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Abstract

Twin and sibling studies are valuable in that they allow adjustment for poten-

tial confounding factors that are impossible or hard to measure. By measuring

associations ‘within-cluster’ it is possible to adjust for many factors that are

shared between individuals in the same cluster.

Using Swedish national registers, it is possible to obtain information about

a large number of potential confounders. While this gives medical researchers

great opportunities to control for confounding, it also increases the risk of model

misspecification leading to biased estimates. One strategy to reduce the risk

of such bias is to use doubly robust (DR) estimation. In DR estimation two

working models are combined in such a way that the resulting estimate will

remain asymptotically unbiased when one of the models is misspecified.

In study I, we implement existing DR estimators for parameters in linear,

log-linear and logistic regression models in the R package drgee. In study II,

we propose a new class of DR estimators for ‘within-cluster’ association mea-

sures in linear and log-linear regression models. In study III we propose a DR

estimator for the ‘within-cluster’ log odds ratio parameter in logistic regression

models. The estimators proposed in studies II and III are also implemented in

the R package drgee.

In study IV, we discuss what shared factors the ‘within-cluster’ association

actually is adjusted for. Using the formal theory of causal diagrams we demon-

strate that the standard methods for estimating ‘within-cluster’ association

parameters implicitly adjust for shared confounders, shared mediators, but not

shared colliders. Therefore, the estimated parameter may have a causal in-

terpretation as a direct effect, i.e. as the part of the causal effect that is not

mediated through shared factors.
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1 Introduction

One of the main goals of epidemiology and of medical research is to find out how to

improve public health by removing or reducing factors that have a negative impact on

public health and increase factors that are beneficial to public health. Even though

randomized clinical trials (RCTs) are often the preferred way to identify such factors,

RCTs are often not feasible (economically, practically or ethically). Further, since

participants in RCTs are not a random sample, the results from RCTs can not be

generalized to the target population. Therefore, one often have to use observational

data to find such factors. Doing so can be a challenging task, since the associations

of interest might be ‘distorted’ by other factors. For instance, in Sweden there is

a significant positive association between prescription of stimulant medication and

criminality. This does not mean that we can reduce the rate of crime by stopping all

prescriptions of stimulant medication. Stimulant medication is mainly prescribed for

individuals that are diagnosed with attention deficit-hyperactive disorder (ADHD).

At the same time, ADHD is a risk factor for criminal behavior. Thus the observed

crude association may partly be explained by ADHD being a common cause for stim-

ulant medication and criminal behavior. When the aim is to study the causal effect of

stimulant medication on criminal behavior, the crude association is misleading. Such

associations are said to be ‘confounded’ by common causes (see e.g. Pearl, 2009).

Confounded associations are common in observational data. In order to draw causal

conclusions from observational data, it is therefore necessary to ‘adjust’ for potential

confounding factors, e.g. by performing analyses stratified on such factors or by us-

ing the factors as covariates in a regression model. For instance, after adjustment for

individual-specific factors (e.g. ADHD diagnose) the association between stimulant

medication and criminal behavior becomes reversed (Lichtenstein et al., 2012).

In this thesis, new statistical methods are presented. These methods are intended to

facilitate adjustment for confounding in obsevational studies; in particular in studies

using clustered data, a large number of measured covariates, and a large number of

observations.
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2 Background

2.1 Causation versus statistical association in observational

studies

Although the statistical methods in this thesis can be described without referring to

questions about causality, the methods are motivated by questions about causality.

Suppose that we are interested in whether an exposure X has a causal effect on an

outcome Y . Given observed data, what can be said about this effect? A first approach

could be to compare the mean values of Y under two different levels of X, say

g{E(Y |X = x)} − g{E(Y |X = 0)} = β∗x , (1)

where g is some link function. Then β∗ is a measure of the statistical association

between X and Y . For instance, assume that both Y and X are binary and that

g the identity link. Then β∗ quantifies the difference in risk of having the outcome

comparing exposed individuals to unexposed individuals. When g is the log link, β∗

quantifies the corresponding log risk ratio instead. In an RCT with perfect compliance

and no dropouts, a statistical test of whether β∗ = 0 is equivalent to a test of whether

X has a causal effect on Y . In an observational study, this may no longer be true.

For instance, there may be a set of variables V = (V1, . . . , Vp) that causes both X

and Y . In such a scenario, we might detect a statistical association between X and

Y even if there is no causal effect of X on Y . In that case we say that the studied

association is ‘confounded’ and we refer to the elements of V as the ‘confounders’. In

such a scenario, the parameter β∗ in the associational model (1) is not the parameter

we are interested in. In contrast, a ‘causal model’ is a model for the causal effect. It

can be formulated as

g{E(Y x)} − g{E(Y 0)} = β∗cx, (2)

where E(Y x) is the mean outcome that we would observe if all subjects were assigned

the exposure X = x. We refer to β∗c as the ‘causal effect parameter’ and to the effect

it measures as the ‘causal effect’.
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2.2 Causal models and effect parameters

2.2.1 Assumptions

In order to interpret the parameter β∗ in (1) as the causal effect parameter β∗c , we

need two assumptions to hold - ‘consistency’ and ‘exchangeability’. ‘Consistency’

means that the observed Y for subjects with exposure level x would have the same

value regardless of whether the exposure level was just observed to be x or whether

it was forced to the level x, i.e.

X = x =⇒ Y = Y x . (3)

This assumption would be violated if the (counter-factual) assignment mechanism

would have an effect on the outcome that does not go through the treatment X.

Henceforth we will assume that (3) always holds.

‘Exchangeability’ means that there are no systematic differences between subjects

with different levels of exposure. Another way to formulate this is that the observed

exposure level is independent of any outcome that would have been observed if the

exposure level was forced to some level, i.e.

Y x ⊥⊥ X for all x. (4)

If there are common causes V of X and Y , i.e. if the association (1) is confounded

by V, this assumption is generally violated. This is so because the distribution of Y x

depends on the distribution of V, which in turn is associated with the observed dis-

tribution of X. For instance if the exposure X is stimulant medication, Y is criminal

behavior, and V is the severity of the disorder, then V would still be associated with

the outcome in the counter-factual scenario where all subjects were medicated while

also being associated with the observed exposure X. However, if there are no other

common causes of X and Y ,

Y x ⊥⊥ X|V for all x . (5)

In other words, for a group of individuals with the same level of V, there is no associ-

ation between the observed exposure X and the outcome Y x that would be observed
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if everyone was forced to the exposure level x. We call this ‘conditional exchange-

ability’. If conditional exchangeability holds, we say that the set V is sufficient to

control for confounding. To simplify the presentation, we will also call the members

of the set V ‘confounders’, thus we are implicitly assuming that this set is the only

set that is sufficient to control for confounding. For a more stringent definition of

confounding and confounders, see Pearl (2009).

2.2.2 Causal and associational models

If conditional exchangeability (5) holds, we can formulate a causal model

g{E(Y x|V)} − g{E(Y 0|V)} = βcx . (6)

where βc has a causal interpretation as the difference on the scale of the link function g,

for each value of V, comparing the expected outcome if every individual was assigned

the treatment level x with the expected outcome if every individual as assigned the

treatment level 0. If consistency (3) also holds, the associational model

g{E(Y |X = x,V)} − g{E(Y |X = 0,V)} = βx (7)

can be used to obtain an estimate of the causal parameter βc, since

βcx
(6)
= g{E(Y x|V)} − g{E(Y 0|V)}

(5)
= g{E(Y x|X = x,V)} − g{E(Y 0|X = 0,V)}

(3)
= g{E(Y |X = x,V)} − g{E(Y |X = 0,V)} (7)

= βx ,

where the numbers above the equality signs refer to the causal model assumption (6),

the assumption of conditional exchangeability (5), the assumption of consistency (3),

and the associational model assumption (7), respectively. We will refer to βc as an

‘effect measure’.

2.2.3 Different effect measures

Since βc measures the causal effect on the scale of the link function g, the interpre-

tation of βc also depends on g. Suppose that both exposure X and outcome Y are

binary. Then, if g is the identity link βc can be interpreted as a causal risk difference.
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In contrast, if g is the log link, eβc can be interpreted as a causal risk ratio. When g

is the logit link, eβc has an interpretation as a causal odds ratio.

Sometimes one is interested in the causal marginal effect parameter β∗c = g{E(Y x+1)}−

g{E(Y x)}, measuring the effect of increasing the exposure level with one unit, rather

than the conditional effect βc in (6). When g is the identity link, this estimand is

denoted the ‘average treatment effect’. Often, the adjusted marginal effect parameter

β∗c can be obtained from the conditional effect parameter βc in (6), by standardiza-

tion over V (Robins, 1986). However, in this thesis we will only be concerned with

the conditional effect parameter, partly because we will include scenarios in which

standardization is not feasible.

2.2.4 Effect modification

In the model (6), we assume that the association is the same for all levels v of V such

that Pr(V = v) > 0 (or fV(v) > 0). To relax this assumption, we can formulate the

causal model

g{E(Y x|V)} − g{E(Y 0|V)} = βcZx , (8)

where Z = Z(·) is some vector valued function of V. In order to parametrize the

main effect of x, one can let Z have 1 as first element. To improve readability of the

presentation, we will henceforth only consider the case when βc (and β) remain the

same for all levels of V. However, all models and estimators considered in this thesis

can be extended to allow for effect modification by V by replacing β with βZ(V).

2.2.5 Directed acyclic graphs

A common way to visualize causal relations is to use a directed acyclic graph (DAG)

(Pearl, 1995). A causal effect of X on Y confounded by V can thus be pictured as

V

~~   
X // Y .

In a DAG, the presence of a directed edge (arrow) symbolizes a possible causal effect.

The absence of a directed edge symbolizes an absence of a causal effect. For instance

5



the presence of a directed edge from V to X indicates that there is a possible causal

effect of V on X.

In this thesis, we will put parameters next to edges in DAGs as representations of

quantified associations. The parameters themselves will be more precisely defined in

the text. We hope that this slight abuse of DAGs will enhance understanding, rather

than the opposite.

2.3 Dealing with measured confounders

2.3.1 Generalized linear models

For point outcomes, one of the most common classes of models in the epidemiology

is the generalized linear model (GLM), i.e.

Y |X,V ∼ PY |X,V;θ,ω (9a)

g{E(Y |X,V)} = βX + µ+ γV , (9b)

where Y is the outcome interest, X the exposure, V is a vector of covariates, g is

some specified (continuous and invertible) link function, PY |X,V;θ,ω is some specified

probability distribution in the exponential family, indexed by the parameters θ =

(β, µ,γ) and ω. We will refer to the second part - (9b) - as a ‘regression model’. The

maximum likelihood (ML) estimate θ̂ML is obtained by solving the score equations

n∑
i=1

∂

∂θ
log pY |X,V;θ,ω(yi|xi,vi) = 0 (10)

for θ. When PY |V;θ,ω is the normal distribution with homoscedastic errors and g(·)

is the identity link, the score equations (10) have the form

n∑
i=1


xi

1

vi

 {yi − (βxi + µ+ γvi)} = 0 . (11)

2.3.2 M-estimation

Under some mild regularity conditions (see e.g. van der Vaart, 2000), the solution θ̂ML

to (11) is consistent for the true value of θ in the model (9b) regardless of whether

6



the distributional assumption (9a) is correct, as long as the regression model (9b) is

correct. Similarly, for any continuous and invertible link function g(·), solving the

estimating equations

n∑
i=1


xi

1

vi

{yi − g−1(βxi + µ+ γvi)
}

= 0 (12)

for θ gives a consistent estimate θ̂ of the true value of θ when the regression model

(9b) is correct, even when the distributional assumption (9a) is incorrect. Estimating

equations of the form (12) are called generalized estimating equations (GEEs). Often,

GEEs are written in a more general form that also allows data to be clustered (Liang

and Zeger, 1986).

Estimators based on estimating equations (12) are examples of so called M-estimators

(Stefanski and Boos, 2002). M-estimators can be thought of as generalizations of ML

estimators, where the score functions ∂
∂θ

log pY |X,V;θ,ω(yi|xi,vi) are replaced by func-

tions M(yi|xi,vi;θ,ω) with the property that the equation E {M(Yi|xi;θ,ω)} = 0

have unique solution θ = θ0. The parameter θ is estimated by solving the estimating

equations
n∑
i=1

M(yi|xi,vi;θ,ω) = 0

for θ. Assuming regularity conditions (see e.g. van der Vaart, 2000), the distribution

of the resulting estimate θ̂n can be shown to be asymptotically normal with a variance

that can be obtained using a sandwich estimator (Stefanski and Boos, 2002).

2.3.3 Target parameters vs nuisance parameters

In real scenarios, not all parameters in a regression model are of interest. Often,

one is only interested in the association between two variables. The corresponding

parameter are therefore termed ‘the target parameter’. Often we want give the tar-

get parameter a causal interpretation. Other independent variables may be used in

order to adjust for confounding only. The corresponding parameters are then not of

primary interest and are therefore called ‘nuisance parameters’. Assuming that we
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are interested in the association between an exposure X and an outcome Y , adjusted

for a set of covariates V, we can formulate a regression model

g{E(Y |X,V)} = βX + γV . (13)

Then β is the target parameter and γ is the nuisance parameter. The model (13) can

be split into two parts. The first part

g{E(Y |X,V)} − g{E(Y |X = 0,V)} = βX (14)

models the effect of X on Y , adjusted for V and contains the target parameter β.

This model will be referred to as the ‘main model’. The second part

g{E{Y |X = 0,V)} = γV , (15)

models the distribution of Y conditional on X = 0,V and specifies how to adjust

for V. This model contains the nuisance parameter γ and will be referred to as

the ‘outcome nuisance model’. The two models can be visualized as the parameter

symbols β and γ next to the X → Y and the V→ Y arrow, respectively, in the DAG

V

~~

γ

  
X

β // Y .

In order to consistently estimate β in (14) using the regression model (13), it is

required that the outcome nuisance model (15) is correctly specified. Therefore,

it may be motivated to allow the outcome nuisance model to have a more flexible

formulation by replacing γV with a more general function fO(V;γ) of Vij. However,

since it is common practice to only include the main effects in the regression model

and to make notation easier, we will henceforth use (15) as our outcome nuisance

model. However, all considered nuisance models can easily be extended to include

more general functions.

2.3.4 G-estimation

An alternative strategy to estimate β in (14) is to augment the model (14) with a

model for the exposure, e.g.

h{E(X|V)} = αV , (16)

8



where h is some link function. Using G-estimation we can then obtain an estimate

of β by solving estimating equations based on the main model (14) and the exposure

nuisance model (16) (Robins et al., 1992). Since the model (16) is only used in order

to adjust for V, the parameter α is considered to be a nuisance parameter and the

model itself will be referred to as ‘the exposure nuisance model’. The main model

and the exposure nuisance model can be visualized as the X → Y and the V → Y

arrow, respectively, in the DAG

V
α

~~   
X

β // Y .

One limitation of G-estimation is that for other link functions g(·) than identity and

log, further distributional assumptions are required (Vansteelandt et al., 2014). G-

estimation may be preferable when the researcher have better information about how

the exposure depends on the covariates V. However, when the exposure nuisance

model is misspecified, G-estimation can give biased estimates of β. As with the

outcome nuisance model (15), more general functions fE(V;α) of V in (16) may be

motivated in practice, but we will use this simple form to keep notation simple.

2.3.5 G-estimation versus inverse probability weighting

Adjustment for potential confounding by modeling the exposure as a function of

potential confounding factors can also be done by using with inverse probability

weighting (IPW). While both G-estimation and IPW-based estimation can be used

to estimate adjusted treatment effects, they do not target the same parameter. While

IPW-based estimation targets the marginal causal effect β∗c , G-estimation targets the

causal effect conditional on confounding factors βc. Thus the two methods are used

for different research questions. Still, IPW-based methods are far more popular than

methods based on G-estimation, even though G-estimation have several advantages

(Vansteelandt et al., 2014; Robins, 2000a). A partial explanation for this is that, until

recently, there has been a lack of software implementations for G-estimation.
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2.3.6 Non-collapsibility

An important concept to distinguish from confounding is non-collapsibility. According

to one definition of collapsibility, a regression model is (strictly) collapsible for a

parameter β over a set of covariates V if β remains the same in the corresponding

regression model with V omitted (Greenland et al., 1999; Pearl, 2009). For instance,

the model (13) is collapsible for β over V if β is the same as β∗ in the marginal (over

V) regression model

g{E(Y |X = x)} = ν∗ + β∗x . (17)

Sometimes non-collapsibility of (13) for β over V is interpreted as confounding. How-

ever, confounding might not be the only reason that β 6= β∗. As noted by Janes et al.

(2010), the difference between β and β∗ can be separated into two parts. By defining

β as the adjusted parameter in the conditional main model (14), β∗ as the parameter

in the marginal (crude) model (17), β∗c as the marginal causal parameter defined in

the marginal causal model (2), and βc as the conditional causal parameter defined in

the conditional causal model (6), we can write

β∗ − β = (β∗ − β∗c ) + (β∗c − β) .

The difference β∗ − β∗c can be interpreted as the part that is due to confounding,

since it is the difference between a crude parameter and a causal parameter. Under

conditional exchangeability, (5), β is the same as the conditional causal parameter

βc. Therefore, the second difference β∗c − β can be interpreted as a difference β∗c − βc
between two causal parameters. This difference quantifies ‘the non-linearity effect’

and is often related to the type of link function g used. For instance, when g is the

identity or log link function, β∗c = βc. In contrast, when g is the logit link, |β∗c | ≥ |βc|

(with equality only if Var V = 0 or if γ = 0) (Neuhaus and Jewell, 1993). Thus,

adjustment for a covariate can also alter the association measure itself. For this

reason, the odds ratio is sometimes referred to as ‘non-linear’ (Janes et al., 2010) or

‘non-collapsible’ (Hernán et al., 2011; Greenland and Pearl, 2011; Pearl, 2009).
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2.4 Doubly robust estimation

2.4.1 Bias due to model misspecification

When a model is used to estimate a parameter, the assumed model needs to be

correct. In other words, the model needs to be a correct description of the data. For

instance, assume that Y , conditional on X and V, is normally distributed with mean

E(Y |X = x,V = v) = βx+ eν+δv . (18)

If we (incorrectly) assume that

E(Y |X = x,V = v) = µ+ βx+ γv (19)

the ML estimator β̂ML will not be consistent for the parameter β in the main model

E(Y |X = x,V = v)− E(Y |X = 0,V = v) = βx . (20)

This is because the misspecification of the nuisance model E(Y |X = 0,V = v) ‘spills

over’ to the estimate of β, causing inconsistent estimates of β. In practice, most of

the models are, to some extent, incorrectly specified. Therefore, this kind of bias is

always present. There are several strategies to reduce bias due to model specifica-

tion. One option is to estimate the nuisance models non-parametrically or by using

splines. Although such estimators exist, they tend to perform badly when V is high-

dimensional, even in moderate sample sizes (Robins and Ritov, 1997).

2.4.2 Doubly robust estimators

A middle way between using a non-parametric nuisance model and relying on a nui-

sance model, is to use a doubly robust (DR) estimator. The notion was introduced

Scharfstein et al. (1999) to denote estimators that combines two working nuisance

models such that a consistent estimate of the target parameter is obtained when at

least one of the two nuisance models is correct, not necessarily both. The detailed

mathematical theory underlying the methodology has been described by Robins and

Rotnitzky (2001) and van der Laan and Robins (2003). A more general overview of

the methodology DR estimation was given by Bang and Robins (2005).
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2.4.3 The doubly robust G-estimator

The G-estimator, described in Section 2.3.4, can be extended to also incorporate

an outcome nuisance model of the form (15). The resulting estimator, proposed by

Robins (2000b), has the property of being DR, i.e. it will remain consistent for β

in the main model (14) if either the outcome nuisance model (15) or the exposure

nuisance model (16) is correctly specified. The scenario can be visualized in the

following figure, where the parameters α, γ, and β next to the edges in the DAG

symbolizes the three models (16), (15), and (14), respectively:

V
α

~~

γ

  
X

β // Y .

2.4.4 Doubly robust logistic regression

When g is the logit link, the regression model (13) have the form

logit{E(Y |X,V)} = βX + γV .

When the outcome Y is binary, this model is more commonly formulated in terms of

probabilities for the outcome

logit{Pr(Y = 1|X,V)} = βX + γV . (21)

Unfortunately, DR G-estimation is not useful for logistic regression models (Robins,

2000a). However, when both the outcome Y and the exposure X are binary, the log

odds ratio β can also be modeled as

logit{Pr(X = 1|Y,V)} = βY +αV , (22)

where V is some vector valued function of V (Prentice, 1976). The models (21) and

(22) both share the main model

Pr(Y = 1, X = 1|V) Pr(Y = 0, X = 0|V)

Pr(Y = 1, X = 0|V) Pr(Y = 0, X = 1|V)
= eβ (23)

for the odds ratio conditional on V. The models (21) and (22) have been termed ‘the

prospective logistic model’ and ‘the retrospective logistic model’ respectively (Breslow
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and Powers, 1978). Even though prospective and retrospective logistic models contain

the same log odds parameter β, they use different nuisance models to adjust for V.

The prospective logistic model uses the model

logit{Pr(Y = 1|X = 0,V)} = γV (24)

for the influence of V on the proportion affected among the unexposed. The retro-

spective logistic model uses the model

logit{Pr(X = 1|Y = 0,V)} = αV (25)

for the influence of V on the proportion exposed among those unaffected by the out-

come. In sampling designs such as matched case control studies and matched cohort

studies, the distributions modeled by (24) and (25) are clearly not representative of

the target population and are therefore not of interest. In contrast, the odds ratio

in the sample is representative of the odds ratio in the target population in such

sampling designs. Nevertheless, misspecification of the nuisance model when doing

prospective or retrospective logistic regression may lead to biased estimates of β.

By utilizing the symmetry of the conditional odds ratio one can construct a DR

estimator of β , i.e. it is consistent for β in (37) if either the outcome nuisance model

(24) and or the exposure nuisance model (25) is correctly specified, not necessarily

both (Chen, 2007). This estimator can be formulated as a two-step estimator (Tch-

etgen Tchetgen et al., 2010), where estimates γ̂ and α̂ of the nuisance parameters

are obtained in the first step, e.g. using ML estimation. In the second step, a DR

estimate of the log odds ratio β in the main model (37) is obtained using the estimates

γ̂ and α̂ from the first step.

2.5 Methods for clustered data

2.5.1 Clustered data

Most statistical methods are concerned with independent data. When dealing with

clustered data, special methods are required to deal with the dependence between

observations. For instance, when using (GEE) to estimate parameters from clustered
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data, the estimate of the variance of the estimated coefficients needs to be adjusted

for the clustering (Liang and Zeger, 1986). However, the clustering may not only be

a nuisance. The information about clustering can also be of advantage since it allows

us to adjust for unmeasured factors that are shared between members of the same

cluster. Henceforth, we assume that data can be structured into M distinct units

indexed by i, each consisting of ni observations. For each observation j in cluster i,

we assume that we can observe an outcome Yij , an exposure Xij, and a set of co-

variates Vij. In addition, we also assume a set of factors Wi that are shared between

members of the same cluster i and may be partially unobserved. We will henceforth

assume that observations from different clusters are independent.

In matched case-control and matched cohort studies, Wi consists of matching vari-

ables. Since matching variables are measured, they can be explicitly adjusted for in

a regression model, e.g.:

g{E(Yij|Xi,Vi,Wi)} = µ+ βXij + γVij + δWi (26)

for i = 1, . . . ,M and j = 1, . . . , ni where ni is the size of cluster i, g is some link

function and where Xi and Vi are all the exposures and covariates, respectively, in

cluster i. In other studies with clustered data, Wi may be only partially observed; e.g.

in co-twin control studies, in sibling studies, and in studies with repeated measures.

In those cases it is common to assume a more general model

g{E(Yij|Xi,Vi,Wi)} = µi + βXij + γVij (27)

where the effect of Wi is absorbed into the cluster-specific intercept µi. The model

(26) above is a special case of this model with µi = µ+ δWi.

2.5.2 Maximum likelihood estimation using clustered data

Using observations from M clusters, the parameters β,γ, µ1, . . . , µM can be estimated

with ML. However, the ML estimate β̂ML of β in the model (27) is not consistent in
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general. The consistency of β̂ML partly depends on the way additional data is sam-

pled. If the cluster size ni grows with the number of observations while the number of

clusters M remain fixed there will be a fixed number of parameters (β,γ, µ1, . . . , µM)

to estimate and the ML estimate β̂ML will be consistent. This is the case in studies

with a fixed cohort of M individuals and where new data is obtained by additional

measurements of the same individuals. In contrast, if the cluster sizes ni are ex-

pected to remain the same while the number of clusters M will increase, as in twin

and sibling studies, the number of parameters will grow with the sample size and

the ML estimate is no longer guaranteed to be consistent (Neyman and Scott, 1948;

Breslow, 1981). In general, ML estimation is most appropriate with a small number

of large clusters (counties in Sweden, municipalities). When there are a large number

of small clusters (e.g. twins, siblings, school classes), other estimation methods may

be needed.

2.5.3 Conditional maximum likelihood

For the case when the number of clusters grows with the sample size, conditional

maximum likelihood (CML) is often used (Andersen, 1970). Assuming a distribution

for Yi and regression model

g{E(Yij|Xi,Vi,Wi)} = µi + βXij + γVij (28)

it is possible to estimate β if there exists sufficient statistics T1, T2, . . . for the cluster-

specific intercepts µ1, µ2, . . .. The conditional likelihood

∏
i

p (Yi|Xi,Vi, Ti; β,γ)

is then free of the cluster-specific intercepts and we can estimate β by maximizing

this likelihood with respect to β and γ. For a GLM with canonical link g, one can

use Ti =
∑ni

j=1 Yij (McCullagh and Nelder, 1989). Conditional maximum likelihood

(CML) estimation is used to estimate the parameters in conditional logistic regression

and in conditional Poisson regression.
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2.5.4 Conditional generalized estimating equations

When g in (48) is the identity or log link, it is also possible to estimate β in (48)

by solving ‘conditional generalized estimating equations’ (CGEEs) (Goetgeluk and

Vansteelandt, 2008). By letting

SY,ij(β,γ) =

 Yij − βXij − γVij when g is the identity link

Yije
−βXij−γVij when g is the log link

we can obtain consistent estimates of β and γ by solving estimating equations of the

form
M∑
i=1

ni∑
j=1

(
dij − d̄i

)
SY,ij(β,γ) = 0

for β, where dij is some function of Xij and Vij and where d̄i = 1
ni

∑ni

k=1 dik. This

kind of estimators require less strict assumptions than CML estimators. Further, it

can be shown that CML estimators are asymptotically equivalent to subgroups (i.e.

with appropriate choices of dij) of this kind of estimators. A drawback is that the

they do not work when g is the logit link (Goetgeluk and Vansteelandt, 2008).

2.5.5 Underlying assumptions

Most statistical methods are designed with independent data in mind. When data are

clustered, it is important to consider the assumptions that underlie the methods, since

violations of the underlying assumptions can give rise to bias or have consequences

for the interpretation of the estimated parameters. For this reason, it is important

to check or at least to consider the assumptions underlying the methods used. Going

from a model

g{E(Yi|Xi,Vi)} = µ+ βXi + γVi (29)

for independent observations i = 1, . . . ,M to a model

g{E(Yij|Xij,Vij,Wi)} = µi + βXij + γVij (30)

for clusters i = 1, . . . ,M of individuals j = 1, . . . , ni, we also need to consider the

potential associations between members of the same cluster. This has consequences

for interpretation of results and inference from results. For instance, when using
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conditional maximum likelihood (CML) estimation, is is important to ensure that

there are no carry-over effects, i.e. that

Yij ⊥⊥ (Xij′ ,Vij′)|Xij,Vij for each j′ 6= j .

Violation of this assumption will lead to a biased CML estimate of β in (30) or to a

different interpretation of β (Sjölander et al., 2016).

Another thing to consider with models for clustered data with cluster-specific in-

tercepts is what is actually contained in Wi. It is often argued that all shared

confounding variables are adjusted for in CML estimation. The methods developed

in Papers II and III will deal with the situation where Wi only consists of shared

confounders for the association between exposures and outcomes. But it is often not

explicit what Wi is, i.e. what is ‘absorbed’ into the cluster-specific intercepts µi. Do

we also adjust for other shared factors such as shared mediators and shared colliders?

The answer to this question does not have to do with the correctness of the assumed

model, but with the parameter that is actually estimated in CML estimation. This

is the subject of paper IV.
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3 Aims

Using the Swedish Twin Registry or the Swedish Multi-generation Register it is pos-

sible to identify genetically related individuals in Sweden. Using the Swedish national

identity numbers, unique to every individual in Sweden, it is possible collect a lot of

data about those clusters. This gives medical researchers in Sweden opportunities to

address research questions requiring adjustment for a large number of confounding

factors, both measured confounding factors and shared non-measured confounding

factors. This kind of data is uncommon outside of Scandinavia.

The large number of measured confounders also increases the risk of bias due to

model misspecification. Even though there might exist estimators that can estimate

the parameters in the main model without further distributional assumptions, such es-

timators tend to perform badly even in moderate sample sizes when there are a large

numbers of potential confounding factors to adjust for (Robins and Ritov, 1997).

For this reason, DR estimators are advantageous since they give the researcher two

chances of getting a consistent estimate of the target parameter. Unfortunately, few

DR estimators have been developed for parameters that quantifies within-cluster as-

sociations.

The aims of this thesis are threefold

• To implement existing DR estimators in an R package. This was the aim of

Paper I.

• To develop DR estimators that can adjust for confounding by cluster and im-

plement these method in an R package. This have been done in Papers II and

III.

• To clarify some assumptions behind estimation methods for clustered data and

to show their implications for interpretation of parameter estimates from twin

and sibling studies. This was the subject of Paper IV.
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4 Summary of papers

4.1 Paper I

Paper I is a self-contained theoretical introduction to DR estimation for independent

data and to the R package drgee (Zetterqvist and Sjölander, 2015). The package

is available at https://CRAN.R-project.org/package=drgee. Apart from DR esti-

mation, the package also allows semi-parametric estimation of standard regression

models, i.e. models of the type used in generalized linear models and in generalized

estimating equations. The standard errors are estimated using a sandwich estimator

(Stefanski and Boos, 2002). If a cluster-identifying variable is supplied, cluster-robust

estimates of the standard errors are calculated instead.

4.1.1 Doubly robust G-estimation and G-estimation

In DR G-estimation (Robins, 2000b), we estimate an effect parameter β, quantify-

ing an association between an exposure X and an outcome Y adjusted for a set of

covariates V by combining an outcome model

g{E(Y |X,V)} = βX + γV , (31)

where g is the identity or log link function, with a model for the distribution of X

conditional on V

h{E{X|V)} = αV . (32)

where h is some link function, not necessarily the same as g. The estimator can be

formulated as a two-step estimator, where the nuisance parameter estimates γ̂ and

α̂ are obtained in the first step (e.g. using ML estimation) and β is estimated in the

second step using γ̂ and α̂. The obtained estimator of β is DR, i.e. it is consistent

for the parameter β in the model

g{E(Y |X,V)} − g{E(Y |X = 0,V)} = βX , (33)

if either the ‘outcome nuisance model’

g{E(Y |X = 0,V)} = γV (34)
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or the ‘exposure nuisance model’ (32) is correctly specified, not necessarily both. The

standard (non-DR) G-estimator (Robins et al., 1992) is obtained by setting the model

(34) to 0.

4.1.2 Doubly robust estimation for logistic models

In DR estimation for logistic regression models where both outcome Y and exposure

X are binary, we combine a prospective logistic regression model, e.g.

logit{Pr(Y = 1|X,V)} = βX + γV , (35)

with a retrospective logistic regression model, e.g.

logit{Pr(X = 1|Y,V)} = βY +αV . (36)

The models (35) and (36) targets the same log odds ratio

β = log

{
Pr(Y = 1, X = 1|V) Pr(Y = 0, X = 0|V)

Pr(Y = 0, X = 1|V) Pr(Y = 1, X = 0|V)

}
(37)

but with different ways to adjust for V. The prospective model (35) uses the outcome

nuisance model

logit{Pr(Y = 1|X = 0,V)} = γV (38)

and the retrospective model (35) uses the exposure nuisance model

logit{Pr(X = 1|Y = 0,V)} = αV . (39)

We implement an estimator proposed by Tchetgen Tchetgen et al. (2010) which is

DR, i.e. it is consistent for the log odds ratio β in (37) when at least one of the

nuisance models (38) and (39) is correctly specified.

4.1.3 The R package drgee

The main function drgee lets the user supply two formulas, one for the outcome

nuisance model and one for the exposure nuisance model. The exposure and out-

come is inferred from left hand sides of the two formulas, respectively. There are also
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arguments for the outcome link and the exposure link. Although the default is to

use DR estimation, it is also possible to perform standard regression, G-estimation

or retrospective logistic regression. In these cases only one of the nuisance models

are used. The variance of the parameter estimates are calculated using a sandwich

estimator (Stefanski and Boos, 2002). When a cluster-identifying variable is supplied,

a cluster-robust variance is also estimated. It is also possible to model effect modifi-

cation in the main model (33) by replacing βX with βZX, where Z = Z(V) is some

function of (V).

4.2 Paper II

In Paper II, we develop a DR estimator for within-cluster parameter, i.e. a DR

estimator for a parameter β defined as

g{E(Yij|Xij,Vij,Wi)} − g{E(Yij|Xij = 0,Vij,Wi)} = βXij (40)

where the outcome nuisance model have the form

g{E(Yij|Xij = 0,Vij,Wi)} = µi + γVij . (41)

The method is based on CGEE, described in Section 2.5.4 and can also be seen as

an extension of this methodology. For this reason, this estimator is only useful when

g is the identity or log link. The estimator is constructed by augmenting the models

(40) and (41) with a model

h{E(Xij|Vij,Wi)} = νi +αVij, (42)

for the exposure. We show that the resulting estimator is DR, i.e. it is consistent

for β in (40) when at least one of the nuisance models (41) and (42) is correctly

specified, not necessarily both. To allow for effect modification of Vi and Wi we can

replace βXij in (40) with βZijXij, where Zij = Zij(Vi,Wi) is some function of Vi

and observed parts of Wi. The nuisance models (41) and (42) can also be replaced

by more general models that also includes second order or non-linear functions Vij.

In analogy to the DR G-estimator, an estimator based on an exposure model only
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can be obtained by using the outcome nuisance model

g{E(Yij|Xij = 0,Vij,Wi)} = µi ,

i.e. by setting γ to 0.

The nuisance models (41) and (42) can also be made more flexible by replacing γVij

and αVij with more general functions of Vij allowing non-linear functions of and

interactions between elements of Vij.

The estimator is implemented in the R package drgee, with very similar syntax as for

independent data.

Remark: The efficiency calculations found in Section S5 of the Supplementary Mate-

rials to Paper II were done by Stijn Vansteelandt.

4.3 Paper III

In study III, we develop a DR estimator for estimation using logistic regression mod-

els with cluster-specific intercepts where both exposure and outcomes are binary. As

with logistic regression for independent data, there is also a ‘prospective’ and a ‘retro-

spective’ version of the conditional logistic regression. The ‘prospective’ conditional

logistic regression model have the form

logit{Pr(Yij = 1|Xij,Vij,Wi)} = βXij + µi + γVij (43)

and the ‘retrospective’ logistic regression model have the form

logit{Pr(Xij = 1|Yij,Vij,Wi)} = βYij + νi +αVij . (44)

Both versions share the log odds ratio

logit{Pr(Yij = 1|Xij = 1,Vij,Wi)}−logit{Pr(Yij = 1|Xij = 0,Vij,Wi)} = β , (45)

but ‘prospective’ conditional logistic regression model uses the outcome nuisance

model

logit{Pr(Yij = 1|Xij = 0,Vij,Wi)} = µi + γVij (46)
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and the ‘retrospective’ logistic regression model uses the exposure nuisance model

logit{Pr(Xij = 1|Yij = 0,Vij,Wi)} = νi +αVij . (47)

The DR estimator is consistent for β in (45) when at least one of the nuisance models

(46) and (47) is correctly specified.

The estimator utilizes that fact that, for doubly discordant pairs, i.e. paired ob-

servations with Yi1 + Yi2 = 1 and Xi1 + Xi2 = 1, both models (43) and (44) can

be rewritten as logistic models with common intercepts (Holford et al., 1978). The

prospective logistic model (43) can be rewritten as

logit{Pr(Yi1 = 1|Xi1, Yi1+Yi2 = 1, Xi1+Xi2 = 1,Vij,Wi)} = 2βXi1−β+γ(Vi1−Vi2)

and the retrospective logistic regression model (44)

logit{Pr(Xi1 = 1|Yi1, Yi1+Yi2 = 1, Xi1+Xi2 = 1,Vij,Wi)} = 2βYi1−β+α(Vi1−Vi2) .

Using these logistic forms we can utilize the DR estimator proposed by Tchetgen Tch-

etgen et al. (2010) and which was implemented in the R package drgee in Study I.

The method can be extended to also handle data with arbitrary cluster sizes, by

considering all possible pairs within each cluster and by only using the doubly dis-

cordant pairs. The correlation between pairs from the same cluster is accounted for

by using a cluster-robust sandwich estimator for the variance.

The estimator have been implemented in the R package drgee.

4.4 Paper IV

It is often argued that the ‘within-cluster’ associations are automatically adjusted for

all factors that are shared within clusters. One motivation to use twin and sibling

designs is that the estimated ‘within-cluster’ association parameter is adjusted for

shared confounding. However, not all factors should be adjusted for if one wants to

make causal inference. Adjusting for ‘colliders’, i.e. common effects of exposure and
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outcomes, can introduce biased estimates of the causal parameters. Whether one

should adjust for ‘mediators’, i.e. factors on the causal pathway between exposure

and outcome, depends on the research question. What ‘within-cluster’ associations

are actually adjusted for, is not explicit. As this has implications for the interpreta-

tion of results from twin and sibling studies, it is important to clarify this.

In twin and sibling studies, the assumed regression model is often vague regard-

ing what is actually conditioned on. The vagueness stems partly from the fact that

the shared factors are not observed and are not modeled individually. In this thesis,

we have used Wi to refer to the shared factors that are adjusted for and assumed the

regression model

g{E(Yij|Xij,Wi)} = µi + βXij . (48)

In studies II and III, we assumed that Wi consists of the shared confounders Ui.

However, since there may also exist shared mediators Mi as well as shared colliders

Ci, it is natural to ask the question: Which of the shared factors Ui, Mi and Ci is

the ‘within-cluster’ association adjusted for? The answer to this question does not

lie in the model itself, but in how β is estimated. When using CML to estimate β,

there are two conditions that needs to be fulfilled in order to guarantee consistent

estimation of β (Zetterqvist et al., 2016):

A: Yij ⊥⊥ Yij′ |Xi,Wi

B: Yij ⊥⊥ Xij′ |Xij,Wi for j 6= j′

By using DAGs, we show that assumptions A and B will be violated if Ci is included

in Wi or if Ui or Mi is omitted from Wi. Therefore, CML estimation will only

consistently estimate β in the model

g{E(Yij|Xij,Ui,Mi)} = µi + βXij , (49)

even though there may also exist shared colliders Ci.

It should be noted that the model (48) may be correctly specified even though Wi

consists of another combination of the shared factors. However, the CML is only
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guaranteed to be consistent for the β defined in (49). Even though assumptions A

and B are not necessary conditions for consistent estimation of the target parame-

ter, they are sufficient conditions (along with standard regularity conditions (see e.g.

Andersen, 1970)). This means that if the CML estimator also is consistent for β∗ in

another model, e.g. for the model

g{E(Yij|Xij,Ui)} = µi + βX∗ij , (50)

we must have that β∗ = β.

One important conclusion to draw from this result is that, the ‘within-cluster’ es-

timate that is obtained in twin and sibling studies can have a causal interpretation,

since it is adjusted for shared confounders but not for shared mediators. Another con-

clusion is that the ‘within-cluster’ association is also adjusted for shared mediators

Mi. Therefore, β only measures the part of the effect that it is not mediated by Mi.

Thus, if most of the effect of Xij on Yij is mediated by shared factors Mi, absence

of a significant ‘within-cluster’ association can not necessarily be used to support the

claim of an absence of a causal effect.
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5 Discussion

The Swedish total population registers together with the Swedish personal identity

numbers is a great resource for epidemiological research, since the large amount of

data enables adjustment for a large number of potential confounding variables (Lud-

vigsson et al., 2009, 2016).

Although the large number of available variables in the Swedish registers gives re-

searchers opportunities to adjust for a large number of confounding factors it also

increases the risk of bias due to model misspecification. Unfortunately, neither strat-

ification nor nonparametric smoothing is feasible due to the curse of dimensionality

(Robins and Ritov, 1997). For this reason, DR estimators are attractive in that they

only require one of two models to be correctly specified (Robins et al., 2000; Robins

and Rotnitzky, 2001), thus offering some protection against bias due model misspecifi-

cation, while not being affected by the curse of dimensionality. Despite the advantages

of DR estimators, they are still relatively seldom used in epidemiologic research. One

obstacle has been the lack software implementing DR estimators. In study I, we have

tried to remedy this by implementing DR G-estimation and DR logistic regression in

the R package drgee. We have also tried to speed up the calculations when dealing

with large datasets.

Two important resources for epidemiological research are the Swedish Multi-generation

Register (Ekbom, 2011) and the Swedish Twin Registry (Pedersen et al., 2002; Licht-

enstein et al., 2002, 2006), since they contain information about genetic relationships.

Such information allows for adjustment of unobserved factors that are shared within

clusters (e.g. twins, siblings, cousins). Apart from shared genetic factors, it is also

possible to adjust for other factors, e.g. uterine environment (twins) and childhood

environment (siblings), that are hard or impossible to measure.

In studies II and III, we have developed DR estimation methods that adjust for

shared factors shared within clusters. More specifically, these estimation methods are

robust against misspecification of the model for the influence of non-shared factors.
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Despite the title of this thesis, the methods described in studies II, III and IV can also

be used for general clustered data such as matched case-control data and matched

cohort data. Another important application is when the aim is to measure a ‘within-

individual’ association using longitudinal data. The estimate is then adjusted for

factors that are constant within individuals over time.

Even though twin and sibling designs are advantageous for control of shared con-

founding, interpretation of results from such studies needs to be done with caution.

One thing to keep in mind is that for non-linear association measures like the odds

ratio and the hazard ratio are ‘non-collapsible’. This means that the crude measure

and the ‘within-cluster’ measure are different measures and may be different even in

the absence of familial confounding. Both the crude odds ratio and the crude hazard

ratio are closer to 1 compared to their ‘within-cluster’ counterparts. But even when

the ‘within-cluster’ association measure is closer to 1, great caution is warranted when

interpreting results from twin and sibling studies. For instance, Frisell et al. (2012)

demonstrated that the ‘within-cluster’ association measures is more sensitive than the

crude association measure to random errors in the measurements of the exposures.

This will lead to measures of the ‘within-cluster’ association being closer to the null

hypothesis than the crude measures, even in the absence of familial confounding. An-

other thing to keep in mind is that the methods used to estimate the ‘within-cluster’

parameters have other requirements on dependencies within the data. When there

are carry-over effects, i.e. when the outcome of one member of the cluster is not

independent of non-shared factors from another member of the cluster, the estimates

may also be biased (Sjölander et al., 2016). In study IV, we note another conse-

quence of these requirements: the ‘within-cluster’ measure is not only adjusted for

shared confounders, it is also adjusted for shared mediators. This means that, when-

ever there are shared mediators, the crude association measure is a different measure

that the ‘within-cluster’ association measure. Therefore, absence of a ‘within cluster’

association can not necessarily be interpreted as an indication of absence of an effect.
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5.1 Limitations

The present work should be viewed in the light of some limitations.

First, even though DR estimators are consistent when at least one of two models is

correct, the result gives no guidance about which model is correct. However, Robins

and Rotnitzky (2001) noted that a comparison between the DR estimate and esti-

mates based on one nuisance model only (e.g. GLM or G-estimation) can be useful as

an informal goodness-of-fit test. If the DR estimate differs substantially from the two

other estimates, one can conclude that both nuisance models are grossly misspecified

and that all three estimates are biased.

Second, DR estimators are in general less efficient than ML estimators when the like-

lihood model is correctly specified. Thus the doubly robust property comes at a price.

Further, the proposed estimators in studies II and III are not optimal in terms of ef-

ficiency, However, we have found no great loss in efficiency in our simulation studies.

Third, all models are to some extent misspecified. Thus, like all model-based esti-

mators, DR estimators are generally biased in practice. In some scenarios (with all

models misspecified), DR estimators have been found to perform worse than estima-

tors based on one regression model only (Kang and Schafer, 2007; Waernbaum, 2012).

However, in these situations, the target parameter was the average treatment effect

and the DR estimator combined IPW-based estimation with standard regression fol-

lowed by standardization. In this thesis, we focus on the treatment effect conditional

on covariates. In general, the DR G-estimator is less sensitive to model misspecifica-

tion than the IPW-based estimator and in some scenarios, it is even consistent under

misspecification of both nuisance models (Vansteelandt et al., 2012).

Fourth, even if DR estimators are most often formulated in contexts of causal infer-

ence they are not guarantee valid causal inference, since even non-causal associations

can be correctly specified and since there is no protection against misspecification of

the main model.

5.2 Extensions

Except for special cases, the proposed estimator in studies II and III are not semi-

parametrically efficient, i.e. they are not optimal in terms of efficiency (Newey, 1990).
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An interesting topic for future studies would be to find out if there exists alternative

DR estimators of the same target parameters but with better efficiency.

In the studies I-III, we have used standard estimators for the nuisance parameters. As

an alternative, it is possible to estimate γ and α by directly minimizing the variance

of the DR estimator, as described by Cao et al. (2009). Another option would be

to estimate γ and α by directly minimizing the bias of the DR estimator along the

lines described by Vermeulen and Vansteelandt (2015). Doing this, one can avoid

amplification of bias when both nuisance models are misspecified.

In project III, the nuisance model parameters are estimated using doubly discor-

dant pairs only. Thus pairs that may contain information are discarded. As an

alternative, the outcome nuisance parameter γ can be estimated by also including

exposure concordant pairs that are discordant in both outcomes and nuisance fac-

tors V. This would result in more ‘precise’ estimates of the nuisance parameter γ.

Similarly, using all exposure-discordant pairs can give more ‘precise’ estimates of the

nuisance parameter α. However, it is not clear whether this would translate into a

more efficient DR estimator of the target parameter β. It is well established that

using estimated propensity scores instead of known propensity scores in IPW-based

estimation results in more efficient estimation of the average treatment effect (Hirano

et al., 2003; Brumback et al., 2010). The same is true for G-estimation when estimat-

ing the parameters for the exposure nuisance model (Robins et al., 1992). A topic

for future studies would therefore to investigate, both theoretically and empirically,

whether this is also true for the proposed DR estimator in study III.

A lot of time have been spend on the R package drgee. This is because we be-

lieve that offering software implementations of new methodology is crucial to make

the methodology more attractive. There are still room for further refinement of the

drgee package. For instance, an offset parameter would make it possible to estimate

rate ratios using log-linear models in longitudinal studies. Another improvement

would be to separate the DR estimation of the target parameter from the estimation

of the nuisance parameters, to allow different methods for estimation of the nuisance
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parameters or to use previously estimated nuisance parameters.

A potential future application of the proposed DR estimators would be in research

on age-related and late-onset diseases where both life-style and genetic factors play

important roles. As opposed to children and adolescents, adult and elderly are more

likely to be discordant in life-style factors. The potentially large number of non-shared

observed confounding factors in such studies would therefore make the risk of bias

due to model misspecification large.

30



6 Acknowledgements

The research described in this thesis was carried out at the Department for Medical

Epidemiology and Biostatistics (MEB) at Karolinska Institutet supported by grants

from the Swedish Research Council. My time at MEB, both before and during my

PhD studies, have been so rewarding on many levels that I cannot help feeling spoiled.

I would like to thank the following people:
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no particular order): Bènèdicte Delcoigne, Gabriel Isheden, Anna Johans-

son, Thorgerdur Palsdottir, Flaminia Chiesa, Xingrong Liu, Peter Ström,

Therese Andersson, Emilio Morales, Tong Gong, Qi Chen, Zheng Zhang,

Alexander Viktorin, Jie Song, Anna Kähler, Sarah Bergen, Sara Ekberg,

Erik Petterson, Dhany Saputra, Johanna Holm, Behrang Mahjani, Jonas

F. Ludvigsson, Sandra Eloranta, Tomas Frisell, Ralf Kuja-Halkola, Sara

Öberg, Agnieszka Butwicka, Linda Abrahamsson, Linda Halldner Hen-

riksson, Hatef Darabi, Paul Dickman, Paul Lambert, Patrik Magnusson,
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Sjölander, A., Frisell, T., Kuja-Halkola, R., Öberg, S., and Zetterqvist, J. (2016).
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