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ABSTRACT 
Antimicrobial peptides (AMPs) have a broad spectrum of activities and exert their functions 
by both direct killing of microbes through the interaction with the microbial membrane, and 
modulation of innate and adaptive immunity of the host. In humans, cathelicidins and 
defensins represent the major families of AMPs. The only human cathelicidin is LL-37, a 
cationic, α-helical peptide with 37 amino acids in its sequence.  

Eicosanoids are a class of oxygenated hydrophobic compounds derived mainly from 
arachidonic acid (AA). The main pathways of eicosanoid biosynthesis are cyclooxygenase 
(COX) pathway and lipoxygenase (LOX) pathway, which metabolize AA into bioactive lipid 
mediators, namely prostaglandins, thromboxanes, leukotrienes and lipoxins. Eicosanoids 
exert important functions in normal homeostasis as well as in various pathological conditions. 
In the present thesis, we investigated the roles and interactions of AMPs and eicosanoids in 
inflammation and host defense towards bacteria, more specifically, in regulation of 
macrophage functions in innate immunity.  

Efficient phagocytosis is an important step in the clearance of invading bacteria and host 
defense. We demonstrate that LL-37 up-regulates the expression of Fcγ receptors (FcγRs) 
CD64 and CD32, leading to an enhanced phagocytosis capacity of IgG-opsonized bacteria in 
human macrophages. Using the subcutaneous air pouch model in cathelicidin deficient mice, 
we further demonstrate the effect of LL-37 on the expression of FcγRs and bacterial 
phagocytosis in vivo.  

LL-37 interacts with host cells in many ways. In our study, LL-37 internalization by human 
macrophages is characterized and we could also demonstrate that macrophages take up LL-37 
derived from neutrophils. Further studies show that LL-37 internalization contributes to 
intracellular bacteria killing by macrophages. Together with the finding that LL-37 enhances 
bacterial phagocytosis, we conclude that LL-37 enhances the ability of human macrophages 
to kill bacteria via promoting bacterial phagocytosis, as well as via lysosome accumulation, 
and ROS production triggered by internalized LL-37.  
Macrophages can be triggered to produce large amounts of eicosanoids, participating in 
discrete stages of inflammation. We observe that LL-37 induces a biphasic release of 
eicosanoids from human macrophages. At early time points (1 h) LTB4 is produced, while 
induction of COX-2 expression and TXB2 and PGE2 production is observed at a late phase (8 
h). The purinergic receptor P2X7R is involved in LL-37 triggered early phase eicosanoid 
production in human macrophages. Furthermore, LL-37 internalization seems to be required 
for eicosanoid production. More importantly, we confirm the involvement of cathelicidin in 
eicosanoid production in vivo.  
Prostaglandin (PG)E2 is a multifunctional lipid mediator in host defense. Our studies show 
that PGE2 suppresses the basal level of AMPs in human macrophages, and also VD3-induced 
expression of cathelicidin. The effect of PGE2 on AMP expression is transduced via 
EP2/EP4-cAMP-PKA regulated downstream transcription factors CREM/ICER and VDR. Of 
clinical relevance, we report that PGE2 impairs VD3-induced expression of cathelicidin and 
concomitant activation of autophagy during Mtb infection, and facilitates intracellular Mtb 
growth in human macrophages. Collectively, our findings indicate that PGE2 plays 
deleterious roles in human Mtb infection. 
Together, the results of the present thesis reveal the modulatory effects of LL-37 and PGE2 in 
macrophage functions towards bacteria, from multiple perspectives. Moreover, the 
interactions of AMPs and eicosanoids in macrophages expand our understanding of the 
inflammatory mediator network and could provide opportunities for future pharmacological 
intervention in infectious or inflammatory diseases.  
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1 INTRODUCTION 

The immune system defends the host against infection by two distinct mechanisms, viz. 

innate immunity and adaptive immunity. In most living organisms, innate immunity is 

fundamental and crucial for host defense, mainly due to its sentinel effect and fast reaction to 

kill invading pathogens. A normal functioning innate immune system is highly dependent on 

the activities of macrophages, one of the most abundant and multifunctional immune cell 

populations in the human body. Macrophages are evolutionary conserved phagocytes that 

have a history of more than 500 million years [1] and were discovered by Nobel laureate Elie 

Metchnikoff in late19th century as part of the mononuclear phagocyte system (MPS). 

Derived from embryonic progenitors [2-6] or adult blood monocytes [1, 7], tissue resident 

macrophages work as sentinel cells under steady state and become activated once 

encountering invading pathogens. The activated macrophages kill pathogens by phagocytosis 

and release of antimicrobial agents, as well as secretion of inflammatory mediators to recruit 

neutrophils and monocytes from blood to extravascular sites of infection. Meanwhile, the 

permeability of blood vessels increase, followed by extravasation of plasma into the infected 

tissues and a rapid delivery of host defense effector cells and molecules to the sites of injury. 

This process is named inflammation, described in AD40 by its four cardinal signs: rubor 

(redness), calor (heat), dolor (pain), and tumor (swelling). Well-controlled inflammation 

contributes to pathogen elimination and tissue restoration. However, inappropriate or 

excessive inflammation may lead to acute and chronic inflammatory diseases.  

AMPs and eicosanoids are two families of potent immune effector molecules. In this thesis, 

we focus on the roles and interactions of those two families in vitro and in vivo, to get a 

deeper understanding of inflammatory mediator network. 

1.1 INNATE IMMUNITY 

Innate immunity is an old host defense strategy, which exists in plants, fungi, insects and 

primitive multicellular organisms. It serves as the first line of defense, rapidly but not 

specifically eliminating the invading pathogens. Innate immunity comprises epithelial 

barriers and mucosa, innate immune cells in tissues and circulation, complement system, 

cytokines and other inflammatory molecules. Once a pathogen succeeds in breaching the 

anatomical barriers of the host, the effector molecules of innate immunity, such as AMPs 

start to act immediately by either directly killing the pathogen or decreasing its activity. In the 

infected tissue, the invading pathogens are recognized and eliminated by tissue phagocytes-

mainly macrophages- and elicit a series of cellular responses, such as generation of reactive 
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oxygen species (ROS) and nitrogen species (RNS), induction of cytokines, chemokines and 

release of other inflammatory mediators, to recruit neutrophils and monocytes from the 

circulation, trigger and maintain a local inflammatory response. Meanwhile, the complement 

system is activated and mediates pathogen opsonization allowing pathogens to be more 

readily taken up and killed by phagocytes. Moreover, natural killer (NK) cells recognize and 

bind to virus infected cells and tumor cells to induce their apoptosis [8, 9].   

1.1.1 Phagocytes and Pattern Recognition Receptors (PRRs) 

Phagocyte recruitment to sites of infection or injury is a key cellular process in inflammation. 

The most abundant phagocytes are polymorphonuclear leukocytes (PMNs), which accounts 

for 40-70% of leukocytes in human peripheral blood [10]. They are short-lived and are 

recruited early in the inflammatory responses. PMNs, together with monocytes and 

macrophages constitute the professional phagocyte population, coordinating with each other 

to kill invading microbes and regulate inflammatory process (initiation, progression and 

resolution) [11].   

PRRs are a series of receptors expressed in phagocytes and recognize mainly two classes of 

molecules: (i) the microbe-derived pathogen-associated molecular patterns (PAMPs), such as 

lipopolysaccharide (LPS) on Gram-negative bacteria. (ii) the tissue damage derived damage-

associated molecular patterns (DAMPs), such as chromatin-associated protein high-mobility 

group box 1 (HMGB1) and heat shock proteins. Among the many PRRs, Toll-like receptors 

(TLRs) represent one of the best-characterized families responsible for sensing invading 

pathogens [12]. The name TLRs comes from its homologue found in Drosophila called Toll 

[13].  Those receptors are expressed on human phagocytes and recognize structurally 

conserved PAMPs. There are at least ten human TLRs and they recognize a series of different 

microbial ligands. For instance, LPS on Gram-negative microbes activates TLR4 via LPS 

binding protein and CD14, whereas Gram-positive PAMP lipoteichoic acid activates TLR2 

[14, 15]. TLR5 has been reported to recognize flagellin in flagellated bacteria, while TLR9 

and TLR3 have been shown to recognize CpG motifs of bacterial DNA and viral double-

stranded RNA, respectively [9, 16-18]. 

In most of the cases, the activation of TLR leads to the translocation of transcription factor 

NF-κB through the adaptor molecule, MyD88 [19]. The translocation of NF-κB promotes 

production of a series of inflammatory cytokines, including but not limited to tumor necrosis 

factor (TNF) and interleukin 6 (IL-6) [9]. The activation of TLRs and enhanced production of 
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cytokines are potent steps in bacteria elimination, however, could potentially induce 

deleterious effect on the host such as contribution to sepsis [15]. 

1.1.2 Effector molecules in innate immunity 

1.1.2.1 ROS and RNS 

ROS and RNS are produced as important parts of innate immune response. The examples of 

intracellular ROS include superoxide anion radical (O2
-), hydrogen peroxide (H2O2), 

hydroxyl radical (�OH), ozone (O3) and singlet oxygen (O2). There are several major sources 

of ROS within cells, such as mitochondria, endoplsmic reticulum (ER) and NADPH oxidases 

(NOXs). RNS refer to nitric oxide (NO) and the reactive molecules derived from NO. 

Intracellular NO can be synthesized by nitric oxiede synthases (NOSs). There are three NOS 

isoforms identified in humans, viz. neuronal NOS (nNOS), endothelial NOS (eNOS) and 

inducible NOS (iNOS). ROS and RNS play diverse roles in homeostasis, as well as in host 

defense and inflammation. For example, ROS and RNS can be generated during the early 

response to infection and kill pathogens, by interacting with microbial components [20, 21]. 

Furthermore, ROS and RNS also play roles in immune-modulation, such as regulate 

apoptosis of macrophages and neutrophils [22, 23].  

Apart from ROS and RNS, there are other families of effector molecules such as lysozyme, 

cytokines and chemokines, which will not be further described here. The focus of the present 

thesis-AMPs and eicosanoids will be described in detail in the following part of the 

introduction. 

1.2 MACROPHAGES 

Macrophages are residential immune effector cells. Upon inflammation, blood monocytes are 

recruited to the inflamed tissue where they are differentiated into tissue specific macrophages 

[24]. Macrophages are distributed throughout the body tissues and form a heterogeneous cell 

population with high plasticity, although two distinct activation states of macrophages have 

been well defined: the pro-inflammatory (M1) state and the anti-inflammatory (M2) state 

[25]. In innate immunity, macrophages kill invading pathogens and modulate inflammatory 

processes, by several strategies, such as phagocytosis, secretion of antimicrobial molecules 

and production of inflammatory mediators [26-28]. Surface markers have been used to 

characterize human macrophages, for instance, CD11b, CD68, and CD163 (Table 1).  
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Markers	 Comments	
CD11b	 Also	expressed	on	neutrophils	
CD68	 Expressed	on	all	macrophages	
MAC2	 	
CD11c	 Expressed	on	many	monocytes-derived	cells,	such	as	specific	populations	

of	DCs	
IL-4Ra	 Expressed	on	many	macrophages,	but	also	lymphocytes	and	other	cell	

types	
CD163	 Expressed	on	most	tissue	macrophages	

Table 1 Receptors commonly used to distinguish human macrophages 

1.2.1 Macrophage ontogeny and tissue distribution 

Tissue macrophages do not necessarily share the same origins, arising either from embryonic 

progenitors, such as macrophages in yolk sac and fetal monocytes, or from adult blood 

monocytes [29]. In the 1960s, Van Furth proposed that tissue macrophages are differentiated 

from blood monocytes derived from hematopoietic stem cells (HSCs), which has remained as 

the prevailing view in the macrophage field. In the last decade, however, this view has been 

challenged by several publications, claiming that many macrophages are established during 

embryonic development and persist and self-renewed in tissues [30-32]. The embryonic 

precursors for yolk sac and fetal monocytes were recently discovered as yolk sac 

erythromyeloid progenitors (EMPs) [4, 33], but controversies on the actual origin of fetal 

monocytes still remains [34]. Nevertheless, fetal monocytes and yolk sac macrophages are 

important for fetal development and homeostasis since absence of fetal macrophages leads to 

abnormal development and functions of brain and lung [35-37]. The classical HSC derived 

macrophages differ from yolk sac derived macrophages by the expression of transcription 

factor MYB [31] and there is different composition of those two macrophage subtypes in 

different tissues. Till now, it is still unclear whether there are functional differences between 

tissue macrophages of different origins.  

Macrophages are distributed throughout the body tissues. Specialized tissue macrophages 

include but are not limited to microglia (brain), alveolar macrophages (lung), kupffer cells 

(liver), osteoclasts (bone), langerhans cells (skin), splenic macrophages (spleen) and 

histiocytes (interstitial connective tissue). Based on their anatomical locations and phenotypes, 

specialized tissue macrophages exhibit differences in their morphology and functions. 

1.2.1.1 Monocyte recruitment into tissues of inflammation 

Monocytes are a heterogeneous population of peripheral blood leukocytes, representing 5-10% 

of the nucleated cells in the blood [29]. In mice, high expression of LY6C and CD11b 
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identifies a monocyte subset, which is usually recognized as LY6Chi or inflammatory 

monocyte subset. These monocytes represent 2%-5% of circulating leukocytes in healthy 

mice, express high level of CC-chemokine receptor 2 (CCR2) and CX3C-chemokine receptor 

1 (CX3CR1), and are recruited to the inflammatory sites upon infection and inflammation 

[38]. In contrast to this subset, the other major monocyte population expresses low levels of 

LY6C and CCR2, but high level of CX3CR1. Those LY6Clo monocytes mainly crawl along 

the luminal surface of small vessel endothelium and participate in a process referred to as 

patrolling [39, 40]. 

In humans, the subtypes of monocytes are defined based on the expression pattern of CD14 (a 

co-receptor for the detection of bacterial lipopolysaccharide (LPS) and CD16 (FcγRIII): (i) 

“Classical”CD14hiCD16- monocytes, representing up to 90-95% of peripheral blood 

monocytes in healthy individuals, resembling the LY6Chi monocytes in mice based on their 

gene expression [41, 42], (ii) “non-classical ”CD14+CD16+ monocytes, which resemble the 

LY6Clo monocytes, regarding their in vivo patrolling [41, 43-45].  

In adults, monocytes are derived from HSCs, more specifically, from monocyte-macrophage 

dendritic cell (DC) progenitors (MDPs) [46]. During inflammation, those MDPs derived 

monocytes are recruited to the inflammatory sites. The recruitment process of monocytes 

follows the general paradigm of leukocyte trafficking, which involves rolling, adhesion and 

transmigration. This process is highly dependent on the adhesion molecules such as integrins 

[47] and also chemoattractants such as CC-chemokine ligand 2 (CCL2) and leukotriene B4 

[38, 48]. The recruited monocytes are stimulated by various growth factors and differentiate 

into macrophages and DCs. By utilizing transgenic mouse models and high-throughput 

screening, the role of macrophage colony-stimulating factor (M-CSF) has been established 

for macrophage differentiation, whereas granulocyte-macrophage colony-stimulating factor 

(GM-CSF) and FMS-like tyrosine kinase 3 ligand (FLT3L) have been reported as growth 

factors for DC formation and maintenance [49, 50]. However, controversies still remain 

regarding the role of GM-CSF in macrophage and DC maturation. 

1.2.2 M1 and M2 macrophages 

Based on the tissue microenvironment, macrophages can acquire distinct polarized 

phenotypes, namely classically activated macrophages (M1) and alternatively activated 

macrophages (M2). Though there are literatures showing different opinions on macrophage 

classification [26, 45, 51], this dichotomous concept of macrophage activation still remains 

the most generally used classification method especially for in vitro macrophage research 
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[52-54].  The macrophage M1 phenotype is usually obtained by pro-inflammatory stimuli 

such as LPS or interferon-γ (IFN-γ), which induce an increased production of inflammatory 

cytokines and antimicrobial agents, and promote T helper 1 (TH1) response [55]. In contrast, 

the M2 phenotype is usually associated with tissue repair, thus the name “healing 

macrophage”. M2 macrophages are stimulated by anti-inflammatory cytokines such as IL-4 

or IL-13, leading to a decreased production of pro-inflammatory cytokines in macrophages 

and an increased T helper 2 (TH2) response [56, 57]. Table 2 summarizes several markers for 

distinguishing M1 and M2 macrophages. 

  

 

 

 

 

       

Table 2 Markers commonly used to distinguish M1 and M2 macrophages 

1.2.3 Macrophage Phagocytosis 

Phagocytosis of pathogens is one of the key steps for the initiation of an innate immune 

response [58]. It starts with the recognition of PAMPs by PRRs. The PRRs that are expressed 

in macrophages include mannose receptors and an endocytic receptor CD205 that recognize 

mannans, CD14 that binds LPS and lipotheichoic acid in Gram-negative and Gram-positive 

bacteria, respectively. They also include the scavenger receptor A family that recognizes 

bacteria lipid and polyanionic ligands, as well as TLRs that signals the presence of various 

PAMPs and lead to the translocation and activation of NF-κB and the interferon regulatory 

transcription factor 3 (IRF-3), resulting in production of a series of pro-inflammatory 

cytokines and other mediators [59, 60].  

Opsonization is a preparatory step for bacteria phagocytosis, which facilitates the removal of 

microbes by neutrophils and macrophages. Opsonins, such as antibodies and complement 

proteins specifically recognize ligands on infectious agents and through their generic 

domains, bind to the Fc receptors and complement receptors expressed on phagocytes. There 

are three Fc receptors on macrophages recognizing IgG: FcγRI (CD64), FcγRII (CD32) and 

M1-macrophages M2-macrophages 
MARCO SOC2 
SOCS3 IRF4 
Ptgs2 (COX-2) CXCL13 
NOS2 CCL12 
IL12b KLF4 
IDO1          CCL18 
IL23a (Il23p19)  
CCL15  
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FcγRIII (CD16). CD64 is a high-affinity receptor for monomeric IgG, while CD16 and CD32 

have low affinity to monomeric IgG but bind to multiplexes more effectively. The 

complement receptors involved in uptake of opsonized particles by macrophages are mainly 

CR1 (CD35) that binds to C3b and C4b, CR3 (CD11b/CD18) that binds to inactivated C3b 

(iC3b) and C4b,  and CR4 (CD11c/CD18). 

1.2.4 Macrophage secretion 

Macrophages secrete various molecular components to regulate inflammation and host 

defense. The secretome of macrophages highly depends on their activation status and the 

microenvironment. For instance, under pro-inflammatory conditions, macrophages are 

activated into a M1 phenotype and secrete more pro-inflammatory cytokines and mediators 

such as TNF-α, IL-1, IL-6, IL-8, and IL-12 [61]. Alternatively, macrophages are triggered by 

anti-inflammatory stimuli and secrete cytokines such as IL-10 and TGF-β. Macrophages are 

also resident cells that initiate chemotaxis of other immune cells by secreting 

chemoattractants, such as CXCL1, CXCL2, CCL5 and leukotriene B4 (LTB4).  

Macrophages produce large amount of eicosanoids. Like cytokines, the profile of eicosanoids 

differs between macrophages of different tissue origins, with different activation status. Using 

a lipidomic approach, eicosanoid profiles have been determined and compared in murine 

macrophages from different tissue origins and murine macrophage cell line (RAW264.7) in 

response to TLR4 stimulation [62]. An earlier study has also reported eicosanoid profiling in 

RAW264.7 cells activated by different TLR agonists [63]. The lipidomic studies suggest that 

murine macrophages produce mostly COX products such as PGD2, PGE2 and PGF2α. 

As tissue sentinel cells, macrophages also produce antimicrobial agents to kill pathogens, 

such as antimicrobial peptides, lysozyme, reactive oxygen species (ROS), nitric oxide (NO), 

and other effector molecules. Collectively, these molecules released into infected sites 

contribute to the maintenance of a unique microenvironment for tissue homeostasis and 

inflammatory processes. 

1.3 AMPs 

AMPs are peptides with a broad spectrum of antimicrobial activities [64]. So far, more than 

2600 antimicrobial peptides have been identified from animals, plants, bacteria and other 

organisms (APD:  http://aps.unmc.edu/AP/main.php). These peptides are evolutionary 

conserved molecules and are usually cationic small peptides (12-50 amino acids) with an 

amphipathic structure [65]. Although there are great diversity among peptides from different 
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organisms, significant conservation of amino-acid sequences can be recognized in the 

preproregion of the precursor molecules [66]. AMPs exert their functions by both direct 

killing of microbes through the interaction with the microbial membrane [66], and 

modulation of innate and adaptive immunity of the host [27]. Two major families of naturally 

occurring AMPs in mammals have been distinguished; viz. defensins and cathelicidins. 

1.3.1 The direct antimicrobial activity of AMPs 

The direct antimicrobial activity is a unique feature of the AMPs, based on the interaction of 

AMPs with the membranes of microbes, best understood for bacteria.  Bacterial membranes 

are organized in a way such that the outermost leaflet of the bilayer is heavily populated by 

lipids with negatively charged phospholipid head groups, which provide binding sites for 

positively charged AMPs [67, 68]. Moreover, the amphipathic nature of the peptides allows 

them to be incorporated into the lipid bilayer of the bacterial membrane [69]. A model that 

explains the activity of most AMPs is the Shai-Matsuzaki-Huang (SMH) model [67, 70, 71]. 

The model proposes the interaction of the peptide with the membrane, followed by 

displacement of lipids, alteration of membrane structure, and in certain cases entry of the 

peptide into the interior of the target cell [66]. 

1.3.2 The immunomodulatory effect of AMPs 

At the site of infection or injury, resident cells and recruited immune cells are stimulated by 

microbes to release AMPs [72].  In addition to direct interaction with the invading organisms, 

AMPs play important roles in recruiting leukocytes including neutrophils, monocytes and T 

cells, by acting as a chemokine or inducing the expression of other chemokines and 

cytokines, such as IL-8, monocyte chemotactic protein 1 (MCP-1) and IFN-α [65]. 

Furthermore, AMPs also participate in the endogenous inflammatory process by interacting 

with the endogenous or recruited immune cells and inflammatory mediators. For instance, 

cathelicidin has been shown to inhibit TLR4 and CD44 mediated induction of cytokine 

release in DCs and macrophages [73, 74]. In addition, it has been reported that human 

cathelicidin LL-37 promotes LTB4 release from human neutrophils [75] and macrophages 

[76]. AMPs have also been reported to promote wound healing, by stimulating keratinocyte 

migration required for re-epithelialization [77], promoting angiogenesis [78, 79], and 

inhibiting TGF-induced collagen expression and fibrosis [79].  
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1.3.3 Cathelicidin 

Cathelicidins are a major family of AMPs that exist in mammals [80], but are also found in 

other species, such as fish [81], birds [82], and snakes [83]. This family of AMPs carries a 

highly conserved pre-proregion at the N-terminal, consisting of a N-terminal signal peptide 

(29-30 residues) and a conserved cathelin domain (99-114 residues), followed by diverse 

antimicrobial residues at the C-terminus [84]. The C-terminal domain, which becomes active 

when cleaved off from the proregion, displays a broad spectrum and potent antimicrobial 

activity [84]. As most AMPs, cathelicidins are diverse in both length and sequence. They can 

form α-helix (LL-37), β-hairpins (pig protegrin 1-5) or sometimes extended helices (porcine 

PR-39) [80]. 

1.3.3.1 LL-37 

Structure 

LL-37 is the only cathelicidin identified in humans. It is predominantly produced in 

neutrophils and cells of epithelial surfaces [85, 86], but also in monocytes and macrophages, 

lymphocytes, mast cells and NK cells [87, 88].  It is synthesized as pre-pro-peptide, which 

contains a signal sequence at the N-terminus, followed by a conserved cathelin domain and 

the sequence of LL-37 at the C-terminal domain. The pre-pro form of LL-37 is encoded by 

the gene Cathelicidin antimicrobial peptide (CAMP), which is located in the third chromatin 

and consists of four exons. Exon 1-3 encode the signal protein and the cathelin domain, while 

exon 4 encodes the active form of LL-37 [86] (Fig.1). The signal protein is mainly 

responsible for directing the peptide for exocytosis and is removed afterwards. The remaining 

peptide is entitled hCAP18. To generate the active form LL-37, hCAP18 is cleaved off by 

proteinase, such as proteinase 3 in neutrophils [89], and adopts an α-helical conformation. 

The mature LL-37 is a cationic peptide that contains an amphipathic α-helix at the central 

part of LL-37 (residues 11-32) [90]. It contains 37 amino acids starting with two leucine 

residues at the N-terminal region, hence the name LL-37. The orthologues of LL-37 is 

mCRAMP (mouse), rCRAMP (rat) and CAP-18 (rabbit), which are also α-helical peptides 

and are good models to mimic the effect of LL-37 in vivo [91-94].  
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Figure 1  Schematic structure and sequence of LL-37 and CAMP gene, modified from [95] 

Induction of hCAP18/LL-37 

Expression of hCAP18/LL-37 can be induced by several different compounds. Of the most 

important are 1,25-dihydroxyvitamin D3 (VD3) and histone deacetylase (HDAC) inhibitors.  

The up-regulation of CAMP gene and peptide expression by VD3 has been observed in many 

cells, such as keratinocytes [96], lung/colonic epithelial cells [97], macrophages [96, 98], and 

neutrophils [99]. The induction of LL-37 expression by VD3 relies on the transcription factor 

vitamin D receptor (VDR), which could bind to a consensus vitamin D response element 

(VDRE) in the promoter region of CAMP gene. Since VDRE is absent in mouse cathelicidin 

gene Cnlp, mCRAMP expression is not influenced by VD3 [96]. The prominent function of 

VD3 triggered LL-37 is exemplified by the study from Liu et al. In this study, they 

demonstrate that TLR activation of human macrophages up-regulate the expression of the 

VDR and the vitamin D-1–hydroxylase genes, leading to induction of human cathelicidin and 

killing of intracellular Mycobacterium tuberculosis (Mtb) [100].  

Another major family that has been anticipated for the induction of cathelicidin expression is 

HDAC inhibitor family. Several members in this family have been reported as AMP inducers, 

such as butyrate [101], phenylbutyrate [102] and entinostat [103]. The induction of gene 

expression by HDAC inhibitors relies on the histone acetylation of the chromatin structure, 

which facilitates binding of transcription factors at the promoter regions. The signaling 

pathways involved in this process include mitogen-activated protein kinase (MAPK) and NF-

κB pathways [104]. For examples, the induction of LL-37 by butyrate is associated with 

inhibition of NF-κB pathway, and the recruitment of transcription factors such as activator 

protein 1 (AP-1), PU.1 [105], vitamin D receptor (VDR) [106] to the promoter of CAMP 

gene. Recently, Kalkani et al. has reported that phenylbutyrate induces cathelicidin 

expression via VDR [107]. 
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Receptors 

To date, several receptors have been reported to mediate the functional response elicited by 

LL-37. The best characterized one is formyl peptide receptor 2 (FPR2), which belongs to a 

class of G protein coupled receptors (GPCRs) and can be triggered by LL-37 to mediate the 

chemotaxis of neutrophils, monocytes, eosinophils and T-cells by [78, 108, 109]. Apart from 

this, FPR2 also triggers the production of cysteinyl leukotriene production from eosinophils 

and mediate a pro-angiogenic effect of LL-37 in endothelial cells [78, 110].  To be noted, LL-

37 is not the sole ligand for FPR2, which can also be activated by anti-inflammatory and pro-

resolving mediators such as lipoxin A4 (LXA4) and Annexin A1 (AnxA1) to mediate varied 

biological effects [111]. In addition to FPR2, several other GPCRs have been indicated for 

LL-37 mediated responses, namely purinergic receptor P2Y11 (P2Y11), CXC chemokine 

receptor type 2 (CXCR2) and Mas-related gene X2 (MrgX2) [112-114]. Recently, Wu et al 

have reported a new mechanism for LL-37 mediated effect, by increasing the incorporation of 

a CXCR4 into lipid rafts and promoting the CXCR4 linked downstream effect [115].  

Another potent receptor of LL-37 is the purinergic receptor P2X7R, originally identified as a 

receptor for extracellular ATP, mediates inflammatory responses elicited by LL-37, such as 

the maturation and release of IL-1β and IL-8 [116, 117]. Furthermore, P2X7R is involved in 

the maintenance and re-establishment of the intestinal barrier integrity contributed by LL-37 

[118]. Recently, it has also been reported to induce autophagy upon Mycobacterium 

tuberculosis (Mtb) infection [119]. The mechanism behind the activation of P2X7R by LL-37 

is not fully understood. One hypothesis is that LL-37 and P2X7R interact via direct 

ligand/receptor binding. This theory is supported by the fact that many LL-37 mediated 

function can be suppressed by P2X7R inhibitors [76, 120, 121]. Another report has proposed 

that LL-37 and P2X7R interactions involve the transmemberane segment binding[122], which 

is supported by the capacity of LL-37 to insert into the host cell membrane [123]. 

LL-37 also transactivates epidermal growth factor receptor (EGFR), a member of receptor 

tyrosine kinases (RTKs), to promote IL-8 release from airway epithelial cells, as well as 

induce keratinocytes migration [77, 124]. Two other members of this family has been linked 

to LL-37, for its role in breast cancer, viz. the Insulin-Like Growth Factor 1 Receptor (IGF1R) 

and ErbB2 [125, 126]. In addition, LL-37 has been reported to interact with TLRs and 

GAPDH in phagocytes to modulate immune responses [73, 127-130]. (Fig.2) 
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Figure 2   LL-37 receptors, modified from [131] 

Biological activities of LL-37 and its interaction with other immune mediators 

LL-37 exerts both direct antimicrobial activity and immunomodulatory activity. The cationic 

property and hydrophobic residues of LL-37 allow its binding to the bacteria membrane and 

form transmembrane pores, further resulting in bacterial lysis [132-134]. LL-37 is effective 

against gram positive bacteria such as Staphylococcus aureus, Staphylococcus epidermidis, 

Group A Streptococcus  (GAS) and Listeria monocytogenes [72, 134], as well as in gram 

negative bacteria such as Pseudomonas aeruginosa, Salmonella typhimurium, Proteus 

mirabilis [134] and Escherichia coli [135]. To be noted, the bacteria killing effect of LL-37 

on Mycobacterium tuberculosis (Mtb) has been reported as a major mechanism behind the 

anti tuberculosis agent VD3 which induces the expression of LL-37 [100, 136]. Furthermore, 

LL-37 exhibits anti-fungal and anti-viral activities [134, 137]. In vitro studies indicate that the 

direct antimicrobial activities of LL-37 may be affected by environmental factors such as pH 

and ionic strength [94]. 

The immunomodulatory effects of LL-37 can be generally categorized into pro-inflammatory 

and anti-inflammatory, based on the microenvironment and pathophysiological background 

[138].  For the pro-inflammatory function, LL-37 works as a chemokine to induce the 

migration of neutrophils and eosinophils [109], directs M1 macrophage polarization [139], 

stimulates inflammatory responses such as inflammasome activation [140], and activates 

endosomal TLR7 and TLR9 as well as type I IFN production [128, 141]. LL-37 is also 

effective in promoting the release of pro-inflammatory mediators. For instance, LL-37 

enhances COX-2 expression and PGE2 production in human gingival fibroblasts through 

P2X7R [142], as well as 5-LOX expression and LTB4 production from neutrophils through 

FPR2 [75, 76].  On the other hand, LL-37 also possesses anti-inflammatory effects. LL-37 
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has been reported to downregulate TLR4- mediated responses by binding to its ligand LPS 

[143], as well as interrupting TLR4 complex in macrophages and dendritic cells [73, 143, 

144].  However, the effect of LL-37 on TLR4 responses depends on the way of LPS exposure. 

In LPS primed macrophages, LL-37 increases the release of TNF-α, activates inflammasome, 

IL-1β and IL-18 production [116, 140, 145]. Furthermore, LL-37 also plays a role in 

protecting intestinal epithelia against pathogen-mediated intestinal inflammation [118, 146].  

1.3.4 Defensins 

Defensins are another family of evolutionary related vertebrate AMPs, with a characteristic β-

sheet-rich fold and a framework of disulphide-linked cysteines [147]. They are widely 

distributed in vertebrates, including humans, and produced by various cell types, such as 

leukocytes [148-151] and epithelial cells [150, 151]. There are three families of defensins: α-

defensins, β-defensins and θ-defensins. [152]. Currently, there are 6 α-defensins and 4 β-

defensins identified in man. β-defensins (hBD-1−hBD-4) are widely expressed in epithelium 

and leukocytes, and their expression is constitutive or inducible based on the site of 

expression. Defensins have been reported as effector molecules in host defense against 

bacteria, fungi, protozoa and enveloped viruses [147]. 

1.4 EICOSANOIDS 

Metabolism of arachidonic acid (AA) leads to several families of lipid mediators, including 

prostaglandins, thromboxanes, leukotrienes and lipoxins, along two major pathways, the 

lipoxygenase (LOX) and the COX pathways. Those mediators, collectively known as 

eicosanoids, exert potent biological activities in the maintenance of hemostasis, regulation of 

blood pressure, renal function, reproduction as well as host defense [153]. Meanwhile, they 

are also the key effector molecules in many acute and chronic inflammatory responses.   

1.4.1 Eicosanoid biosynthesis 

1.4.1.1 Prostaglandins (PGs) and thromboxanes (TXs) 

At the endoplasmic reticulum (ER) and nuclear membrane, AA is presented to COX 

isozymes and converted into the intermediate PGH2 [154]. COX exists as two isoforms, 

COX-1 and COX-2. COX-1 is constitutively expressed in most tissues, while COX-2 

expression is kept at a low level under normal conditions, but can be greatly enhanced by 

inflammatory stimuli, such as endotoxins, cytokines, growth factors, and carcinogens [155]. 

The intermediate PGH2 is further metabolized into PGE2, PGD2, PGF2α, PGI2 (prostacyclin), 
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and thromboxane A2 (TXA2) by various downstream enzymes, whose expressions are 

regulated in a cell-specific fashion. Those downstream metabolites are collectively known as 

prostanoids [156]. (Fig. 3) 

  

Figure 3  Biosynthesis of prostaglandins and thromboxane A2, modified from [157] 

1.4.1.2 Leukotrienes 

The leukotriene biosynthesis also starts from AA. Unlike prostanoids, leukotrienes are 

predominantly produced in leukocytes. In response to a variety of inflammatory stimuli 

leukocytes begin to synthesize leukotrienes. Increased levels of i[Ca2+] triggers translocation 

of 5-LOX to the nuclear envelop, where 5-LOX associates with 5-lipoxygenase-activating 

protein (FLAP), leading to the conversion of AA to the highly unstable intermediate 

leukotriene (LT) A4 (LTA4). LTA4 rapidly undergoes further transformations with the 

assistance of two downstream enzymes. Thus, LTA4 is metabolized LTB4, a potent neutrophil 

chemoattractant, through the action of LTA4 hydrolase (LTA4H). Alternatively, LTA4 may 

also be conjugated with GSH by LTC4 synthase (LTC4S) to generate LTC4, which is further 

metabolized to LTD4 and LTE4. LTC4, LTD4 and LTE4 are collectively referred to as 

cysteinyl leukotrienes (cys-LTs), and they comprise the well-known bioactive principle 

termed  “slow-reacting substance of anaphylaxis” because of its slow and sustained smooth 

muscle contracting activities [154]. (Fig. 4) 
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Figure 4  Biosynthesis of LTB4 and LTC4 

1.4.1.3 Lipoxins  

Lipoxins are a family of pro-resolving lipid mediators discovered by Dr. Serhan and 

colleagues in 1984 [158]. They are all trihydroxylated derivatives of AA generated via a 

common epoxide intermediate [159]. The two major metabolites, lipoxin (LX) A4 (LXA4) 

and LXB4 are positional and geometrical isomers that possess potent bioactions, although the 

functions of LXA4 is by far the most studied and well characterized [160]. In humans, lipoxin 

biosynthesis, with few exceptions, requires cell-cell interactions. There are mainly three 

routes for lipoxin biosynthesis. The first route involves peripheral blood leukocyte-platelet 

interactions. The enzyme 5-LOX in leukocytes metabolizes AA to LTA4, which is then 

released from leukocytes and further transformed by adherent platelets to LXA4 via 12-

lipoxygenase (12-LOX) [161, 162]. The second route is initiated at mucosal surfaces by 15-

lipoxygenase (15-LOX) that transforms AA to 15S-hydroxy-eicosatetraenoic acid (15S-

HETE), which is then rapidly taken up by neutrophils and subsequently metabolized to LXA4 

via 5-LOX [163, 164]. In addition, it has also been discovered that aspirin-acetylated COX-2 

can transform AA to 15R-hydroxy-eicosatetraenoic acid (15R-HETE), which can be taken up 

by leukocytes and converted via 5-LOX to 15-epi-LXA4, also called aspirin-triggered 

lipoxins (ATL) [164]. (Fig. 5)  
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Figure 5  Transcellular biosynthesis of lipoxins, adopted from [157] 

1.4.2 Cellular control of eicosanoid biosynthesis-key enzymes 

1.4.2.1 Cytosolic phospholipase A2 (cPLA2) 

AA is the precursor of the eicosanoid cascade. The majority of intracellular AA is esterified 

at the sn-2 position of phospholipids. Phospholipase, typically PLA2, hydrolyzes 

phospholipids and release free fatty acid [153].  There are mainly three types of PLA2: 

secreted PLA2 (sPLA2), calcium-independent PLA2 (iPLA2) and cytosolic PLA2 (cPLA2) 

[165]. The regulation of AA release from cellular membranes is not fully understood, 

however, cPLA2 still remains the key player in eicosanoid production, since cells lacking 

cPLA2 are generally devoid of eicosanoid synthesis [154, 166].  

cPLA2 is widely distributed at a relatively constant level in most of human tissues [167]. 

During eicosanoid biosynthesis, the 85 kDa protein cPLA2 is activated and translocates to 

membranes, in response to intracellular Ca2+ mobilization, and selectively hydrolyze AA 

esterified in the sn-2 position of phospholipids [153, 168].  The crystal structure of cPLA2 

shows that the enzyme contains two distinct, independent domains: the N-terminal C2 

domain and the C-terminal catalytic domain [169]. The active site is in the catalytic domain, 

which undergoes conformational changes upon membrane binding [169].  On the other hand, 
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maximal cPLA2 activation requires not only intracellular calcium mobilization, but also 

sustained phosphorylation of the protein [170]. The currently known phosphorylation sites in 

cPLA2 are located in the catalytic domain including Ser505, Ser515 and Ser727, 

phosphorylated by MAPK [170, 171], calcium-calmodulin kinase II [172, 173], and MAPK-

regulated kinase MNK-1 [173], respectively. 

1.4.2.2 COX-1 and COX-2 

COX-1 and COX-2, also called prostaglandin endoperoxide H synthases-1 and -2, 

oxygenates AA to PGH2, which is the key step in prostaglandin biosynthesis [155]. Crystal 

structures of both COX-1 and COX-2 have been determined and show a high degree of 

similarity [174]. However, COX-2 harbors a side pocket in the active site that allows efficient 

binding of COX-2 selective inhibitors [175]. Previously COXs were considered to be 

homodimers both structurally and functionally. However, a recent study shows that COX-

1/COX-2 heterodimers may also exist, whereas their roles in biology need to be elucidated 

[176]. In addition, there is significant cross-talk between monomers of homodimeric COX-1 

and COX-2 such that one subunit becomes allosteric and the other catalytic upon binding of 

substrate and/or inhibitors [177, 178]. Structurally, each monomer consists of three domains: 

an epidermal growth factor (EGF) domain of 50 amino acids at the N terminal, a neighboring 

membrane binding domain (MBD) of about 50 amino acids, and a large C-terminal globular 

catalytic domain with about 460 amino acids [174].  

COX-1 is expressed constitutively in most tissues and cells. Under physiological conditions, 

COX-1 is the dominant enzyme responsible for prostanoid production, whereas COX-2, 

induced by inflammatory stimuli, hormones and growth factors, is a more important source 

for prostanoid biosynthesis in inflammation and in proliferative diseases, such as cancer [179, 

180]. COX-1 and COX-2 are targets of nonsteroidal anti-inflammatory drugs (NSAIDs). 

These drugs are competitive inhibitors for the active sites in both of the COX isozymes, 

leading to the inactivation of one monomer of the COX dimer and shutdown of prostanoid 

production [181].  

1.4.2.3 5-LOX 

The oxygenation of AA to generate LTA4 is comprised of two chemical steps catalyzed by 5-

LOX [182]. The first is a classical lipoxygenation at C-5 of AA generating 5(S)- 

hydroperoxy-6-trans -8,11,14-cis eicosatetraenoic acid (5-HpETE), followed by the second 

step, formation of LTA4 by dehydration of 5-HpETE [153, 183].  5-LOX is one of six 
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lipoxygenases in mammals and is expressed in various leukocytes, such as neutrophils, 

eosinophils, monocytes/macrophages, mast cells, B-lymphocytes and dendritic cells [184].  

5-LOX is a soluble monomeric enzyme composed of 673 amino acids with a molecular mass 

of about 78 kDa [185]. The polypeptide chain is divided into two domains, an N-terminal 

regulatory domain and a catalytic C-terminal domain that harbors one atom of nonheme iron, 

involved in catalysis [186]. The crystal structure of human 5-LOX was presented in 2011 by 

Gilbert et al. and revealed, similar to other LOX enzymes an N-terminal β-sandwich (residues 

1–120) and an iron-containing C-terminal catalytic domain (residues 121–673). The N-

terminal domain of 5-LOX is composed of two 4-stranded antiparallel β-sheets and has been 

shown to bind several regulatory factors such as Ca2+, phosphatidylcholine, coactosin-like 

protein and dicer, which suggests that this domain facilitates the association of 5-LOX with 

membranes during translocation and catalysis (153, 154).  

In resting cells, 5-LOX resides either in the cytosol or in a nuclear soluble compartment 

[184]. Both nuclear import- and export- sequences of 5-LOX have been identified [187, 188]. 

Once triggered by cell stimulation, such as priming by glycogen and cytokines, 5-LOX 

translocates to the nuclear membrane.  Upon translocation, 5-LOX works in concert with 

FLAP, leading to the enzymatic metabolism of AA to LTA4.Intracellular mobilization and 

phosphorylation of 5-LOX are two major processes for the regulation of 5-LOX activities 

[189].  

5-LOX can be phosphorylated in vitro on three residues: Ser-271, by mitogen-activated 

protein kinase-activated protein (MAPKAP) kinase 2, Ser-663 by ERK2, and Ser-523 by 

PKA catalytic subunit [184, 190-192]. The phosphorylation of 5-LOX by MAPKAP kinase 2 

and ERK2 trigger 5-LOX activity and translocation of the enzyme to the nuclear membrane, 

leading to induction of leukotriene biosynthesis. This can be confirmed by in vitro studies of 

stress-stimulated leukocytes and phorbol myristate acetate (PMA)-primed Mono Mac 6 

(MM6) cells  [191, 193].  To be noted, recent findings suggest that 5-LOX trafficking may be 

different in neutrophils between genders, which leads to different leukotriene production 

[194].  

1.4.2.4 Other enzymes involved in eicosanoid biosynthesis 

Besides the enzymes mentioned above, there are several other enzymes that also play 

important roles in eicosanoid biosynthesis. LTA4H/aminopeptidase is a cytosolic, 70 kDa, 

bifunctional zinc enzyme. On the one hand, LTA4H converts LTA4 into the proinflammatory 
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LTB4, on the other it cleaves and inactivates the chemotactic tripeptide Pro-Gly-Pro, thus 

playing roles in both the initiation and resolution phases of inflammation [195]. LTC4S, 

which conjugates LTA4 with GSH to form LTC4, belongs to a family of integral membrane 

proteins with the acronym MAPEG (membrane associated protein in eicosanoid and 

glutathione metabolism) [196, 197]. FLAP is another member of the same family and assists 

5-LOX during the conversion of AA to LTA4.  

In prostanoid biosynthesis, various bioactive prostaglandins and thromboxane are generated 

through the actions of upstream COXs as well as downstream terminal enzymes such as 

prostaglandin D synthases (PGDSs), prostaglandin E synthase, which is a third member of 

the MAPEG family, prostaglandin F synthases (PGFSs), prostacyclin synthase (PGIS) and 

thromboxane A synthase (TXAS). Each terminal enzyme is responsible for the production of 

a specific prostanoid, in a cell-specific manner.  

1.4.3 Eicosanoid receptors 

1.4.3.1 Prostanoid receptors 

Once synthesized, cellular prostanoids are released through a specific prostaglandin 

transporter (PGT), and potentially by other uncharacterized transporters [198]. The released 

prostanoids binds to a series of GPCRs, such as EP1-EP4 that bind PGE2, DP1 and DP2 that 

bind PGD2, and receptors that bind PGF2α, PGI2, and TXA2 (FP, IP, and TP, respectively) 

[154, 180].  Prostanoid receptors couple with various intracellular signaling pathways and 

second messengers that mediate the prostanoid-triggered bioactivities. For instance, the 

transduction of PGE2 signaling between cells activates different signaling pathways through 

EP1 to EP4. EP1 activates phosphatidylinositol metabolism via Gq, leading to the formation 

of inositol triphosphate with mobilization of intracellular free calcium [180]. EP2 and EP4 

activate adenylyl cyclase via Gs, increasing intracellular cyclic adenosine monophosphate 

(cAMP) [180]. EP3 relates to elevation of intracellular Ca2+, inhibition of cAMP generation, 

and activation of the small G protein Rho, via Gi or G13 [199].  

1.4.3.2 Leukotriene receptors 

LTB4 mediates cellular signaling mainly via two GPCRs (BLT1 and BLT2). BLT1 is a 43 

kDa GPCR with high specificity and affinity for LTB4 (Kd: 0.15-1 nM) [200]. This receptor is 

expressed on neutrophils but also on a variety of other inflammatory cells, including 

lymphocytes and mast cells [201-205]. In resting endothelial cells, BLT1 is expressed at a 

low level, but can be induced by LPS and LTB4 [206]. Another GPCR for LTB4 is BLT2, the 
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homologue of BLT1 with a higher Kd value (23 nM) for LTB4 and a broader range of ligands, 

including 12-HETE and 15-HETE [153, 207]. Unlike BLT1, BLT2 is ubiquitously expressed 

in various tissues. It has been reported that 12(S)-hydroxy-5-cis-8, 10-trans-heptadecatrienoic 

acid (12-HHT), a side-product during thromboxane synthesis from PGH2, is an endogenous 

high-affinity ligand for BLT2 [208]. Although its physiological role has not been fully 

elucidated yet, recent evidence indicate that it may exert anti-inflammatory and wound 

healing functions [209, 210]. 

Cys-LTs exert their biological functions mainly through two GPCRs, CysLT1 and CysLT2. 

Though a third receptor was found in 2008, as a high affinity receptor for LTE4, this receptor 

is predominantly expressed in brain and sense purynergic ligands [211]. CysLT1 contains 

336 amino acid residues and is expressed in various tissues and cells, such as smooth muscle 

cells and macrophages, peripheral blood, spleen and lung [212-215]. CysLT1 receptor binds 

LTD4 with a high affinity, followed by LTC4 then LTE4 in decreasing order of potency [153] . 

The classical bioactivity elicited by cys-LTs, such as smooth muscle contraction, increased 

vascular permeability, and plasma leakage, is mediated through CysLT1 signaling, which is 

the target for antiasthma drugs such as montelukast. The CysLT2 receptor contains 345 

amino acids. It binds to LTC4 and LTD4, but has a lower affinity with LTE4. This receptor 

has a wide distribution such as heart, brain, endothelial cells, lymphocytes, and has been 

shown to play a role in regulation of vascular permeability and neuronal signaling in the gut 

[216, 217].  

1.4.4 Eicosanoids in host defense 

Studies in mammals have demonstrated that eicosanoids affect the immune response by 

modulating cellular differentiation, migration, phagocytosis, and cytokine/chemokine 

production.  It has been reported that zymosan and Candida albicans induce cPLA2 activation 

and eicosanoid production in macrophages via different signaling mechanisms [218-220]. 

Moreover, a recent report investigated the functional consequences of cPLA2α activation and 

the effect of endogenously produced eicosanoids on gene expression in response to C. 

albicans by comparing cPLA2α
+/+ and cPLA2α

-/- resident mouse peritoneal macrophages 

(RPMs). The results suggest that killing of C. albicans was impaired in cPLA2α deficient 

RPMs. Meanwhile, C. albicans-stimulated cPLA2α activation and the early production of 

prostanoids promote an autocrine pathway in RPMs that affects the expression of genes 

involved in host defense to dampen inflammation [221]. In addition, it has also been shown 

that AA stimulates human neutrophils to release AMPs to strongly impair bacterial growth 
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[222]. To be noted, eicosanoids could be involved in lactose and phenylbutyrate (PBA)-

induced human cathelicidin expression in human epithelial cell line HT-29 since a PLA2 

inhibitor significantly suppressed lactose/PBA-induced peptide expression [223]. 

1.4.5 PGE2, a multifunctional lipid mediator 

Within the eicosanoid family, PGE2 represents the best characterized and one of the most 

potent prostanoids in the inflammatory milieu. It is produced by most tissues and cells in the 

human body and acts as an autocrine and paracrine lipid mediator through its four GPCRs, 

EP1-EP4. [154]. 

PGE2 has long been recognized as a multi-functional inflammatory mediator, participating in 

the regulation of blood flow and renal filtration, hematopoiesis, neuronal signaling, vascular 

permeability and smooth muscle function [224-227]. PGE2 has a paradoxical role in 

regulating inflammatory responses. It can promote the inflammatory processes by enhancing 

local vasodilatation and stimulating immune cell chemotaxis and activation [228-231]. 

However, PGE2 also dampens innate immunity and antigen-specific immunity by suppressing 

Type I immunity, promoting the recruitment of immune-suppressive cells and modulating 

cytokine release [232-234].  

1.4.5.1 PGE2 biosynthesis and degradation 

PGE2 is produced de novo from membrane-released arachidonic acid and its production can 

be triggered by growth factors, cytokines, mechanical trauma and other stimuli [154].  The 

metabolism of AA by COX isozymes leads to the generation of unstable endoperoxide PGH2, 

which can be further metabolized by the inducible microsomal prostaglandin E synthase-1 

(mPGES-1) [235]. Two other PGES have been reported but found to contribute very little, if 

at all, to the biosynthesis of PGE2 [236] . On the other hand, PGE2 is chemically relatively 

stable but has a rapid turnover rate in vivo [237, 238]. The degradation of PGE2 is controlled 

by the degrading enzyme 15-hydroxy-prostaglandin dehydrogenase (15-PGDH). 15-PGDH 

catalyzes the first step in the degradation of PGE2, oxidizing the prostanoid 15-hydroxyl 

group to a ketone, and thereby abrogating its binding to PGE2 receptors [239, 240] 

1.4.5.2 PGE2 receptors and downstream signaling pathways 

The diverse effects of PGE2 may be partially accounted for by the varied expression of their 

receptors (EP1-EP4), and heterogeneity in the coupling of these receptors to the intracellular 

signal transduction pathways [241]. Of the four receptors, EP3 and EP4 represent high-
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affinity PGE2 receptors (Kd < 1 nM), whereas EP1 and EP2 binds to PGE2 with lower affinity 

(Kd < 10 nM) [242].  

Signaling through EP2 and EP4 has been implicated in the anti-inflammatory and immune 

suppressive activity of PGE2, through cAMP/PKA/CREB pathway [234, 243-245]. The 

signaling of EP4 and EP2 is triggered by different concentrations of PGE2 and differs in 

duration of activation. Apparently due to a longer C-terminal tail of the EP4 receptor 

compared with the EP2 receptor, EP4 signaling is rapidly desensitized when induced by 

PGE2, whereas EP2 is resistant to agonist-induced desensitization, indicating a longer period 

of PGE2 triggered EP2 signaling [234]. In addition to their nominal activation of the cAMP 

pathway, EP2 and EP4 have also been suggested to activate other intracellular signaling 

pathways. Stimulation of EP4 (but not EP2) by PGE2 leads to activation of a PI3K-dependent 

ERK1/2 pathway [246], and the PI3K signaling is also involved in EP4 mediated Glycogen 

synthase kinase 3 (GSK3)/β-catenin signaling [247]. EP2 has also been reported to activate 

the GSK3/β-catenin signaling pathway, however, in a PKA-dependent, PI3K-independent 

manner [247]. Furthermore, EP2 has also been implicated in transactivation of EGF receptor, 

leading to increased migration and invasion of colon cancer cells [248, 249]. 

The low-affinity receptor EP1 has been reported to couple to mobilization of intracellular 

calcium [250, 251], and the high-affinity receptor EP3, which has at least eight splice variants 

in humans, has been reported to couple with Gi, leading to the inhibition of intracellular 

cAMP [252, 253].  

1.4.5.3 The effect of PGE2 on macrophage biology 

Regulation of phagocytosis and pathogen clearance by PGE2 

Macrophages are potent immune effector cells playing key roles in phagocytosis and 

pathogen clearance. Acting in a EP2 dependent manner, PGE2 has been reported to inhibit 

alveolar macrophage phagocytosis through the induction of the cAMP signaling pathway 

[254]. Further study on this issue reveals that PGE2 suppresses phagocytosis via Epac but not 

PKA, both of which are downstream signaling molecules in the cAMP pathway [255], and 

PI3K signaling plays an important role in FcγR phagocytosis which is mediated by PTEN 

[256]. Moreover, Hubbard et al. have reported that PGE2 could suppress macrophage 

phagocytic ability through IL-1R-associated kinase (IRAK)-M, a known inhibitor of MyD88-

dependent IL-1R/TLR signaling [257]. Further work shows that phagocytosis can be restored 

by the inhibition of COX[258]. Together, these evidences demonstrate that PGE2 is a 

suppressor of macrophage phagocytosis. 



 

  23 

Besides the influence on bacterial phagocytosis, PGE2 has also been shown to suppress 

macrophage bactericidal ability and the inflammatory process by regulating NADPH oxidase 

and release of ROS [259, 260]. Moreover, PGE2 suppresses the activation of macrophages by 

inhibiting the production of nitric oxide radicals [261, 262]. 

PGE2 and macrophage polarization, cytokines and inflammatory mediator release 

PGE2 alters macrophage cytokine responses and promotes an immunosuppressive phenotype. 

Though at early stages of inflammation, PGE2 is believed to enhance monocyte recruitment 

[228], while the activation of macrophages are inhibited by PGE2 via EP2/PKA signaling 

[263]. Furthermore, PGE2 has been suggested to inhibit TNF-α expression both in murine and 

human macrophages [257, 264]. Also, it has been shown that PGE2 regulates leukotriene 

production in alveolar macrophages [257, 265]. In the tumor microenvironment, PGE2 has 

been implicated in regulating IL-10 and IL-12 production [266], leading to an 

immunosuppressive phenotype of macrophages [267]. This was further demonstrated by the 

rescue of IL-10 and IL-12 balance and restoration of antitumor activity after specific 

inhibition of COX-2 [266]. 

PGE2 and monocytic myeloid-derived suppressor cells 

Myeloid-derived suppressor cells (MDSC) represents a heterogeneous population of 

immature myeloid cells including immature precursors of macrophages, neutrophils and 

dendritic cells, capable of suppressing immune responses [268, 269]. MDSCs express CD34, 

common myeloid marker CD33, macrophage/DCs marker CD11b, and IL4Rα (CD124), but 

lack expression of the lineage markers of DCs and other mature myeloid cells [270, 271]. 

Human MDSCs are defined as CD33+Lin-HLA-DR-/low cells, and can be subdivided into 

CD11b+Ly6G+Ly6Chigh monocytic and CD11b+Ly6G+Ly6Clow granulocytic MDSCs. It has 

been reported that in murine colon adenocarcinoma-38 and GL261 murine glioma, > 90% 

tumor-infiltrating CD11b+ cells were of the CD11b+F4/80+ monocytic MDSCs, which bear 

both M1 and M2 phenotypes [272].  

PGE2 has been reported to play a central role in the development and accumulation of 

MDSCs through a CXCL12-CXCR4 pathway in ovarian cancer [269]. In vitro, PGE2 has 

also been suggested as an inducer of monocytic MDSC generation from peripheral blood 

monocytes. Further in vitro studies on MDSCs indicate that the PGE2 triggered EP2/EP4 - 

cAMP/PKA/CREB signaling pathway is involved in the generation of MDSCs [273]. On the 

other hand, COX-2, one of the inducible enzymes in PGE2 biosynthesis, has also been 

associated with development of MDSCs in several tumor models. In vitro coculture of human 
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melanoma cells with monocytes triggers CD14+ monocytes to acquire a MDSC-like 

phenotype and immunesuppressive properties, via COX-2/PGE2 and STAT-3 signaling 

[274]. The association of COX-2 and MDSCs has also been investigated in nasopharyngeal 

carcinoma, where COX-2 promotes MDSCs expansion and further leads to cancer metastasis 

[275]. 

To be noticed, MDSC expresses high level of COX-2 and is one of the major sources for 

PGE2 production in the tumor microenvironment, which forms a positive feedback loop to 

further sustain a suppressive phenotype of MDSCs. In this loop, COX-2 plays an essential 

role for the functional stability of MDSCs [276]. 

1.5 INTERACTIONS BETWEEN AMPs AND EICOSANOIDS IN INNATE 
IMMUNITY 

As two large families of immune effector molecules, AMPs and eicosanoids have been 

demonstrated to interact with each other to regulate the immune response. A previous study 

in our group shows that LL-37 promotes LTB4 production by human neutrophils [277]. It has 

also been reported that hBDs including hBD-2,-3 and -4 induce PGD2 production in mast 

cells [278-280]. In turn, eicosanoids could work as an external regulator of AMPs and further 

influence host defense against microbes. For instance, PGD2 induces hBD-2 and hBD-3 

production in human keratinocytes [281, 282]. Studies on human neutrophils also show that 

LTB4 induces the release of human AMPs, including α-defensins, cathepsin G, elastase, 

lysozyme C, and LL-37 via the BLT1 receptor [277, 283].  Based on the finding of reciprocal 

regulation between some specific AMPs and eicosanoids, a regulatory feedback loop between 

LTB4 and LL-37 has been proposed to operate at an inflammatory locus, which may further 

expand the existing inflammatory responses [75, 277]. Given the fact that macrophages are 

tissue resident immune cells which act at the frontline against infection, and represent major 

target cells in various acute and chronic inflammatory states, studies of the mechanisms and 

roles of AMPs and eicosanoid interactions might provide us with new strategies for 

pharmacological interventions in host defense and inflammation. 
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2 AIMS 

My PhD work started from the observation that LL-37 promotes the capacity of differentiated 
monocytic cell line THP-1 (dTHP-1) to phagocytize bacteria from where we began to explore 
the role of LL-37 on macrophage functional responses relevant to innate immunity. The 
specific objectives of my PhD studies were: 

 

• To elucidate how LL-37 affects macrophage bactericidal activities by influcing 
phagocytosis (Paper I) . 
 

• To characterize LL-37 internalization by human macrophages and investigate its 
functions (Paper II). 
 

• To demonstrate the effects and regulatory mechanisms of LL-37 induced eicosanoid  
production in human macrohages (Paper III). 
 

• To determine the effect and mechanisms of action of PGE2 on AMP expression in 
human macrophages and its potential role in Mtb infection (Paper IV).
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3 METHODOLOGY 

The methods employed in this thesis are listed below. For detailed protocols of the methods, 
please see papers as indicated. 

 

Isolation of neutrophils and monocytes 
from buffy coats 

Paper I, II, III, IV 

Culturing of MM6 and THP-1 cells Paper I, II, III, IV 

Phagocytosis assay Paper I 

Intracellular killing assay Paper I, II 

Immunocytochemistry Paper I, II, III, IV 

Flow cytometric analysis Paper I, II 

SDS-PAGE and Western blot analysis Paper I, II, III, IV 

Real-time PCR Paper III, IV 

ELISA Paper III, IV 

Intracellular calcium mobilization Paper III 

Lentivirus based shRNA transfection Paper II, IV 

ROS detection assay Paper II 

In vivo subcutaneous air pouch model Paper I 

In vivo peritonitis model Paper III 
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4 RESULTS AND DISCUSSION 

Based on the objectives of the current study, the major observations can be divided into three 
parts: (i) Paper I and Paper II demonstrate beneficial effects of LL-37 on macrophages’ 
ability to kill bacteria, by promoting phagocytosis of bacteria and internalization of LL-37 
into intracellular compartments, leading to induction of ROS production and lysosome 
formation. (ii) In Paper III, the role of LL-37 in regulation of macrophage eicosanoid 
production is described. (iii) In Paper IV, we investigate the induction of LL-37 expression 
by a potent inflammatory mediator, viz. PGE2, under in vitro conditions with or without Mtb-
infection. Paper III and paper IV collectively provide evidence for the mutual regulation and 
interactions of the eicosanoid and AMP families, in host defense and inflammation. 

4.1 LL-37 enhances bacteria killing activity of human macrophages 
(Paper I&II) 

In an attempt to determine the effect of LL-37 on the ability of human macrophages to 
phagocytize bacteria, the synthetic LL-37 was added and incubated together with human 
monocyte derived macrophages (HMDMs) or dTHP-1 cells. The results from bacteria killing 
assay showed that macrophages treated with LL-37 exhibited increased ability to kill both 
Gram-positive and Gram-negative bacteria.  

Increasing evidence indicate that LL-37 plays an important role in modulating immune 
responses in addition to directly binding and killing bacteria. The importance of LL-37 in 
immunomodulation is supported by the observation that synthetic LL-37 variant with an 
ablated bacteria killing activity plays beneficial roles in host defense against Staphylococcus 
aureus and Salmonella typhimurium infection [284]. Expanding evidence has also shown that 
LL-37 exhibits a weak direct antimicrobial activity under physiologically relevant conditions 
[285, 286]. Given the role of LL-37 in host defense [87, 287, 288], understanding the 
mechanisms by which LL-37 can contribute to innate immune responses is of great 
importance. 

As an endogenous antimicrobial agent, LL-37 has been found in various epithelial and 
mucosal surfaces, as well as in most of the body fluids in man. It has been reported that under 
physiological conditions, a concentration of 2-5 µg/ml has been observed for LL-37 in 
mucosal surfaces and body fluids [289]. Another report suggests that LL-37 concentrations 
vary among different body fluids in healthy donors, i.e. 0.7-27 µg/ml in saliva and 0.9-2.3 
µg/ml in plasma [290]. In our studies, we have shown that LL-37 promotes bacterial killing 
by human macrophages under conditions relevant to normal physiological states and to 
certain infections. 

4.1.1 LL-37 promotes bacterial phagocytosis by human macrophages (Paper I) 

Efficient phagocytosis of bacteria is an important step in the clearance of invading bacteria 
and host defense. It has previously been reported by our group that LL-37 elevates bacterial 
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phagocytosis by human neutrophils [277]. Moreover, neutrophil-derived heparin-binding 
protein (HBP) and human neutrophil peptide 1–3 (HNP-1–3) have been suggested to boost 
bacterial phagocytosis by macrophages [291]. In this project, we aimed to investigate the 
effect of LL-37 on bacterial phagocytosis by macrophages and to reveal the mechanisms that 
mediate this action. 

LL-37 increases the phagocytic capacity of Gram-negative bacteria in human 
macrophages, associated with an up-regulation of TLR4 and CD14 expressions 

To study the effects of LL-37 on phagocytosis of bacteria in human macrophages, LL-37 was 
incubated together with dTHP-1 cells, followed by washing steps and exposure of 
macrophages to bacteria. Our results showed that LL-37 selectively enhanced phagocytosis of 
nonopsonized E. coli but not nonopsonized S. aureus.  

TLR signaling pathways are involved in recognition and phagocytosis of bacteria [292-294]. 
Among many TLRs, TLR4, together with CD14, are associated with cellular recognition of 
LPS, whereas TLR2 is associated with recognition of Gram positive bacteria [14, 15]. Our 
results showed that expression of TLR4 and CD14 was up-regulated in LL-37 treated dTHP-
1 cells, which was in line with the finding of the increased phagocytosis induced by LL-37 in 
E.coli but not S.aureus. 

LL-37 up-regulates the FcγRs CD64 and CD32, leading to an enhanced phagocytic 
capacity of IgG-opsonized bacteria in human macrophages  

In innate immunity, efficient uptake and phagocytosis of bacteria by macrophages are 
achieved by opsonization of pathogens with antibody (Ig) or complement proteins. Particles 
opsonized with IgG are recognized by FcγRs [295, 296]. In our study, we analyzed the 
expression of three major FcγRs (CD16, CD32, and CD64) on the surface of macrophages, 
before and after LL-37 treatments. Our results showed that dTHP-1 cells expressed high 
levels of CD32 and CD64, whereas CD16 expression was at a very low level. Our data 
showed that LL-37 elevated CD32 and CD64 expression, in a non-synchronized manner. 
This result was in line with the finding that LL-37 enhanced phagocytosis of IgG-opsonized 
E. coli and S. aureus in dTHP-1 cells. In concordance, CD64 antibody blocked LL-37 
induced bacterial phagocytosis, which further confirmed the involvement of FcγR in LL-37 
promoted bacteria phagocytosis in human macrophages. 

FPR2/ALX is involved in LL-37 enhanced bacteria phagocytosis in human 
macrophages 

LL-37 exerts its immunomodulatory effect via several receptors, such as FPR2/ALX [108], 
P2X7R [116], and EGFR [77]. We found that pretreatment of dTHP-1 cells with the 
FPR2/ALX antagonist peptide WRW4 totally abolishes LL-37-enhanced bacterial 
phagocytosis of dTHP-1 cells, while the GPCR inhibitor pertussis toxin showed a similar 
effect. Furthermore, WRW4 also blocked LL-37-induced CD32 expression on dTHP-1 cells. 
In contrast, inhibitors of P2X7R or EGFR had no effect on LL-37-promoted bacterial 
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phagocytosis. Enhanced bacterial phagocytosis was also detected after dTHP-1 cells were 
incubated with the specific FPR2/ALX agonist WKYMVm peptide. Together, these results 
demonstrate the involvement of FPR2/ALX in LL-37 enhanced bacterial phagocytosis in 
human macrophages. 

4.1.1.1 Macrophages from Cnlp-/- mice exhibit suppressed bacterial phagocytosis 

To obtain evidence for the involvement of LL-37 in regulating bacterial phagocytosis in vivo, 
we conducted experiments on Cnlp-/- mice, transgenic mice deficient in murine cathelicidin 
(mCRAMP). We used the dorsal subcutaneous (s.c.) air pouch model with injection of TNF-α 
on both WT and Cnlp-/- mice. After 24 h, leukocytes in pouch lavage were collected and the 
macrophage population was obtained by cell adherence.  In our hands, the relative amounts of 
different subtypes of leukocytes were similar in TNF-α-induced pouch lavage from WT and 
Cnlp-/- mice (≈15% neutrophils, ≈ 10% monocytes, and ≈ 60% macrophages). Our results 
revealed that phagocytosis of IgG-opsonized S. aureus was significantly suppressed in 
macrophages from Cnlp-/- mice compared with WT mice (Fig. 6A). Moreover, the expression 
of CD14 and FcγRs on adhered leukocytes from Cnlp-/- mice was significantly lower than 
that from WT mice. These results agreed with the in vitro findings regarding the effect of LL-
37 on bacterial phagocytosis in macrophages. 

4.1.2 Internalization of LL-37 by human macrophages promotes intracellular 
bacterial clearance (Paper II) 

To be noted, we also identified in Paper I that LL-37-treated human macrophages exhibited 
an enhanced intracellular killing of S. aureus, although LL-37 had no effect on phagocytosis 
of this bacterial species. Therefore, we continued to investigate the mechanisms mediating 
LL-37 promoted intracellular bacterial killing activity in human macrophages. 

In this project, we observed that human macrophages take up extracellular LL-37. Moreover, 
the internalized LL-37 co-localized with the intracellular bacteria in endosomes and 
lysosomes of human macrophage. These phenomena led to our hypothesis that LL-37 
internalization could contribute to the ability of human macrophages to kill bacteria. 

LL-37 internalization by human macrophages 

Macrophages are residential sentinel cells for invading pathogens. During infection, 
neutrophils are recruited to the infectious site where they encounter the invading pathogens, 
and immediately release their preformed granules containing antimicrobial agents, including 
hCAP18/LL-37. Thus, the residential macrophages may be surrounded by LL-37 in a high 
level at infectious or inflammatory sites. By culturing human macrophages with neutrophil 
conditioned medium that contained released antimicrobial agents from neutrophils, we were 
able to show that LL-37 released by human neutrophils was internalized by human 
macrophages. When human macrophages were incubated with FAM-labeled LL-37, the 
fluorescence intensity of the cells increased in a manner dependent on LL-37 dose and 
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incubation time. However, the fluorescence intensity of the macrophages did not change 
significantly if they were treated with the endocytosis inhibitor cytochalasin B before 
incubation with FAM-labeled LL-37, which suggested that internalization of LL-37 by 
human macrophages is an endocytic process. In addition, we treated the macrophages with 
sequence scrambled LL-37 (sLL-37). Unlike LL-37, sLL-37 was not internalized by human 
macrophages, which indicates that this process might be mediated by specific receptor(s). 

Clathrin- and caveolae/lipid raft–dependent endocytosis pathways are involved in LL-
37 internalization by human macrophages 

Endocytosis is characterized by internalization of molecules from extracellular space into 
intracellular compartments. Based on the participation of different surface molecules and 
intracellular compartments, two major types of endocytosis have been well defined: the 
classical, clathrin-mediated endocytosis (CME) pathway and the nonclassical, clathrin-
independent, but lipid raft-dependent pathway.  

Both the inhibitors of CME and caveolae/lipid raft endocytosis pathway suppressed LL-37 
internalization in HMDMs and dTHP-1 cells, which suggested that both clathrin-dependent 
and caveolae/lipid raft–dependent pathways are involved in LL-37 endocytosis by human 
macrophages. 

CME represents the classical strategy of particle internalization mediated through clathrin-
coated vesicles. This pathway encompasses the internalization of nutrients, antigens, growth 
factors, and receptors [297]. The particles internalized via clathrin-coated vesicles are 
engaged into the endosome-lysosome system, which could either end up with degradation in 
lysosome or sorted for recycling back to the plasma membrane (or the Golgi) via recycling 
endosomes. However, emerging evidence shows that clathrin independent pathways also 
exist. One form of clathrin-independent endocytosis relies on cholesterol-rich membrane 
domains, such as lipid rafts and caveolae. This type of endocytosis exists in the multiple 
endocytic processes, such as virus and bacteria entry into host cells and internalization of 
sphingolipids, endothelin and growth hormones [298]. The scaffolding protein caveolin-1 has 
been reported as a key component in the formation of caveolae, since the lack of caveolin-1 
in null mice leads to the absence of caveolae [299, 300]. 

Our results showed that internalized LL-37 localized in the CME associated intracellular 
compartments, namely endosomes, lysosomes and the Golgi apparatus. Moreover, 
internalized LL-37 partially co-localized with markers of lipid rafts, caveolae and clathrin. 
Those evidence further demonstrate the involvement of both CME and lipid raft/caveolae 
dependent endocytosis pathways. 

P2X7R is associated with clathrin-dependent endocytosis of LL-37 by human 
macrophages 

The exclusive internalization of LL-37 but not sLL-37 by human macrophages suggested that 
this process is mediated by specific receptor(s). To this end, pharmacological tools and gene 
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depletion were utilized to investigate the receptor involvement. Our results showed that 
inhibitors of P2X7R significantly suppressed LL-37 internalization by human macrophages. 
Meanwhile, P2X7R knock-down (KD) dTHP-1 cells exhibited a lower level of LL-37 
internalization, compared with control cells. Furthermore, partial co-localization of LL-37 
and P2X7R has been observed in dTHP-1 cells. Together, these lines of evidence showed that 
P2X7R participated in the process of LL-37 internalization by human macrophages. 

P2X7R is highly expressed in macrophages, microglia, and certain lymphocytes. This 
receptor has been reported to mediate the influx of Ca2+ and Na+ ions, as well as the release 
of proinflammatory cytokines. However, it has been reported that LL-37 enters human 
PBMCs independent of P2X7R [130]. Our results have showed that human PBMCs express 
much less P2X7R than human macrophages. Therefore, the discrepancy of the P2X7R 
involvement in LL-37 internalization by PBMCs and macrophages is possibly due to the 
lower expression of P2X7R in PBMCs than HMDMs. It also indicates that P2X7R may play 
different and context-dependent roles in LL-37-related responses in monocytes and 
macrophages. 

The activation of P2X7R has been reported to trigger several downstream signaling pathways, 
including PLD, MAPK, and PI3K signaling pathways [301]. We found that PI3K and Panx-1 
might be involved in P2X7R mediated LL-37 internalization. Panx-1 is a P2X7R-associated 
protein and appears to be the large pore or is responsible for activation of the large pore of 
P2X7R [302]. Interestingly, Panx-1 has also been reported for the recognition and 
intracellular delivery of bacterial molecules and caspase-1 activation [303, 304]. 

A previous report has shown that ATP stimulated P2X7R internalization occurs through the 
clathrin domain [305]. Accordingly, we also observed that the LL-37/P2X7R complex 
primarily co-localized with clathrin. In addition, the inhibitor of CME (dynasore) exerts no 
inhibitory effect on LL-37 internalization by P2X7R-KD dTHP-1 cells, whereas the inhibitor 
of caveolae/lipid rafts (nystatin) suppressed the internalization of LL-37 in both control and 
P2X7R-KD cells. Taken together, our results suggest that P2X7R-mediated LL-37 
internalization is primarily associated with CME, which is consistent with the fact that CME 
tends to be a receptor-mediated endocytosis pathway [297]. 

LL-37 internalization enhances the bacteria killing ability of human macrophages 

In Paper I, we have demonstrated that LL-37 enhanced the ability of human macrophages to 
kill bacteria. Here we hypothesized that LL-37 internalization worked as a mechanism for 
LL-37 enhanced bacteria killing ability. In our experiments, we observed a significantly 
lower level of LL-37 internalization, at lower temperature and shorter LL-37 exposure time, 
compared with cells treated with LL-37 under normal experimental conditions. In agreement 
with our hypothesis, cells, which were loaded with less intracellular LL-37, exhibited a 
significantly suppressed bacteria killing activity. Moreover, the promoting effect of LL-37 on 
bacterial killing was diminished in P2X7R KD dTHP-1 cells, compared with control vector 
transfected dTHP-1 cells. These results suggest that internalization is a strategy for LL-37 to 
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modulate innate immune responses of human macrophages. In addition, we observed co-
localization of internalized LL-37 and the phagocytized bacteria in endosomal and lysosomal 
compartments, which suggests that LL-37 might encounter and eliminate pathogens directly 
in these organelles. 

LL-37 internalization enhances intracellular ROS activity and lysosome accumulation 
in human macrophages 

To further investigate the mechanisms by which internalized LL-37 may enhance clearance 
of bacteria in macrophages, we measured the quantity of several antimicrobial effector 
molecules in dTHP-1 cells with or without LL-37 treatment. According to our measurements, 
LL-37 significantly enhanced intracellular ROS levels and lysosome accumulation. 
Moreover, pretreatment with endocytosis inhibitor nystatin and dynasore, as well as P2X7R 
inhibitor, significantly suppressed the effect of LL-37 on ROS and lysosome accumulation. 
Together, these results suggest that LL-37 internalization might contribute to intracellular 
ROS and lysosome accumulation in human macrophages. In addition, the enhanced bacteria 
killing ability in LL-37 treated dTHP-1 cells was abolished when those cells were pretreated 
with ROS inhibitor. This result demonstrated that ROS production induced by internalized 
LL-37 contributed to the intracellular bacterial killing by human macrophages. 

4.2 LL-37 regulates eicosanoid production by human macrophages (Paper III) 

In this study, we investigated the role of LL-37 in the regulation of eicosanoid production in 
human macrophages. We measured several eicosanoids, including LTB4, cysteinyl LTs (cys-
LTs), PGI2 (analyzed as 6-keto PGF1α), PGE2, and TXA2 (analyzed as TXB2), from LL-37 
treated and non-treated macrophages at different time points. We found that the production of 
LTB4 and TXB2 were enhanced most significantly in LL-37 treated macrophages at early (1 
h) and late (6 h) time points, respectively. Furthermore, LL-37 promoted LTB4 and TXB2 
production of HMDMs in a dose-dependent manner; while sLL-37 did not evoke any 
significant responses. 

LL-37 induces a quick response (1 h) of LTB4 production in human macrophages 

Phospholipase A2, in particular group IV cytosolic phospholipase A2 (cPLA2), mediates 
agonist-induced AA release, which is the rate-limiting step in the biosynthesis of eicosanoids 
[306]. Activation of cPLA2 requires phosphorylation by p38 MAPK and an increase in 
intracellular calcium [171, 307]. 5-LOX catalyzes oxygenation of AA, resulting in LT 
biosynthesis. 5-LOX activity is regulated by several factors, including intracellular Ca2+, 
translocation of 5-LOX from the cytosol to the nuclear membrane, phosphatidyl choline, 
CLP, and phosphorylation of 5-LOX [308]. 

According to our observations, the incubation of human macrophages with LL-37 rapidly 
evoked intracellular calcium mobilization, activated ERK1/2 and p38 MAPKs, which 
contributed to phosphorylation of cPLA2 and 5-LOX as well as translocation of 5-LOX from 
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cytosol to the nucleus in human macrophages. These changes in the intracellular signaling 
pathways lead to an enhanced production of LTB4 from human macrophages.  

P2X7R is a candidate receptor involved in LL-37 induced early production of LTB4 

Our finding that sLL-37 does not promote eicosanoid production from HMDMs indicates that 
LL-37-induced responses are mediated by specific receptor(s). By further using 
pharmacological tools, we demonstrated the involvement of P2X7R in LL-37 induced early 
production of LTB4.  

LL-37 elicits COX-2 expression and TXB2  (and PGE2) production in human 
macrophages 

LL-37 also induced TXB2 production at early time points (1 h), however TXB2 production 
steadily increased and peaked at a late time point around 6-8 h. The early production of TXB2 
was mediated via the LL-37-P2X7R-cPLA2-COX-1 axis, since COX-1 specific inhibitor SC-
560, but not COX-2 inhibitor celecoxib inhibited TXB2 production at the early time phase. 
On the other hand, TXB2 production at late time points was contributed by both COX-1 and 
COX-2 enzymes, which was evidenced by inhibition of TXB2 production by both COX-1 and 
COX-2 inhibitors. In addition to TXB2, we have also observed an increased PGE2 production 
after 8 h exposure of macrophages to LL-37.  

Several lines of evidence indicate that the COX isozymes regulate different phases of 
prostanoid biosynthesis in activated cells [309-311]. In line with this notion, we observed 
more abundant COX-1 than COX-2 in human macrophages at resting states. When incubated 
with LL-37, COX-2 expression began to increase at both mRNA and protein levels, leading 
to an increased level of COX-2-derived TXA2 and PGE2. Further studies also showed that 
internalization of LL-37 by HMDMs contributed to LL-37-induced COX-2 activation and 
TXA2 production.  

Cathelicidin elicits LTB4 and TXA2 production in vivo 

To determine the effect of LL-37 on eicosanoid production in vivo, we designed two 
experiments. First, C57BL/6 WT mice were injected intraperitoneally with mCRAMP 
(mouse LL-37 orthologue), using PBS and mTNFα as negative and positive controls. In this 
model, injection of mCRAMP led to significantly increased levels of both LTB4 and TXB2 in 
the peritoneal lavage fluid. In the second experiment, acute peritonitis was induced in WT 
and cathelicidin-deficient (Cnlp-/-) C57BL/6 mice by i.p. injection of mTNFα. After 4 h, 
significantly lower levels of LTB4 and TXB2 were detected in lavage fluids from Cnlp-/- mice, 
compared to WT mice. However, since LL-37 has also been reported to trigger LTB4 
production in PMNs [75], it is hard to interpret our in vivo findings in a cell-type specific 
fashion.  
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4.3 PGE2 suppresses hCAP18/LL-37 expression (Paper IV) 

PGE2 is produced by most tissues and cells in the human body and acts in an autocrine or 
paracrine fashion to exert its functions [154]. The paradoxical role of PGE2 in inflammation 
and host defense has been discussed above in section 1.4.5. For instance, PGE2 can promote 
the inflammatory processes by enhancing local vasodilatation, and stimulating the immune 
cell chemotaxis and activation [228-231]. However, in certain conditions, PGE2 also dampens 
innate immunity and antigen-specific immunity [232-234]. Herein, we report a deleterious 
role of PGE2 in human Mtb infection via inhibition of AMP expression, especially VD3-
induced hCAP18/LL-37 in human macrophages. 

PGE2 suppresses the expression of AMPs in human macrophages 

HMDMs and human monocytic cell line Mono Mac 6 (MM6) were used in this study. To 
obtain differentiated MM6 cells, TGF-β and VD3 were incubated together with MM6 cells 
for 96 h. We found that hCAP18/LL-37 expression was significantly decreased in PGE2 
treated macrophages. In addition, PGE2 also inhibited mRNA expression of human hBD-2 
in human macrophages. PGE2 effectively suppressed VD3-induced LL-37 expression, at 
both mRNA and protein levels. Furthermore, mPGES1 deficient MM6 cells, which 
produced less PGE2 than control cells, expressed significantly higher levels of hCAP18/LL-
37, indicating an inhibitory role of autocrine PGE2 on LL-37 expression. 

PGE2 inhibits LL-37 expression via EP2 and EP4 

We measured the mRNA expression of EP receptors on HMDMs. Cultured HMDMs 
express high levels of EP2 and EP4, but low levels of EP1 and EP3. Using a series of 
pharmacological tools and MM6 cells with EP2 or EP4 gene depletion, we demonstrated 
that both EP2 and EP4 are involved in PGE2 mediated suppression of hCAP18/LL-37 in 
human macrophages. It has been reported that EP2/EP4 mediate various immuno-
suppressive effects of PGE2 [234, 243-245]. Our results are in line with this notion. 

PGE2 regulates the expression of transcription factors of CAMP gene 

cAMP responsive element modulator (CREM), also called inducible cAMP early repressor 
(ICER), is the direct phosphorylation target of PKA [312]. Quantitative mRNA analysis 
showed that PGE2 induced CREM/ICER expression in human macrophages. Further 
studies demonstrated the involvement of EP2/EP4, cAMP and PKA in PGE2-induced 
CREM/ICER expression.  In addition, the inhibitory effect of PGE2 on LL-37 expression 
was diminished in CREM/ICER KD MM6 cells. Taken together, these data depicted a 
PGE2- EP2/EP4-cAMP- PKA-CREM/ICER-hCAP18/LL-37 signaling cascade, involved in 
the regulation of hCAP18/LL-37 expression by PGE2. 

CAMP gene is a target of the transcription factor VDR [96], whose expression is up-
regulated by VD3 treatment [313]. We observed that VD3 induced VDR protein expression 
in human macrophages and this increase was significantly downregulated in the presence of 
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PGE2. Further experiments showed that PGE2 suppressed VDR expression via a EP2/EP4-
cAMP- PKA-VDR axis. To be noted, the inhibitory effect of PGE2 on VDR protein 
expression was diminished in CREM/ICER KD MM6 cells, which indicate the involvement 
of CREM/ICER in the regulation of VDR expression. 

PGE2 impairs hCAP18/LL-37 expression in both M1- and M2-polarized macrophages 

Macrophages exhibit varied molecular expression profiles and activities, under different 
activation states. To further investigate our findings of PGE2 regulated hCAP18/LL-37 
expression in macrophages, we polarized HMDMs with different cytokines to obtain M1 
and M2 macrophage phenotypes. In these cells, PGE2 suppressed hCAP18/LL-37 
expression in both M1 and M2 macrophages, with a more profound effect on M2 
macrophages. This result was in line with our finding that PGE2 triggers a more profound 
increasein CREM/ICER expression and decreased VDR expression in M2-polarized 
macrophages.  

PGE2 elevates Mtb growth in human macrophages  

In spite of several previous publications claiming a protective effect of PGE2 for the host in 
mouse models of Mtb infection, our data showed that PGE2 treatment elevated Mtb growth 
in human macrophages. A recent report has shown that cathelicidin deficient mice exhibited 
increased susceptibility to Mtb infection compared to wild type mice [314]. In addition, it is 
well known that AMPs, especially human cathelicidin, is induced in human macrophages 
by VD3 [96, 99, 100, 315]. On the other hand, autophagy activation is required for VD3-
mediated anti-Mtb activity in human macrophages and cathelicidin mediates VD3-induced 
autophagy (17,18). In line with this, PGE2 significantly suppressed VD3 induced expression 
of hCAP/LL-37 and autophagy markers LC3, Atg5 and Beclin 1 in Mtb-infected 
macrophages. 
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5 CONCLUSIONS 

This thesis has been focusing on two major families of inflammatory mediators -AMPs 
and eicosanoids, regarding their roles in inflammation and host defense. Based on the 
major observations of the four studies, we conclude the following: 

§ LL-37 enhances bacterial clearance by human macrophages via promoting bacterial 
phagocytosis by human macrophages, as well as via entry of LL-37 into the macrophage 
intracellular compartments, which triggers ROS and lysosome accumulation. 
 

§ LL-37 triggers LTB4, TXA2 and PGE2 production in human macrophages, in a dose and 
time dependent manner. Short-term (1 h) exposure to LL-37 induces LTB4 production, 
via activation of cPLA2 and 5-LOX enzyme activity. The activated cPLA2 also leads to an 
increased early phase TXA2 production, via COX-1. Meanwhile, LL-37 increases COX-2 
expression in human macrophages, resulting in a late phase induction of TXA2 and PGE2 
production, which might be partially dependent on LL-37 internalization. 
 

§ LL-37 internalization contributes to intracellular bacterial killing of macrophages, as well 
as LL-37-triggered COX-2 expression in human macrophages. 
 

§ The purinergic receptor P2X7R is involved in LL-37 internalization as well as LL-37 
triggered early phase eicosanoid production in human macrophages. P2X7R mediated LL-
37 internalization is associated with a clathrin-dependent endocytosis pathway. 
 

§ PGE2 exhibits deleterious effects on Mtb infected macrophages, by suppressing 
expression of the antimicrobial peptide LL-37 via an EP2/EP4-cAMP-PKA signaling 
pathway. Activation of cAMP leads to increased expression of CREM/ICER and 
decreased expression of VDR, two transcription factors that regulate hCAP18/LL-37 
expression. 
 
The schematic models of this thesis are depicted in Fig. 6 and Fig. 7. Fig. 6 summarizes 
the effects of LL-37 on bacterial phagocytosis, intracellular bacteria killing, and 
eicosanoids production in human macrophages, as well as the characterization of LL-37 
internalization. Fig. 7 illustrates the regulation of cathelicidin expression by PGE2 via 
EP2/EP4 in human macrophages. 
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Figure 6 A schematic model of LL-37 regulating bacterial phagocytosis, intracellular bacteria killing, 
and eicosanoids production in human macrophages, as well as an illustration of LL-37 internalization.  
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Figure 7 A schematic model of PGE2 suppressing cathelicidin expression in human macrophages via 
EP2/EP4. (A) VD3 treatment induces VDR expression, leading to more VDR binding to VDRE in 
the promoter region of CAMP gene in human macrophages. As a result, human cathelicidin 
expression and autophagy is enhanced, contributing to intracellular Mtb killing. (B) Surrounding 
PGE2 binds to EP2 and EP4, which activates cAMP/PKA-signaling pathway to promote the 
repressor CREM/ICER expression and reduce VDR expression. Increased binding of CREM/ICER 
to CRE and reduced binding of VDR to VDRE in the promoter region of CAMP gene lead to 
reduced VD3-triggered human cathelicidin expression and autophagy, resulting in increased Mtb 
survival. 
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