splitting data at the age of 2.5 years. The study was approved by the regional ethical
90	review board in Stockholm, Sweden.
91	

In total, 14% of the children had mothers who were exposed to antibiotics pre-pregnancy,
19% during pregnancy and 16% post-pregnancy (*Table 1*). The proportion of fathers with prepregnancy exposure was 8%, during pregnancy 11%, and post-pregnancy 8%. The overall
proportion of asthma in children was 6% and approximately 7-8% in children who had been
exposed to antibiotics.

97 Children whose mothers had been exposed to antibiotics were at increased risk 98 of asthma at all ages. The estimates for pre-pregnancy exposure was (adjusted Hazard Ratio 99 (HR_{adi}) 1.31, 95% CI 1.27-1.35); during pregnancy (HR_{adi} 1.27, 95% CI 1.23-1.30) and post-100 pregnancy (HR_{adi} 1.34, 95% CI 1.30-1.38) among children up to 2.5 years. Point estimates for 101 children ≥ 2.5 years were somewhat lower, but still significant, *Figure 1 and Table E1*. 102 Children whose fathers had been exposed to antibiotics were also at increased 103 risk for asthma up to 2.5 years; pre-pregnancy (HR_{adi} 1.17, 95% CI 1.12-1.21); during 104 pregnancy (HR_{adi} 1.13, 95% CI 1.09-1.17) and post-pregnancy (HR_{adi} 1.19, 95% CI 1.14-105 1.25), however the association disappeared in children \geq 2.5 years, *Figure 1 and Table E1*. 106 To further understand if the differences in results between children $\langle or \ge 2.5$ 107 years, could be explained by the fact that young children with older siblings may be more 108 prone to both infections and thus antibiotics, an interaction term between having older 109 siblings and antibiotic exposure was included, where estimates were similar to the main 110 findings (Table E2). 111

In this nationwide population-based register study of parental antibiotics treatment, we found an association between both maternal and paternal exposure to antibiotics before, during and after pregnancy and childhood asthma in children < 2.5 years of age. The associations between exposure to maternal, but not paternal, antibiotics and asthma remained

116 in children ≥ 2.5 years. While this could not be explained by having older siblings, the fact that 117 there is an association between father's antibiotic exposure and the child's asthma suggests 118 that the association may be due to confounding from shared environmental factors (U1 in 119 Figure E1) or paternal environmental factors (U3 in Figure E1), such as sharing of infections, 120 caring of children or health-seeking behaviour that differs between mothers and fathers. While 121 the effect of maternal antibiotics seem to be stronger, the similar pattern of estimates, 122 independent of exposure period, indicate that the association is, although not causal, explained 123 by additional maternal confounders (U2 in Figure E1), such as genes or environmental 124 factors that are related to the intrauterine environment and the mother's risk of antibiotic treatment. This is in line with, and confirms findings from our previous sibling design study,⁷ 125 126 and illustrates the beauty of using paternal exposure as negative control. On the contrary, 127 Mulder et al did not find a significant association between exposure to paternal antibiotics in the third trimester and childhood asthma³ which may be explained by the limited exposure 128 129 period or power issues. However, we cannot exclude that the antibiotic exposure to any of the 130 parents alters the child's neonatal exposure to a healthy microbiome, and that this could in 131 turn lead to increased risk of asthma.

The population-based registers allowed us to estimate the association between parental antibiotics and childhood asthma prospectively with objective measures of exposure and validated outcomes⁸, precluding recall bias. While we were able to adjust for maternal smoking during pregnancy and parental country of birth, information on paternal smoking, which may be a potential confounder, was not available in the registers. We were also unable to control for antibiotics prescribed abroad, however, sensitivity analyses restricted to children of Swedish-born parents produced similar.

139

141	In conclusion, we have shown an association between parental exposure to
142	antibiotics and subsequent childhood asthma in children (<2.5 years for maternal and paternal
143	exposure and ≥ 2.5 years for maternal exposure), with a pattern that confirms shared familial
144	(genetic and environmental) factors.
145	
146	
147	We would like to acknowledge Åsa Eck for excellent data management.

149 **References**

Rusconi F, Galassi C, Forastiere F, et al. Maternal complications and procedures
 in pregnancy and at birth and wheezing phenotypes in children. *American journal of respiratory and critical care medicine* 2007; **175**(1): 16-21.
 Metsala J, Lundqvist A, Virta LJ, Kaila M, Gissler M, Virtanen SM. Prenatal
 and Postnatal Exposure to Antibiotics and Risk of Asthma in Childhood. *Clinical and*

155 experimental allergy : journal of the British Society for Allergy and Clinical Immunology156 2014.

Mulder B, Pouwels KB, Schuiling-Veninga CC, et al. Antibiotic use during
 pregnancy and asthma in preschool children: the influence of confounding. *Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology* 2016; 46(9): 1214-26.

McKeever TM, Lewis SA, Smith C, Hubbard R. The importance of prenatal
 exposures on the development of allergic disease: a birth cohort study using the West
 Midlands General Practice Database. *American journal of respiratory and critical care medicine* 2002; **166**(6): 827-32.

165 5. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and
166 metabolic alterations affect risk of childhood asthma. *Science translational medicine* 2015;
167 7(307): 307ra152.

168 6. Heintze K, Petersen KU. The case of drug causation of childhood asthma:
169 antibiotics and paracetamol. *Eur J Clin Pharmacol* 2013; **69**(6): 1197-209.

7. Örtqvist AK, Lundholm C, Kieler H, et al. Antibiotics in fetal and early life and
subsequent childhood asthma: nationwide population based study with sibling analysis. *BMJ (Clinical research ed)* 2014; **349**: g6979.

- 173 8. Örtqvist AK, Lundholm C, Wettermark B, Ludvigsson JF, Ye W, Almqvist C.
- 174 Validation of asthma and eczema in population-based Swedish drug and patient registers.
- *Pharmacoepidemiol Drug Saf* 2013; **22**(8): 850-60.
- 176 9. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research.
- *Epidemiology (Cambridge, Mass)* 1999; **10**(1): 37-48.

180 Figure legends

181

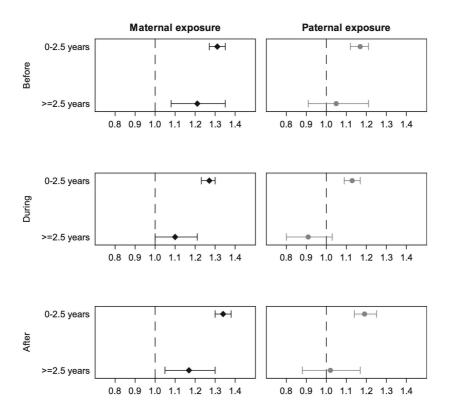
Figure 1. Adjusted* Hazard ratio (HR) and 95% Confidence Intervals (CI) for childhood
asthma in relation to age, after exposure to antibiotics before, during and after pregnancy in
mothers and fathers respectively.

185

186 *Maternal exposure: Adjusted for parents' highest education, mother's country of birth and

187 history of asthma, parental cohabitation during pregnancy, parity, age as analysis time scale

188 (pre-pregnancy, pregnancy, post-pregnancy) and maternal smoking (pregnancy).


189

190 *Paternal exposure: Adjusted for parents' highest education, father's country of birth and

191 history of asthma, age as analysis time scale (pre-pregnancy, pregnancy, post-pregnancy) and

192 parental cohabitation during pregnancy (pregnancy).

193

adjHR and 95% CI

Tables 194

195 196 197
Table 1. Descriptive table of study population and variables included in analyses.

_

	All	Children without asthma		Children with asthma		
	Ν	n	%	n	%	
Total	492 700	463 446	94.1	29 254	5.9	
Variables						
Maternal antibiotics						
Pre-pregnancy	66 882	61 888	13.3	5 071	17.3	
During pregnancy	95 558	88 429	19.1	7 129	24.4	
Post-pregnancy	76 665	70 787	15.3	5 878	20.1	
Paternal antibiotics						
Pre-pregnancy	39 196	36 445	7.9	2 751	9.4	
During pregnancy	56 243	52 424	11.3	3 819	13.1	
Post-pregnancy	37 139	34 472	7.44	2 667	9.1	
Highest paternal educat	ion					
$\leq 9 yrs$	23 038	21 574	4.7	1 464	5.0	
10-12 yrs	179 358	167 312	36.1	12 046	41.2	
>12 yrs	287 852	272 143	58.7	15 709	53.7	
Missing	2 452	2417	0.5	35	0.1	
Parity						
No siblings	217 449	205 816	44.4	11 633	39.8	
$\geq l$ sibling	275 251	257 630	55.6	17 621	60.2	
Parental cohabitation du	uring pregna	incy				
Yes	446 034	419 869	90.6	26 165	89.4	

No	24 172	22 596	4.9	1 576	5.4
Missing	22 494	20 981	4.5	1 513	5.2
Mother's country of bi	rth				
Sweden	389 180	364 472	78.6	24 708	84.5
Other	103 520	98 974	21.4	4 546	15.5
Father's country of bir	th				
Sweden	387 926	363 557	78.5	24 369	83.3
Other	104 774	99 889	21.6	4 885	16.70
Mother with asthma					
No	452 685	428 369	92.4	24 316	83.1
Yes	40 015	35 077	7.6	4 938	16.9
Father with asthma					
No	457 841	432 227	93.3	25 614	87.6
Yes	34 859	31 219	6.7	3 640	12.4
Maternal smoking duri	ng pregnancy				
No	439 418	414 309	89.4	25 109	85.8
Yes	32 255	29 560	6.4	2 695	9.2
Missing	21 027	19 577	5.0	1 450	4.2

1 Online Repository

2 Methods

3 Study population

4 The personal identity number (PIN) enables unambiguous linkage between population-based registers held by the Swedish National Board of Health and Welfare and Statistics Sweden.¹ 5 6 The Swedish Medical Birth Register (MBR) and the Multi-Generation Registry was linked 7 through the personal identity number to identify a nationwide population-based cohort of 8 children born in Sweden to women who were pregnant between July, 2005 and December, 9 2010 along with their biological fathers. After linkage of the registers, performed by the 10 Swedish National Board of Health and Welfare, the PINs were replaced with anonymous 11 study numbers. In total 492 700 children were identified after excluding individuals with 12 missing study numbers (n=14 681) and children who had their first migration record registered as immigration (n=14). 13

14

15 **Exposure and outcome**

The Swedish Prescribed Drug Register contains complete data on all dispensed drugs from outpatient care and in the primary health care since July 1, 2005.² All drugs are classified according to the Anatomical Therapeutic Chemical (ATC) classification system. From the register we collected information on parents' dispensed systemic antibiotics, which are coded under ATC J01A-J01X and parents' and children's' asthma medication, coded under ATC R03, as well as the date of dispensed prescription.

The National Patient Register (NPR) was established in 1964, with a complete national coverage as of 1987, and is based on hospital discharge records. ³ The cause of hospitalization is coded at the time of discharge according to the current version of the Swedish translation of the International Classification of Disease (ICD) as determined by the WHO. From the register the following variables were collected: child and parents' asthma
diagnoses (ICD: J45) and date of diagnosis.

Childhood asthma was defined as having both a diagnosis of asthma registered in the NPR 28 and fulfilling one/both of two criteria of asthma medication from the SPDR; a) ≥ 2 dispensed 29 30 inhaled corticosteroids, leukotriene receptor antagonists, or fixed combinations of β 2-agonists 31 and corticosteroids, with ≥ 2 weeks' gap between distributions; or b) ≥ 3 dispensed asthma medications as above, or short acting β 2-agonists, within a year. Date of onset was set as the 32 33 date of prescription of any of the medications or date of diagnosis, whichever came first. This 34 proxy for asthma has previously been validated in children 0-17 years of age, where Positive predictive value (PPV) was estimated based on gold standard for asthma suggested by the 35 Swedish Paediatric Association's section for Allergy.⁴ The criteria of asthma includes > 336 37 obstructive periods before 2 years of age and/or; ≥ 1 obstructive period after 2 years of age 38 and/or; ≥ 1 obstructive period independent of age when the child has ≥ 1 of the following: 39 eczema, allergy, parents and/or siblings with asthma or no improvement between periods of 40 respiratory tract infections. Children under two years of age with ≤ 2 asthma-like symptoms 41 during respiratory tract infections and without symptoms between infections are defined as 42 suffering from obstructive bronchitis.

The PPV of these two separate outcomes of asthma (asthma diagnosis in the NPR and asthma medication in SPDR) varied between 75% - 99%, with the lower being in children of 0-4.5 years of age. Thus in order to increase the specificity of the outcome of asthma based on register-information, children in the present study had to have both an asthma diagnosis registered in the NPR and fulfilling asthma medication criteria in the SPDR. For a more detailed description of the validation study please see Örtqvist AK et al. ⁴

49

51 **Other variables**

The MBR has information on 98% of all pregnancies resulting in a delivery since 1973. 52 53 Starting at the first prenatal visit at the antenatal-care clinic, information is prospectively 54 collected on standardized records. The MBR has been validated, and the quality of the variables included in the present study is considered high.⁵ From the register these variables 55 56 were collected: child's date of birth and gestational age in days, which were used to estimate 57 the date of conception and the different exposure periods, parity (child's birth order), parental cohabitation (mother cohabits with child's father, or other, during pregnancy), parents' 58 59 country of birth (Sweden or other), and maternal smoking during pregnancy (yes or no). 60 The Longitudinal Integration database for Health Insurance and Labor Market 61 Studies (LISA), includes information on education for all individuals aged 16 years or older 62 and registered in Sweden. From the register, the highest level of education for either parent 63 was identified (≤ 9 , 10-12, >12 years). 64 Maternal and paternal asthma was defined as either having a diagnosis of 65 asthma in the NPR or fulfilling asthma medication criteria from the SPDR. Sensitivity

analyses was performed to further study potential differences between those with and without
parents with a history of asthma, by including an interaction term between exposure to
antibiotics and parental asthma.

69 Directed acyclic graphs

To assess causality in an epidemiological study and to identify potential confounders, a directed acyclic graph (DAG) may be used.^{6,7} The DAG can be applied to various analyses, for example, a study of the association between a maternal antibiotic exposure and childhood asthma. A directed arrow between these two variables indicate that the exposure is associated with the outcome, but the arrow does not say anything about whether the association is positive or negative, or about strength of the association. DAGs can be used to identify all

potential confounders that may exist, in order to know which variables that should be adjusted for in the analyses. A factor that lies in the causal pathway between the exposure and the outcome is defined as a mediator. There are almost always mediators on the causal pathway, but this does not indicate that the exposure is not causal. When the exposure and the outcome are common causes for a third factor (a common effect), this factor is called a collider. Pathways through colliders are closed, unless the collider is adjusted for which will then open the path and potentially cause spurious associations.

Unmeasured and unknown confounders may also bias the association between an exposure and an outcome, and can also be displayed in a DAG. The use of negative controls is one way to detect unmeasured confounding.⁷ The negative control is closely related to the exposure or the outcome and thus likely to be affected by the same confounders, but it is not on the direct pathway between the exposure and the outcome being investigated. (*Figure E1*).

89 **Results**

Table E1 presents the crude and adjusted Hazard Ratios (HR) and 95% Confidence Intervals 90 91 (CI) for asthma in relation to maternal and paternal exposure to antibiotics before, during, and 92 after pregnancy, corresponding to *Figure 1* in the main manuscript. Inclusion of the three 93 exposures (before, during and after pregnancy) within the same statistical model for mothers 94 and fathers respectively, provided very similar estimates; for maternal antibiotics in children 95 <2.5 years the HR was 1.31 (95% CI 1.27-1.35) and in children \geq 2.5 years the HR was 1.16 96 (95% CI 1.05-1.28). Corresponding HR for paternal antibiotics in children <2.5 years was 97 1.20 (95 % CI 1.15-1.25) and 1.03 (95% CI 0.89-1.18) for children ≥2.5 years. 98 Table E2 shows the adjusted HR and 95% CI after including an interaction term 99 between exposure and older siblings (≥ 2.5 years older), where estimates were similar to the

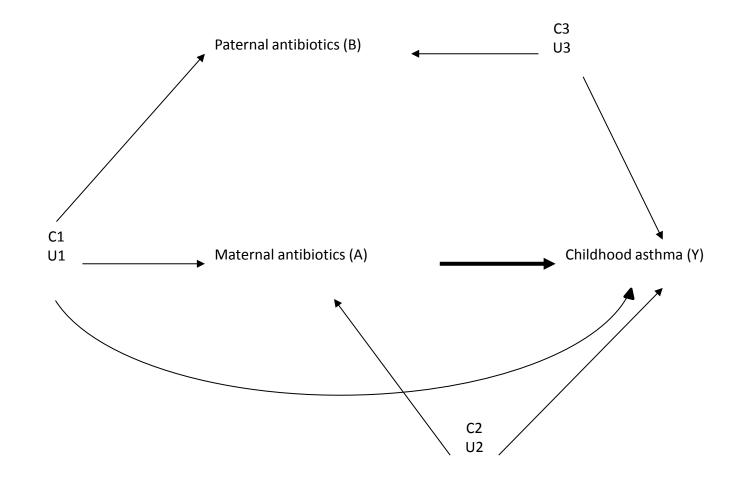
100 main findings.

Table E3 displays the adjusted HR and 95% CI for the association between
paternal antibiotics and childhood asthma, with the adjustment of maternal antibiotics during
the same exposure period, where estimates were found to very similar to the main findings.
Sensitivity analyses of parental asthma provided similar estimates as the main
findings (data not shown).

108	Reference	es
-----	-----------	----

110 1. Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, Ekbom A. The Swedish

- 111 personal identity number: possibilities and pitfalls in healthcare and medical research.
- 112 *European journal of epidemiology* 2009; **24**(11): 659-67.
- 113 2. Wettermark B, Hammar N, Fored CM, et al. The new Swedish Prescribed Drug
- 114 Register--opportunities for pharmacoepidemiological research and experience from the first


six months. *Pharmacoepidemiol Drug Saf* 2007; **16**(7): 726-35.

- 116 3. Ludvigsson JF, Andersson E, Ekbom A, et al. External review and validation of
- 117 the Swedish national inpatient register. *BMC Public Health* 2011; **11**: 450.
- 118 4. Örtqvist AK, Lundholm C, Wettermark B, Ludvigsson JF, Ye W, Almqvist C.
- 119 Validation of asthma and eczema in population-based Swedish drug and patient registers.
- 120 *Pharmacoepidemiol Drug Saf* 2013; **22**(8): 850-60.
- 121 5. National Board of health and welfare. The Swedish Medical Birth Register A
- summary of content and quality. 2003. http://www.socialstyrelsen.se/publikationer2003/2003-
- 123 112-3 (accessed May 15 2016).
- Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research.
 Epidemiology (Cambridge, Mass) 1999; **10**(1): 37-48.
- 126 7. Brew BK, Gong T, Williams DM, Larsson H, Almqvist C. Using fathers as a
- 127 Negative Control Exposure to test the Developmental Origins of Health and Disease
- 128 Hypothesis: A case study on maternal distress and offspring asthma using Swedish register
- 129 data. Scand J Publ Health (Submitted) 2016.
- 130
- 131

132 Figure legends

- Figure E1. A directed acyclic graph (DAG)* to show the relationship between parental
 antibiotics and childhood asthma, modified from Brew et al.⁷
- 135
- 136 *A DAG showing the potential pathways for paternal antibiotic exposure as a negative control
- 137 to the association between maternal antibiotic exposure and childhood asthma. A represents
- 138 maternal exposure to antibiotics before, during and after pregnancy, Y is the outcome of
- 139 childhood asthma. B represents paternal antibiotic exposure. C denotes measured, and U
- 140 unmeasured, confounders that are shared (C1, U1) or unshared (C2, C3, U2, U3) between
- 141 parents.
- 142
- 143

Table E1. Crude and adjusted Hazard Ratios (HR) and 95% Confidence Intervals (CI) for asthma in relation to maternal and paternal exposure to antibiotics before, during, and after pregnancy.

			Crude			Adjusted*				
Maternal exposure	Age (yrs)	Events	Person-years	HR	95% CI	Events	Person-years	HR	95% CI	
Pre-pregnancy	0-2.5	26469	1032281	1.33	1.29-1.37	25125	983389	1.31	1.27-1.35	
	>2.5	2450	472835	1.23	1.10-1.37	2294	442414	1.21	1.08-1.35	
During pregnancy	0-2.5	26755	1051287	1.34	1.30-1.38	25315	998713	1.27	1.23-1.30	
	>2.5	2491	480323	1.16	1.06-1.28	2325	448740	1.10	1.00-1.21	
Post-pregnancy	0-2.5	26753	1070218	1.38	1.33-1.42	25400	1019663	1.34	1.30-1.38	
	>2.5	2491	489249	1.21	1.10-1.34	2331	457834	1.17	1.05-1.30	
Paternal exposure	Age (yrs)	Events	Person-years	HR	95% CI	Events	Person-years	HR	95% CI	
Pre-pregnancy	0-2.5	26170	1037764	1.20	1.15-1.25	26170	1037764	1.17	1.12-1.21	
	>2.5	2442	474413	1.08	0.94-1.25	2442	474413	1.05	0.91-1.21	
During pregnancy	0-2.5	26375	1047960	1.17	1.13-1.21	25040	998603	1.13	1.09-1.17	
	>2.5	2461	478697	0.92	0.81-1.04	2304	448096	0.91	0.80-1.03	

Post-pregnancy	0-2.5	26543	1061021	1.23	1.18-1.28	26543	1061020	1.19 1.14-1.25
	>2.5	2478	484911	1.05	0.91-1.21	2478	484911	1.02 0.88-1.17

*Maternal exposure: Adjusted for parents' highest education, mother's country of birth and history of asthma, parental cohabitation during pregnancy, parity, age as analysis time scale (pre-pregnancy, pregnancy, post-pregnancy) and maternal smoking (pregnancy).

*Paternal exposure: Adjusted for parents' highest education, father's country of birth and history of asthma, age as analysis time scale (prepregnancy, pregnancy, post-pregnancy) and parental cohabitation during pregnancy (pregnancy). **Table E2.** Adjusted* Hazard Ratio (HR) and 95% Confidence Intervals (CI) after including an interaction term between exposure and older siblings (≥2.5 years older)

Maternal exposure	Pre-pregnancy, HR (95% CI)		During pregnand	cy, HR (95% CI)	Post-pregnancy, HR (95% CI)		
Age (yrs)	No older siblings	Older siblings	No older siblings	Older siblings	No older siblings	Older siblings	
0-2.5	1.31 (1.24-1.40)	1.34 (1.27-1.42)	1.25 (1.19-1.31)	1.34 (1.27-1.41)	1.38 (1.30-1.45)	1.54 (1.46-1.63)	
<u>≥2.5</u>	1.29 (1.07-1.55)	1.17 (0.93-1.47)	1.06 (0.90-1.23)	1.15 (0.94-1.41)	1.19 (1.01-1.40)	1.25 (1.00-1.55)	
Paternal exposure							

Age (yrs)	No older siblings	Older siblings	No older siblings	Older siblings	No older siblings	Older siblings
0-2.5	1.18 (1.10-1.27)	1.14 (1.06-1.22)	1.14 (1.07-1.21)	1.13 (1.06-1.21)	1.20 (1.11-1.29)	1.20 (1.11-1.29)
≥2.5	0.92 (0.72-1.17)	1.12 (0.85-1.46)	1.00 (0.82-1.21)	0.84 (0.64-1.09)	0.94 (0.75-1.19)	1.19 (0.92-1.54)

*Maternal exposure: Adjusted for parents' highest education, mother's country of birth and history of asthma, parental cohabitation during pregnancy, parity, age as analysis time scale (pre-pregnancy, pregnancy, post-pregnancy) and maternal smoking (pregnancy).

*Paternal exposure: Adjusted for parents' highest education, father's country of birth and history of asthma, age as analysis time scale (prepregnancy, pregnancy, post-pregnancy) and parental cohabitation during pregnancy (pregnancy). Table E3. HR and 95% CI for asthma in relation to paternal exposure to antibiotics before, during, and after pregnancy, with adjustment for

maternal antibiotics.

		Paternal exposure					
		Ad	ljusted*	Adjusted* [¶]			
	Age	HR	95% CI	HR	95% CI		
Pre-pregnancy exposure	0-2.5	1.17	1.12-1.21	1.13	1.08-1.17		
	≥2.5	1.05	0.91-1.21	1.01	0.88-1.17		
Pregnancy exposure	0-2.5	1.13	1.09-1.17	1.10	1.06-1.14		
	≥2.5	0.91	0.80-1.03	0.80	0.77-1.00		
Post-pregnancy exposure	0-2.5	1.19	1.14-1.25	1.15	1.11-1.20		
	≥2.5	1.02	0.88-1.17	0.98	0.85-1.13		

n .

*Paternal exposure: Adjusted for parents' highest education, father's country of birth and history of asthma, age as analysis time scale (pre-

pregnancy, pregnancy, post-pregnancy) and parental cohabitation during pregnancy (pregnancy).

[¶]Analyses adjusted for maternal antibiotics during the same exposure period.