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ABSTRACT 
 

Depression and metabolic diseases are leading causes of disability and major contributors to 
socioeconomic burden worldwide. Physical activity exerts many beneficial effects that confer 
direct health improvement in individuals suffering from these disorders. However, the 
molecular mechanisms underlying the influence of different components of exercise 
interventions remain unknown. To isolate the impact of skeletal muscle conditioning on 
stress-induced depression, we used transgenic models that exhibit many of the chronic 
adaptations to aerobic exercise in skeletal muscle. Here, we show a mechanism by which 
skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to 
stress-induced depression. PGC-1α1 acts in concert with PPARα/δ transcription factors to 
induce the expression of kynurenine aminotransferases in skeletal muscle. The activity of this 
pathway diverts the metabolism of stress-induced kynurenine to kynurenic acid. Since 
kynurenic acid is unable to cross the blood brain barrier, this peripheral shift protects the 
brain from stress-induced accumulation of kynurenines. In addition, we further show that 
skeletal muscle PGC-1α1 and kynurenine aminotransferases are part of the physiological 
adaptations to aerobic exercise in both rodents and humans. Given that exercise-mediated 
activation of this pathway leads to peripheral accumulation of kynurenic acid, we evaluated 
the physiological role of this metabolite in modulating energy homeostasis. Here, we describe 
that kynurenic acid plays a role in systemic energy homeostasis through the regulation of 
adipose tissue function and inflammation. Kynurenic acid induces the expression of lipid 
metabolism, thermogenic and anti-inflammatory gene networks in the white adipose 
compartment. This reduces body-weight gain and improves glucose tolerance in animals fed 
a high-fat diet. Mechanistic studies in primary adipocytes show that kynurenic acid activates 
the G protein-coupled receptor 35. Downstream signaling of this activation is mediated 
through Ca2+, ERK, CREB and PGC-1α1 stabilization. Finally, activation of GPR35 by 
kynurenic acid induces the expression of RGS14, which sensitizes β-adrenergic response to 
specific agonists. In sum, this work uncovers a previously unknown function of PGC-1α1 in 
skeletal muscle and kynurenic acid in white adipose tissue. Targeting this metabolic node has 
great potential for the treatment of depression and metabolic diseases such as type-2 diabetes.  
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1 INTRODUCTION 

 

 

Understanding the molecular mediators of muscle health could have important 
applications in the development of new treatments for several diseases. With this work, 
we aimed at investigating the molecular mechanisms by which skeletal muscle 
conditioning contributes to overall health. The following sections summarize: 

 

• Implications of muscle conditioning in different diseases. 
• Molecular mediators of muscle conditioning, and crosstalk with other organs. 
• How shifting metabolism of kynurenine towards kynurenic acid in skeletal 

muscle could have broad implications for health and disease. 
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1.1 BROAD CONSIDERATIONS 
 

1.1.1 Skeletal Muscle Health 
Skeletal muscle corresponds to up to 40% of body weight in a lean individual. At rest, it 
significantly contributes to basal metabolism, with up to 30% of calorie consumption (393). 
Upon insulin stimulation, it utilizes 75% of whole-body glucose (18). Moreover, skeletal 
muscle has the ability to adapt to energetic demands by using different fuel sources (330). 
This is particularly important in the case of physical activity or in cases of energy overload 
such as obesity. These physiological adaptations put skeletal muscle at the intersection 
between different metabolic diseases. This has led to suggestions that impaired insulin 
signaling in skeletal muscle might be implicated in the etiology of type-2 diabetes (T2D) 
(29). In addition, maintaining skeletal muscle health is important to counteract pathological 
processes associated with cancer, inflammatory conditions, neuromuscular disorders, 
neurodegeneration, ageing and mood disorders (163). In this sense, physical inactivity 
contributes directly to progressive loss of skeletal muscle function, which, in turn is coupled 
to the development of insulin resistance. The metabolic outcomes of the latter have been 
shown to exacerbate and promote the onset of aforementioned pathologies. Au contraire, 
physical activity entails positive molecular adaptations in skeletal muscle that decrease the 
risk and onset of several disorders (Figure 1) (137).   

 

Physical activity 
As defined by the World Health Organization (WHO), “physical activity is any bodily 
movement produced by skeletal muscle that requires energy expenditure”. Therefore, it is 
considered that any activity, ranging from moderate to vigorous, would aid overall health. 
Notably, it is estimated that around 1 in 4 adults does not engage in any physical activity 
(WHO, Physical activity [394]). Importantly, only 20% of the world’s adolescent population 
is physically active. Globally, lack of physical activity is one of the top risk factors of 
mortality due to associated diseases such as cardiovascular disease, cancer and diabetes. 
These estimations are expected to rise further if society fails to engage its population in 
educational programs about the benefits of physical activity (WHO, Physical activity [394]). 
Accordingly, it has been shown that regular physical activity improves cardiovascular 
function, weight control, and reduces the risk of cancer, obesity, diabetes and depression (40, 
93, 114, 290). 
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1.1.2 Mental Health and Depression 
Individuals with psychiatric disorders display a spectrum of symptoms that impair daily 
activities and functional life. Worldwide, the incidence of mental disorders is rising, which in 
addition to the profound deleterious effects on patients’ lives, entails major socioeconomic 
consequences. 

 

Depression  
Individuals suffering from depression experience (on average for at least 2 weeks) a 
collection of symptoms including but not limited to loss of interest, reduced energy, sleep and 
appetite disturbances, anxiety symptoms and low self-esteem (WHO, Depression [395]). 
Although the precise etiology of this multifactorial disease remains elusive, it likely results 
from an interaction between environmental and genetic factors. Among the environmental 
factors, chronic stress has been strongly associated with depression. Moreover, when this 
psychobiological interaction leads to the onset of depressive symptoms, individuals are at risk 
of worsening overall health, with higher incidence of comorbid conditions.  

 

 

 

According to the WHO, depression affects 350 million people worldwide. It is the leading 
cause of disability and a major contributor to socioeconomic burden of disease. More than 
800,000 people commit suicide every year due to extensive periods of depression (WHO, 
Depression [395]). Similar to T2D, depression can go undetected due to inaccurate 
assessment and/or reluctance to seek professional help by affected individuals. This, in turn, 
deteriorates quality of life with detrimental consequences for overall health. For example, 
people with depression are at higher risk of developing diabetes and obesity (214, 248). 
Likewise, diabetes increases the risk of developing depression (8). When chronic stress 
contributes to the onset of depression and goes chronically undetected, its underlying 
molecular consequences will aggravate complications related to this affective disorder. Once 
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detected, psychological and pharmacological interventions can be used today to reduce 
symptomatology. However, as it is the case with other multifactorial disorders, relapse is 
often observed. To keep the disease at bay, more prevention programs should be established. 
These range from improving psychosocial environment to promoting regular physical activity 
(WHO, Depression [395]). The latter has gained interest as it improves overall health and 
substantially ameliorates depressive symptoms (Figure 1) (93). 

 

1.1.3 Obesity 
The term obesity is defined as excessive fat accumulation that might have a negative impact 
on overall health. It has also been shown that obesity increases the prevalence of other 
associated diseases. To quickly assess obesity in the population, health professionals use the 
body mass index (BMI). The BMI is calculated by dividing an individual’s weight (in 
kilograms) by the square of height (in meters). Individuals with a BMI higher than 30 are 
considered obese, whereas those with a BMI between 25 and 30 are considered overweight 
(1).  

According to the WHO, the number of individuals with a BMI greater than 25 has doubled 
since 1980 (102). It affects more than 1.9 billion adults, and 41 million children under the age 
of 5. Remarkably, there are currently more deaths associated with obesity than with 
malnutrition (WHO, Obesity [396]). 

All things considered, an increase in the ratio between calories consumed and used, as well as 
an increase in sedentary lifestyles are main contributors to the development of obesity. 
Individuals with overweight or obesity have a higher incidence of developing chronic 
diseases, such as diabetes, cancer, cardiovascular diseases, musculoskeletal disorders and 
psychiatric diseases. On the other hand, evidence suggests that balanced and healthy food 
choices and regular physical activity can decrease the incidence of obesity in the population 
(WHO, Obesity [396]). Therefore, understanding the negative consequence of sedentary 
lifestyles could have broad implications for the prevention of metabolic disease.  

 

1.1.4 Diabetes 
Diabetes is a metabolic disorder with a heterogeneous etiology, defined by hyperglycemia, 
alterations in carbohydrate, fat and protein metabolism. This disorder arises from errors in 
insulin secretion and/or action. The consequences of this pathophysiological process have 
been associated with multi-organ failure. People with diabetes display characteristic 
symptoms such as polyuria, thirst and weight loss. Often, the absence of severe symptoms 
causes the disease to go undiagnosed (22). These long-term pathological changes lead to the 
development of complications such as retinopathy, nephropathy, foot ulcers, autonomic 
dysfunction and vasculopathy (4, 89, 236, 375). In addition, individuals with diabetes display 
a higher risk of developing neurodegenerative and psychiatric disorders (4, 8, 365). 

According to the WHO, the global prevalence of diabetes has doubled since 1980 (294). In 
2012, diabetes accounted for 1.5 million deaths and it is predicted to become the 7th cause of 
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death worldwide by 2030 (390). Diabetes can be classified in type-1, type-2, and gestational 
diabetes. Type-1 diabetes (previously known as childhood-onset) is characterized by deficient 
production of insulin by pancreatic beta cells. Its cause is currently unknown but is often 
attributed to autoimmune pathologic processes. Gestational diabetes is defined as high 
glucose levels during pregnancy. Finally, type-2 diabetes (T2D; formerly known as adult-
onset) is the result of ineffective insulin action on target tissues (4).  

 

Type-2 Diabetes 
T2D accounts for the majority of people suffering from diabetes (33). Despite its complexity, 
the incidence of T2D increases in obese and sedentary individuals (67). According to the 
International Diabetes Foundation, other risk factors for developing T2D are: family history 
of diabetes, unhealthy food consumption, age, hypertension and gestational diabetes (67, 294)  

T2D is usually diagnosed by fasting blood glucose levels higher than 7 mM or venous 
glucose levels higher than 11.1 mM after ingestion of 75 g oral glucose load (124). As 
mentioned before, undiagnosed cases, due to absence of symptomatology, promote silent 
pathological changes with devastating consequences. Chronic high glucose levels cause 
inflammation and tissue damage (118). The tissues most susceptible to these changes are 
kidneys, eyes, nerves and cardiovascular tissue. Notably, T2D has also been found to increase 
the risk of developing mood disorders, especially depression (5). T2D and its associated 
complications have significant costs and impact worldwide. In fact, it has been estimated that 
the healthcare system spends 12% of its funds to treat and prevent diabetes in particular T2D 
(319, 387). Similar to obesity, the incidence of T2D can be reduced (or, at least, its onset can 
be delayed) by adopting healthy and active lifestyles. This includes increased physical 
activity, healthy diets, and regular control of blood glucose level (294). 
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1.2 MOLECULAR MEDIATORS OF SKELETAL MUSCLE 
CONDITIONING 

 

Both physical activity and exercise training impact positively whole body metabolism. 
Skeletal muscle is at the center of these physiological adaptations (137). During exercise, 
ATP is needed to support different cellular processes; for example, to support contraction 
skeletal muscle activates molecular adaptations that keep ATP production (112). This 
turnover is maintained via creatine phosphate and degradation of glycogen to lactate (110). 
During physical activity, skeletal muscle also needs to mobilize extramuscular substrates, 
such as glucose from the liver, long-chain non-esterified fatty acids from adipocytes and 
amino acids from blood (350, 358). The contribution of different substrates for fuel 
utilization is determined by the duration of exercise (295) and is impacted by different 
environmental and biological conditions (161). Factors such as sarcoplasmic calcium, level of 
ATP and byproducts, hormones and circulating metabolites (138), mediate acute adaptations 
to exercise, and regulate chronic molecular adaptations proper of conditioned skeletal muscle.  

Physiological adaptations to muscle contraction lead to the activation of signaling pathways 
that modulate protein anabolism/catabolism and gene expression (85). These factors range 
from increased sarcoplasmic calcium, increased ADP/ATP ratio, high reactive oxygen 
species (ROS) levels, increased NAD+/NADH ratio, to reduced creatine and glycogen levels 
(138).  

Important signaling pathways that regulate transcription factors, coactivators and repressors, 
include calcineurin, Ca2+/calmodulin-dependent protein kinases (CaMK), mitogen-activated 
protein kinases (ERK1/2, MAPK), mammalian target of rapamycin (mTOR) and AMP-
activated protein kinase (AMPK). Exercise increases intracellular calcium in muscle fibers, 
which leads to the activation of CaMKII and regulation of gene expression (296). In addition, 
exercise-dependent changes in AMP/ATP and ADP/ATP ratios lead to activation of AMPK 
(133, 139, 304). Increased activity of AMPK, upon metabolic challenges in skeletal muscle, 
regulates the activation of distinct gene programs that mediate chronic adaptations (220).  

Repetitive activation of the aforementioned key signals, as in chronic exercise training, 
results in adaptations that are dependent on the transcriptional regulation of several gene 
networks. This regulation, in turn, is dependent on the activation of transcription factors and 
coregulators (196, 259, 357), alteration on DNA methylation (19), histone modifications 
(221) and microRNA modulation (381). The concerted action of transcriptional regulation of 
energy homeostasis in skeletal muscle depends upon key transcription factors and nuclear 
receptors. For example, during endurance exercise training, the coordination of several 
transcriptional events leads to the regulation of mitochondrial biogenesis. Major findings on 
the transcriptional control of mitochondrial adaptations have occurred since initial discoveries 
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of exercise-mediated regulation of mitochondrial proteins by Holloszy in 1967 (149). Among 
them, it has been shown that nuclear respiratory factor 1 (NRF1) and nuclear factor erythroid 
2-related factor 2 (NFE2L2 or NRF2) regulates the expression of nuclear-encoded 
mitochondrial proteins (94, 170, 219, 348). In addition, the estrogen-related receptor α 
(ERRα), initially identified due to its homology with the estrogen receptor α (ERα) (117), 
was found to modulate mitochondrial biogenesis (86, 154, 207, 310). Similarly, skeletal 
muscle Yin Yang 1 (YY1) transcription factor promotes the expression of nuclear-encoded 
mitochondrial genes, thereby regulating oxidative mitochondrial function (31). Other 
transcriptional regulators in skeletal muscle are the peroxisome proliferator-activated receptor 
(PPAR) subfamily of nuclear receptors composed of three members including PPARα/δ and 
γ. PPARα, for example, was initially discovered when searching for molecular targets of 
fibrates (156), whereas PPARδ and γ were cloned based on sequence homology with PPARα 
(174, 391). PPARα/δ regulate lipid catabolism while PPARγ is one of the main regulators of 
adipogenesis (91, 297, 340). PPARδ is abundantly expressed in skeletal muscle (239) and 
regulates fiber-type determination, mitochondrial function and lipid catabolism (208, 357, 
359). Skeletal muscle PPARα, on the other hand, plays a role in the regulation of fatty acid 
oxidation (101). Contrary to PPARδ, PPARα does not modulate fiber-type switching (113). 
PPARγ, in turn, has been shown to contribute to insulin sensitivity and glucose homeostasis 
in skeletal muscle (7, 141, 142). Mediating fiber-type switching, the transcription factor 
myocyte enhancer factor 2 (MEF2). This transcription factor together with PPARγ 
coactivator-1α (PGC-1α) regulates the formation of slow-twitch muscle fibers (196). 
Additional regulators of muscle differentiation and function are the myogenic regulator 
factors (MRFs), among which myoblast determination protein 1 (MyoD) plays a crucial role 
in myogenesis (74). Indeed, the many adaptations of skeletal muscle to exercise training 
depend on a complex network of transcriptional regulators that are still not fully understood 
(99, 270, 310).  

The PGC-1α proteins regulate many of the transcriptional adaptations to exercise by 
interacting with several transcription factors, and constitute one of the main focuses of this 
work. 

 

1.2.1 Skeletal Muscle PGC-1α 
PGC-1α is the founding member of a group of transcriptional coactivators including PGC-1β 
and PGC-1-related coactivator (PRC). Given its complex and tight regulation in several 
tissues and conditions, PGC-1α remains the most studied and characterized member of the 
family. Indeed, we now know that although the mammalian genome has only one PGC-1α 
gene, it can be transcribed from different promoters and differentially spliced to give rise to 
several PGC-1α isoforms (217, 303). In many tissues, PGC-1α coactivators transcriptionally 
orchestrate many biological responses to different metabolic challenges (Figure 2) (187, 196, 
197, 280, 379). PGC-1α was initially discovered in brown adipose tissue as a regulator of 
adaptive thermogenesis (280). Later, it was unraveled that PGC-1α controls mitochondrial 
biogenesis and respiration in adipose tissue (372). PGC-1α is characterized for being a highly 
regulated coactivator. It can interact with many transcription factors, allowing the regulation 
of several gene programs in different tissues (Figure 2) (195). PGC-1α can also interact with 
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other coregulator proteins, such as histone acetyltransferases (HAT) including CREB-binding 
protein/p300 and steroid receptor coactivator 1 (SRC-1) (184, 279). In addition, it interacts 
with the mediator complex (353). Finally, PGC-1s possess a characteristic RNA recognition 
motif (RRM) (280) that has been suggested to participate in target gene splicing by 
interacting with nascent mRNA and/or the splicing machinery (216, 229). 

 

Recently, it was demonstrated that 
alternative promoter usage of the PGC-1α 
gene, leads to the expression of several 
isoforms such as PGC-1α2, PGC-1α3 and 
PGC-1α4 (303). PGC-1α4, for example is 
highly expressed in skeletal muscle, and 
regulates skeletal muscle mass. It does not 
regulate the same oxidative gene program 
as the canonical PGC-1α (now known as 
PGC-1α1 or -a), but rather induces 
insulin-like growth factor 1 (IGF1; 
anabolic hormone) and represses 
myostatin (inhibitor of muscle growth; 
Figure 3) (303). PGC-1α2 and PGC-1α3, 
on the other hand, appear to regulate 
multiple splicing events on target genes 
(216). For clarity, we use PGC-1α when 
referring to the gene and the collection of 
PGC-1α variants, or we specify the 
isoform name when appropriate. Given 
that the PGC-1α1 variant is the most 
established regulator of oxidative 
metabolism and linked to endurance 
exercise training, which is suggested to be 

relevant for mental health and depression, we focus on this isoform in this work.  

PGC-1α1 is highly regulated by different stimuli in various tissues (Figure 4). For example, 
PGC-1α1 expression can be transcriptionally induced by physical exercise (271). This is 
modulated by different signaling pathways such as p38 MAPK (3), AMPK (160) and calcium 
signaling (368). In addition, it was shown that acute exercise training remodels PGC-1α 
promoter methylation in human skeletal muscle (19). At the post-translational level, PGC-1α 
activity is regulated by MAPK (98, 179), and AMPK phosphorylation (160). It is acetylated 
or deacetylated by general control of amino acid synthesis 5-like 2 (GCN5) (189) and NAD-
dependent protein deacetylase sirtuin-1 (SIRT1), respectively (48). Moreover, the activity of 
PGC-1α1 is modulated by arginine methylation (336), O-linked N-acetylglucosamination 
(153) and by its degradation (258, 360).   
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In skeletal muscle, PGC-1α1 modulates many of the oxidative adaptations to exercise. It has 
been shown to regulate mitochondrial biogenesis (196), to improve VO2 max and to shift fuel 
utilization from carbohydrate to fat during endurance training (45). Mice with muscle-
specific overexpression of PGC-1α1 activate gene programs distinctive of slow-type fibers 
(196). In addition, initial observations showed that PGC-1α1 regulates the expression of the 
angiogenic factor vascular endothelial growth factor (VEGF). This mechanism is independent 
of hypoxia-inducible factor (HIF) and relies on the transcription factor ERRα (11). Later 
studies showed that alternative promoter usage of the PGC-1α gene in skeletal muscle is 
required for downstream expression of VEGF (60). In line with this, the skeletal muscle 
PGC-1α4 isoform was shown to regulate VEGF expression upon β2-adrenergic stimulation 
(303, 337). Moreover, PGC-1α1, via the induction of secreted phosphoprotein 1 (SSP1) and 
subsequent activation of macrophages, modulates functional angiogenesis in skeletal muscle 
(301). Accordingly, mice with loss of PGC-1α in skeletal muscle, where all PGC-1α variants 
are absent, fail to induce angiogenesis in response to exercise (60). 

Other functions of PGC-1α in skeletal muscle have been identified. For example, it was 
suggested that PGC-1α activity in skeletal muscle is protective against low-grade 
inflammation (132) but required to maintain an acute lipopolysaccharide (LPS) response 
(257). In addition, mice with muscle-specific deletion of PGC-1α have higher levels of 
interleukin 6 (IL-6) and display an exacerbated inflammatory response (129, 130). These 
anti-inflammatory effects in skeletal muscle have been attributed to PGC-1α1-mediated 
repression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) (88). 
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Another function of PGC-1α1 in skeletal muscle is regulating gene programs that participate 
in neuromuscular junction (NMJ) formation and signaling. It has been shown that PGC-1α1 
expression remodels both postsynaptic and presynaptic NMJ morphology (13, 55, 131). 

In recent years, the evidence supporting a role for PGC-1α coactivators in maintaining 
muscle mass has been growing (39, 146, 303, 307, 362). For example, skeletal muscle-
specific PGC-1α1 transgenic mice have been shown to be resistant to muscle atrophy by 
denervation and loss of muscle mass caused by aging (46, 307, 362). One of the mechanisms 
regulating these effects is mediated by PGC-1α1 suppression of forkhead box O3 (FoxO3)-
transcriptional induction of genes involved in protein degradation (46, 146, 307, 362) and 
decreased autophagy (46, 362). As mentioned before, the truncated isoform PGC-1α4 was 
shown to regulate skeletal muscle mass (Figure 3) (303). Interestingly, it was also observed 
that mice with transgenic expression of PGC-1α4 in skeletal muscle are resistant to cancer 
cachexia and metabolic dysfunction (303). Collectively, this evidence suggests that PGC-1α 
coactivators are promising therapeutic targets in the context of metabolic and muscle-wasting 
disorders. 
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1.2.2 Skeletal Muscle and Interorgan Communication   
Although the classical functions associated to skeletal muscle are related to contraction and 
movement, this tissue has more recently been shown to act as an endocrine organ under 
certain conditions. Molecules released from skeletal muscle are collectively called myokines 
(268). In this context, understanding how skeletal muscle communicates with other organs 
has helped explain some of the systemic effects of exercise. These systemic bioenergetic 
responses have been observed in adipose tissue, pancreas, liver, bone and brain. Even though 
myokines mediate the crosstalk with other organs, they might also act locally to regulate 
further adaptations to exercise. IL-6 was the first myokine found to be released after muscle 
contraction. IL-6 regulates muscle and systemic lipid oxidation and hepatic gluconeogenesis 
during exercise (169, 347).  

To date, several myokines have been described. These include IL-8, IL-15, chemokine CXC 
motif ligand-1 (CXCL-1), Fndc5/irisin, fibroblast growth factor-21 (FGF21) and meteorin-
like (Metrnl) (37, 269, 287, 366). PGC-1α coactivators seem to play a central role in 
coordinating these systemic effects by controlling the expression of some of these molecules. 
For instance, PGC-1α1 induces the expression of FNDC5, whose cleaved and released 
product irisin regulates white adipose tissue (WAT) homeostasis (37). To clarify irisin 
regulation and action on different tissue further studies are warranted. In addition, the 
metabolite β-aminoisobutyric acid (BAIBA), is also under regulation of PGC-1α1. This 
factor targets adipose tissue and liver by activating WAT browning and hepatic fatty acid β-
oxidation, respectively (293). Moreover, skeletal muscle PGC-1α4 regulates the expression 
of two other myokines IGF1 and myostatin, both with local functions in the modulation of 
muscle cell size (303). In addition, circulating myostatin has been implied in the regulation of 
energy homeostasis, as it has been shown to modulate adipose tissue function (194, 223). 
Later studies found that skeletal muscle PGC-1α4 drives the expression of Metrnl (also 
known as glial differentiation regulator), which promotes WAT browning and glucose usage 
(287). This myokine does not appear to have an adipocyte cell-autonomous effect but instead 
an IL-4/IL-13-mediated enhancement of adaptive thermogenesis (287). Recently, it was 
demonstrated that skeletal muscle PGC-1α1 regulates kynurenine metabolism, thereby 
mediating resilience to stress-induced depression (2). Together with PPARα/δ, PGC-1α1 
drives the expression of muscle kynurenine aminotransferases (KAT), which shift peripheral 
metabolism of kynurenine to kynurenic acid (KYNA). This mechanism decreases 
kynurenine-mediated changes in synaptic function and behavior (2). Taken together, current 
evidence places PGC-1α coactivators as important players regulating skeletal muscle 
communication and systemic effects of physical exercise. Whether these myokines can be 
used as potential therapeutic targets to treat obesity and other diseases exacerbated by 
physical inactivity, remains to be established.  
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1.3 MOLECULAR ASPECTS OF DEPRESSION 

  

Despite recent advances in our understanding of depression, the clear biological mechanism 
underlying its pathophysiology remains unknown. Nevertheless, cross-disciplinary studies 
suggest that molecular changes observed in depression can be grouped in two categories: 
firstly, molecular perturbations that lead to morphological synaptic dysfunction. Among these 
changes, imbalanced glutamate transmission (305), alterations in neurotransmitter levels 
(147), and defective neurogenesis (172) are among the most studied. Secondly, molecular 
changes associated with brain or systemic inflammatory processes.  

In terms of synaptic dysfunction, it has been proposed that depression is caused by an 
abnormal regulation of different mechanisms governing synaptic plasticity (80). This results 
in loss of synaptic stability in the limbic circuitry. Accordingly, neuronal atrophy has been 
observed in brain imaging studies (211) and functional imaging of patients with depression 
(276). Studies in mice have also unveiled detailed observations of neuronal loss and altered 
glutamatergic synapses in models of stress-induced depression (202). The use of chronic mild 
stress (CMS; also known as chronic unpredictable stress) protocol to induce depressive-like 
behavior in rodents (145) has also revealed that the phenotype is accompanied by neuronal 
atrophy, loss of synaptic homeostasis and impaired neurogenesis (87, 272). The 
hypothalamic-pituitary-adrenal (HPA) axis has been proposed to be a mediator of stress-
induced damage to the central nervous system (CNS). Similar to chronic-stress exposure, 
glucocorticoid treatment leads to neuronal atrophy in limbic circuitry (202, 234). Moreover, 
stress-mediated overactivity of the HPA axis has been shown to affect neurotrophic factors, 
especially brain-derived neurotrophic factor (BDNF) (81, 182). Similarly, BDNF levels have 
been found to be reduced in postmortem brain samples from patients with depression (81, 
182). Taken together, this suggests that stress-mediated disruption of homeostatic processes 
that impact synaptic stability and maturation can lead to depression (68, 148, 324). 

It is well established that antidepressant treatment increases neurotrophic factors and 
ameliorates synaptic plasticity. Typical antidepressants such as selective serotonin reuptake 
inhibitors (SSRIs) improve synaptic function, spine density and neuroplasticity (21, 167, 
363). Despite being highly prescribed, SSRIs (as well as other antidepressants currently used) 
take weeks or months to generate therapeutic effects. The lack of better therapeutic 
alternatives leaves 30% of depressed patients on the verge of suicide attempts (343). 
Recently, studies have shown that ketamine, a N-methyl-D-aspartate receptor (NMDAr) 
antagonist, promotes a rapid and potent antidepressant action in severely depressed patients 
(28, 382). Ketamine-mediated improvement of depressive symptoms has been attributed to its 
effect on synaptic function and plasticity (191). This also suggests that loss of synaptic 
homeostasis might underlie behavioral disturbances (Figure 5). Despite advances in our 
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understanding of the molecular underpinnings of depression, causality - regarding the 
pathophysiological events that lead to synaptic dysfunction - remains elusive.   

 

 

Several lines of evidence indicate that inflammatory processes play a crucial role in synaptic 
disruption. This idea has been gaining interest since inflammation exists in comorbid diseases 
associated with depression, such as metabolic syndrome, diabetes, stroke and autoimmune 
disorders (9, 284). Initial observations showed that depressed patients display elevated 
inflammatory factors in circulation. In rodents, treatment with LPS provokes depressive-like 
behavior (9, 140). In humans, low doses of bacterial endotoxin leads to elevated levels of IL-
6 and TNF-α, as well as mood perturbations (155, 289). Further support for the deleterious 
role of inflammation in mood disorders came from cancer and hepatitis C patients receiving 
interferon gamma (IFN-γ). Half of the patients developed depression that went into remission 
after antidepressant treatment (283). In mice, combining pro-inflammatory treatments with 
CMS exacerbated depressive–like behavior and increased the HPA-response (10, 116). 
Furthermore, administration of IL-6, IL-1β or TNF-α decreases neurogenesis and BDNF 
levels (376). Recently, it has been proposed that inflammation mediates synaptic dysfunction 
through microglia activation (377). Comprising about 10% of all brain cells, they regulate 
neurogenesis, synaptic function and behavior (342, 351). Inflammation leads to microglia 
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activation and to NF-κB-mediated changes that further prolong the inflammatory state (377). 
This cascade seems to be mediated by microglial release of inflammatory signals that have 
long-lasting effects on synaptic plasticity (121, 180). However, it has been proposed that 
type-1 or pro-inflammatory cytokines activate a feed-forward loop in microglia. This loop 
further promotes the formation of neurotoxic metabolites with the ability to affect synaptic 
function (377). It is precisely at the intersection between synaptic dysfunction and brain 
inflammation that the kynurenine pathway (KP) of tryptophan degradation plays an important 
role in mental health (237, 377). 
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1.4 KYNURENINE METABOLISM 
 

 The KP of tryptophan (Trp) degradation 
represents a major metabolic route for the 
catabolism of this essential amino acid 
(Figure 6). Importantly, Trp is not only 
used for protein synthesis but also for the 
generation of several metabolites with 
biological activity. On one hand, Trp can 
be converted to serotonin and melatonin, 
important for neurotransmission in limbic 
circuitry, and for regulation of circadian 
rhythms. On the other hand, 95% of Trp is 
degraded towards the KP. This branch 
generates metabolically active metabolites 
involved in neurotransmission, 
inflammation and immune tolerance. 
Moreover, degradation of Trp towards 
kynurenine (KYN) can ultimately end with 
the generation of nicotinamide adenine 
dinucleotide (NAD+), a cellular cofactor 
that plays a crucial role in energy 

metabolism (48). KP metabolites were initially described in the CNS, where they were 
proposed to contribute to pathophysiological processes in mood disorders such as 
schizophrenia and depression (237). About 60% of peripheral KYN contributes to the 
kynurenine-pool in the CNS (109, 111). There, KYN is metabolized in astrocytes to produce 
KYNA and in microglia to generate quinolinic acid (QUIN). KYNA is an NMDA and 
α7NACh receptor antagonist, and has been described as neuroprotective at physiological 
levels. QUIN, on the other hand, is an NMDAr agonist, with neurotoxic properties. KYNA is 
also an agonist for G protein-coupled receptor (GPCR) 35 and, as well as KYN, an agonist 
for the aryl hydrocarbon receptor (AhR). 3-hydroxykynurenine (3HK), in turn, has been 
shown to contribute to QUIN formation and to generate oxidative stress. Both centrally and 
in the periphery, the KP seems to play a role in the regulation of immune response. Evidence 
is consistent, however, that chronic accumulation of its bioactive metabolites can be 
deleterious for the organism.   
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Briefing on Tryptophan Degradation 
Approximately 1% of Trp is used for protein synthesis. Trp hydroxylase (TPH) and 5-OH-
Trp decarboxylase (DDC) convert Trp to serotonin, which can be further converted to 
melatonin. Trp catabolism towards KYN is regulated by the activity of Trp 2,3-dioxygenase 
(TDO) and the highly inducible indoleamine 2,3-dioxygenase (IDO). Most of KYN is 
destined to renal excretion. However, and when renal clearance is saturated, kynurenine 3-
monooxygenase (KMO) hydroxylates KYN to 3HK. In addition, KYN can also be converted 
to KYNA by KAT enzymes, or to anthranilic acid (AA) by kynureninases (KYNU). KATs 
can further metabolize 3HK to xanthurenic acid (XA), which has been shown to be elevated 
upon Trp loading. If not converted to XA, 3HK is converted to metabolites that can produce 
either picolinic acid (PA) or QUIN. This step is catalyzed by KYNU and 3-
hydroxyanthranilate dioxygenases (3HAO). Once QUIN is formed, quinolinate 
phosphoribosyltransferase (QPRT) together with nicotinate phosphoribosyltransferase 
(NAPRT and in the presence of nicotinic acid) catabolize the formation of intermediates 
(nicotinate ribonucleotide) that will be further metabolized to NAD+ (Figure 6). 

 

1.4.1 CNS Kynurenine Metabolism: Focus on Depression 
The implication of the KP in the neurobiological changes observed in depression is well 
documented. It has been proposed that KP is at the transition between the effects of stress-
induced inflammation and the onset of depressive-like behavior (72, 275). For example, pro-
inflammatory conditions seen upon treatment with IFN-γ, IL-6, TNF-α, IL-1β, LPS, HIV Tat 
protein and Bacillus Calmette-Guerin (BCG) induce microglia IDO activity (73, 250, 352). 
The same was observed by psychological stress (173). Moreover, IFN-γ immunotherapy 
produces accumulation of KP metabolites both centrally and in the periphery, which 
correlates with the severity of depressive symptoms (34, 51, 52). Postmortem studies have 
further revealed increased numbers of QUIN-positive microglia in the cortex of depressed 
patients (327). Studies in rodents have confirmed that inflammation promotes microglial-
dependent KP activation and subsequent depressive-like behavior. Namely, administration of 
low doses of LPS leads to anhedonia, which is decreased upon IDO antagonist treatment. In 
addition, exogenous kynurenine administration induces depressive-like behavior in rodents 
(79, 250, 251). Similar behavioral findings were seen after exposure to CMS protocols (173). 
Interestingly, blockade of NMDAr using ketamine abolishes depressive-like behavior 
induced by LPS (352). Collectively, these findings suggest that the limbic system is 
susceptible to deleterious effects of KP-metabolites, which accumulates upon inflammation 
(Figure 7).  
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1.4.2 Peripheral Kynurenine Metabolism 
Peripheral metabolism of KYN depends upon Trp absorption and availability (Figure 8). 
This essential amino acid is enriched in fish, eggs, vegetables and meat. Most of Trp 
consumed is absorbed in the gut, followed by its entry into liver metabolism. Trp can also 
reach other tissues such as immune cells, brain, skeletal muscle and heart tissue. Furthermore, 
a small portion of Trp is metabolized by the microbiota in the gastrointestinal tract (GIT) 
(162). Interestingly, Trp can be converted to serotonin in the gut where 85-90% of serotonin 
production takes place (192). Of note, microbiota metabolism of Trp impacts its availability 
and regulates local inflammation through the production of indole compounds (384). These 
compounds have immunomodulatory effects, which further highlights the systemic 
implications of peripheral Trp and kynurenine metabolism. Interestingly indole compounds 
are used in inter-species communication as they signal between bacteria but also to the host. 
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Liver Kynurenine Metabolism  
It is well established that the liver and in particular hepatocytes, express all the enzymes 
required for Trp catabolism (227). Of note, TDO expression in mammals (the first rate 
limiting enzyme in tryptophan degradation) is mainly restricted to the liver (355). In the 
periphery, TDO appears to control systemic Trp levels by regulating its entry into the KP 
(274, 308, 309). TDO activity is increased by Trp (175), glucagon, estrogens and 
glucocorticoids (176, 315). Under normal conditions, the liver metabolizes Trp to NAD+. It 
can also oxidize KP metabolites via the glutarate pathway (355). When Trp availability is 
low, the liver will degrade circulating Trp to NAD+ for energy demands (227). Notably, if 
there is constant Trp supply to the liver and TDO activity is increased by glucocorticoids, 
accumulation of KP-metabolites locally will lead to leakage of some of its metabolites such 
as KYN. Interestingly, social stress elevates glucocorticoid levels (202, 234), which, in turn, 
increase TDO activity and KYN in circulation. Consequently, liver–mediated KYN 
metabolism will contribute to elevate KP metabolites levels in the CNS. As mentioned 
before, under inflammatory conditions, the accumulation of some of these metabolites in the 
brain will bring negative consequences for mental health (237). In sum, the liver exerts its 
metabolic regulation on Trp degradation by promoting the KP. Notably, under inflammatory 
conditions, TDO activity is reduced and extrahepatic Trp metabolism will occur (335).  

 

Kynurenine Metabolism in the Immune System  
The enzyme IDO catalyzes the initial step of extrahepatic Trp to KYN metabolism. IDO is 
expressed in most tissues and also has affinity for 5-hydroxytryptophan (5-HTP) and 5-
hydroxytryptamine (5-TH or serotonin). In the immune system, IFN-γ, TNF-α, virus and 
bacteria induce the expression and activity of IDO (73, 241, 250, 314, 334, 352). It was 
initially suggested that degradation of Trp in the microenvironment surrounding parasites, 
virus and bacteria was a way to control proliferation of pathogens (273). Evidence that IDO 
has a broader spectrum of immune regulation came from observations of immune cell Trp 
degradation during non-pathogenic inflammation (313). In order to control the immune 
system, cells have evolved metabolic systems to restrain inflammatory processes in case of 
over-activation (115, 164). It has therefore been proposed that metabolic immune regulation 
relies upon IDO-mediated Trp degradation. Accordingly, Type-1 or pro-inflammatory 
cytokines induce IDO activity (63, 119, 135) while type-2 or anti-inflammatory cytokines 
restraints it (59, 242). This suggests that immune regulation prompts the generation of 
metabolites with immunologic activity such as KYN and KYNA (213). In agreement with 
this, it has been shown that KYN decreases the activity of natural killer cells (108) and 
antigen-presenting cells (APC) including dendritic cells (DC), monocytes and macrophages 
(96, 261). Subsequent studies on T-cells described the ability of KYN to block T cell 
proliferation (26, 119). Furthermore, KYN derived from DC promotes proliferation of 
regulatory T cells (Tregs) (97, 144). Supporting this, it was later shown that KYN and KYNA 
are ligands for AhR (224, 260). This transcription factor controls xenobiotic responses to 
foreign substances. AhR has been shown to have anti-inflammatory activity upon ligand 
activation in both innate and adaptive immune system (23, 370). In addition, activation of 
AhR by KYN promotes Treg cell proliferation (224, 246), while suppressing innate immune 
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responses (224, 246, 260). Notably, regulating KYN/AhR responses has gained therapeutic 
interest in cancer, given that pharmacologic blockade of this axis could increase immune 
surveillance (17). Therefore, KYN/AhR has been proposed to be a crucial transitional link 
between chronic inflammation and carcinogenesis. Finally, KYNA was also found to be an 
agonist for AhR at low concentrations (78). It remains to be clarified if this activation has 
physiological relevance in terms of immune system regulation.  

 

 

The discovery that KYNA is an agonist of the GPR35 increased the interest on this KP 
metabolite with potential immunomodulatory properties (354). In addition to the GIT, 
GPR35 is also expressed in immune subpopulations including human CD14+ monocytes, T 
cells, neutrophils, DCs, eosinophils, basophils and invariant natural killer T cells (iNKTc) 
(95, 354). Interestingly, it has been shown that binding of KYNA to GPR35 promotes 
monocyte extravasation (20), reduces LPS-inflammatory response in monocytes and 
macrophages (339), and controls cytokine release in human iNKT cells (95). Collectively, the 
immunomodulatory effects of KYNA further reinforce the immunosuppressant function of 
Trp catabolism. Accordingly, other KP-metabolites such as 3-hydroxyanthranilic acid 
(3HAA) and QUIN promote apoptosis of Th1 cells (96). Under normal tissue homeostasis, 
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the immunosuppressant effect caused by KP metabolites regulates the deleterious effect of 
uncontrolled immune activation.  

During inflammation, immune cells promote NAD+ synthesis due to energetic demands (122, 
227). This suggests that Trp catabolism could replenish NAD+ levels for immune cellular 
function. Accordingly, inflammatory processes and in particular IFN-γ, increase the 
expression of enzymes leading to NAD+ production from Trp (213, 377) Notably, LPS-
treatment causes QUIN-accumulation in the immune compartment (227). Similarly, it was 
found that Trp-derived NAD+ could be synthesized in macrophages (122). Of note, if 
immune cells fail to meet NAD+ demands during chronic inflammation kynurenines will be 
accumulated. These metabolites, as described before, will lead to type-2 immune responses 
that favor cell survival. However, their unbalanced accumulation could potentially harm 
different tissues. Therefore, it becomes important to understand the physiological processes 
governing kynurenine metabolism in the periphery. These molecular events would decrease 
the burden of KP metabolites on the CNS, without impacting the immune-tolerant function of 
Trp degradation.  

 

Kynurenine Metabolism in Skeletal Muscle  
Skeletal muscle can metabolize amino acids for protein synthesis and energy supply (350, 
358). During metabolic challenges such as physical exercise catabolism of amino acids such 
as leucine, valine and Trp will supply ATP. Skeletal muscle needs thus to maintain constant 
redox reactions to have the NAD+ required for ATP production. As mentioned before, initial 
fuel sources come from glucose and, as they are depleted during continuous exercise, skeletal 
muscle will shift to other sources such as fatty acids and amino acids. Trp catabolism could 
then contribute to NAD+ supply for energy requirements. Accordingly, endurance exercise 
training decreases circulating Trp levels (331). Therefore, it could be argued that skeletal 
muscle Trp depletion would lead to ATP-NAD+ supply, or that skeletal muscle has a 
specialized function along the KP. Interestingly, endurance exercise training increases the 
levels of circulating kynurenines (331), especially KYNA (190, 312). Further supporting a 
skeletal muscle-specialized function in KYN metabolism, it was demonstrated that aerobic 
exercise training increases the mRNA and protein levels of KAT enzymes in both mouse and 
human skeletal muscle (2, 312). KAT gene regulation by exercise training is under control of 
skeletal muscle PGC-1α1 and PPARα/δ (2). As mentioned before, this coactivator modulates 
many of the adaptations to exercise, especially aerobic training (196). This supports the 
notion that skeletal muscle might have a specialized function in Trp catabolism towards 
KYNA production. This physiological shift in the KP, observed in exercised skeletal muscle, 
could have broad implications for mood and metabolic disorders. In fact, it was shown that 
mice with transgenic expression of PGC-1α1 in skeletal muscle have high skeletal muscle 
KAT levels and are resilient to the effects of stress-induced KYN or exogenous KYN 
administration (Figure 9) (2). Moreover, accumulation of KYNA in the periphery regulates 
systemic energy homeostasis and adipose tissue inflammation (Agudelo et al., unpublished; 
Study III). 
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1.4.3 Peripheral Kynurenine Metabolism: Focus on Diabetes 
Diabetes is a multifactorial disorder also associated with disturbed Trp metabolism, where the 
often underlying inflammatory state contributes to the accumulation of KP metabolites (265). 
It has been shown in both mouse models and diabetic patients that low-grade chronic 
inflammation leads to increased IDO activity (265). Moreover, obese and T2D patients show 
elevated KYN:Trp ratio and KYNA levels (265). This has led to the suggestion that KP-
metabolites could be considered biomarkers of diabetes and metabolic disease. In addition, 
insulin synthesis and insulin release from the pancreas are inhibited by KP metabolites such 
as QUIN and 3HK (265, 329). Another KP metabolite, XA, has been shown to prevent 
insulin action on target tissue (136, 181). These observations suggest that diabetes is 
characterized by abnormal levels of different KP metabolites. Whether these contribute 
directly to the pathophysiological process remains to be clarified. Moreover, it is not known 
if any end-product of the KP has a specific function that would ease the disease process. 
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1.5 MOLECULAR ASPECTS OF ADIPOSE TISSUE AND 
METABOLIC DISEASE 

 

Throughout evolution, different adipose tissue depots have developed mechanisms to adapt to 
variations in temperature and food supply. WAT, for example, insulates the body and stores 
energy sources as lipids that can later be transformed and released as fatty acids (383, 392). 
Brown adipose tissue (BAT), on the other hand, stores lipids and dissipates their energy 
through thermogenesis (47, 70). 

Brown adipocytes have multilocular lipid droplets, large number of mitochondria and are 
positive for uncoupling-protein 1 (UCP1). Sympathetic tone activates brown adipocytes, 
which, through UCP1, dissipate chemical energy in the form of heat. This energy comes from 
routing triglycerides to β-oxidation (218, 278) while UCP1 uncouples proton gradient from 
ATP production, thus terminating the electrochemical gradient. For this reason, BAT 
metabolism is mainly considered as a source of heat used to preserve core body temperature. 
In humans, low temperatures lead to the activation of these processes in BAT, which 
correlate with energy expenditure induced by adaptive thermogenesis (346, 378). On the 
other hand, white adipocytes are UCP1 negative and store energy in the form of 
triacylglycerides (TAG). During fasting or strenuous exercise, TAGs can be converted into 
non-esterified fatty acids (NEFA) that are released into circulation. These NEFAs are cleared 
from blood by other tissues such as skeletal muscle and liver, where they serve as energy 
sources. Moreover, it has been shown that adipocytes can regulate systemic energy 
homeostasis by secreting adipokines (12, 107, 152, 264, 388). 

Both WAT and BAT display plasticity under different metabolic adaptations such as fasting, 
overfeeding or cold exposure (65). These changes involve the coordinated regulation of 
several gene networks, which result in tissue remodeling and modified function. Particularly 
relevant for metabolic disease, WAT contains another cell type able of undergoing dynamic 
adaptations. This cell-type has been termed beige adipocyte (also known as brite or 
recruitable adipocytes) and can induce UCP1 expression and proliferate upon different 
stimuli such as exercise and cold exposure. It has been suggested that they contribute to heat 
dissipation and might have a crucial role in counteracting obesity (134). Excessive WAT 
increases the risk of developing T2D (126). It remains unclear however, why not all obese 
individuals develop metabolic disease. Therefore, understanding the mechanisms that 
promote the recruitment and stimulation of beige adipocytes could potentially lead to new 
treatments for weight loss and metabolic disorders. 
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1.5.1 The Developmental Origins of Brown and Beige Adipocytes  
Brown adipocytes develop during embryogenesis and are composed of a uniform population. 
In rodents, BAT depots are located in the interscapular region. In humans, infants have been 
shown to have a similar BAT depot that disappears in adults (193). In adults, BAT appears to 
be located around the neck region close to the vascular compartment (70, 349). Moreover, it 
has been shown that both skeletal muscle and BAT share the same precursor cell during 
development (306, 317). Additional findings confirmed that both tissues display similar 
mitochondrial proteome (104). Beige adipocytes, on the other hand, were initially shown to 
derive from perivascular and endothelial cells (127, 341). By lineage tracing studies, it was 
shown that beige adipocytes could derive from white adipocytes. The latter came from 
observations in subcutaneous WAT, where it was described that some adipocytes responsive 
to cold exposure have an intrinsic ability to become either white or beige adipocytes. This 
process was called trans-differentiation (299). Finally, another study in 2012 identified the 
gene expression pattern of beige adipocytes from WAT (371). By comparing gene specific 
signatures between murine beige cells and brown-fat depots in adult humans, Wu and 
colleagues showed that human brown fat is in fact composed of beige fat cells (Figure 10) 
(371). 
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1.5.2 Transcriptional Regulation of Adipogenesis  
PPARγ and CCAAT/enhancer-binding protein α (CEBPα) are the master regulators of 
adipocyte formation. While PPARγ is required for adipogenesis (297, 340), CEBPα is not 
fundamental for brown/beige differentiation (200). PPARγ and CEBPα modulate pro-
adipogenic transcription factors, including kruppel-like family (KLF), GATA transcription 
factors, liver X receptors (LXR) and sterol regulatory element-binding protein 1c 
(SREBP1C). There are however transcription factors essential for brown adipocyte 
differentiation (325). Despite this, their contribution to WAT browning/beiging is still 
unclear. The discovery of the zinc-finger protein PRDM16 as a regulator and driver of brown 
adipocytes opened new avenues for our understanding of WAT browning/beiging (317). 
PRDM16 induces UCP1 expression, by modulating the activity of other transcription 
regulators such as CCAAT/enhancer-binding protein β (CEBPβ), PPARγ, PPARα and PGC-
1α1 (317). Later, it was demonstrated that PRDM16 expression is higher in inguinal WAT 
depots, which are more prone to beiging when compared to visceral (318). In addition, 
PRDM16 expression promotes the recruitment of beige adipocytes in WAT and counteracts 
the deleterious effects of diet-induced obesity (318).  

 

1.5.3 Thermogenesis through UCP1 Regulation 
In adipose tissue, the regulation of UCP1 expression and activity is thought to underlie 
functional browning/beiging and change the metabolic profile of adipocytes (35, 158, 159). 
In BAT, β-adrenergic and cAMP signaling are the main regulators of thermogenesis (Figure 
11) (43, 389). In fact, protein kinase A (PKA) senses cellular cAMP cellular variations and 
leads to activation of p38MAPK and CREB transcription factors (49, 50, 320, 338). This 
leads to the activation of PGC-1α1 and subsequent increased expression of thermogenic 
genes including UCP1. Of note, PKA also leads to the activation of lipolysis, which will 
release free fatty acids to mitochondria for oxidation and heat dissipation (392). PGC-1α1 
regulates gene expression in response to cold temperatures, by binding transcription factors 
such as PPARα, PPARγ, retinoid X receptors (RXRs), NRF1 and thyroid receptors (178, 279, 
280, 348, 372). Moreover, some of these transcription factors are nuclear receptors. Thus, 
using specific agonist induces the expression of UCP1 in adipose tissue (150). For example, 
rosiglitazone, a PPARγ agonist induces PGC-1α1 and promotes PRDM16-mediated 
browning (255). In addition to controlling brown adipocyte fate, PRDM16 is necessary for 
WAT browning/beiging by β3-adrenergic receptor downstream signaling (318). Finally, 
another mechanism that contributes to adaptive thermogenesis is the induction of PPARα/δ-
mediated signaling cascades by lipolytic products (235). 
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1.5.4 Hormonal Regulation of Adipose Tissue Browning/Beiging 
Metabolic challenges regulate adipose tissue homeostasis through activation of different 
mechanisms, among which browning/beiging is thought to reduce the risk of developing 
metabolic disease (134). This network of systemic energy adaptations includes local 
molecules or molecules synthesized by other organs such as liver, brain and skeletal muscle. 
Situated in close proximity to BAT and WAT, sympathetic nerve terminals release 
catecholamines upon stimulation. These, in turn, are required for rapid activation of the 
browning/beiging machinery (47). Alternatively activated macrophages (AAMs) have been 
also shown to be a source of catecholamines in WAT (245). Conversely, pro-inflammatory 
macrophages (also known as M1) counteract catecholamine production in obesity (205). 
Among the lipid-derived hormones, prostaglandins have been shown to promote 
browning/beiging. These cyclooxygenase (COX)-dependent molecules activate PGC-1α1 in 
WAT thereby regulating systemic energy homeostasis (212). Moreover, thermogenesis is 
induced by fatty acid derivatives in a PPARγ-dependent manner (204). Among peptides 
hormones, FGF21 has been shown to induce browning/beiging in WAT through stabilization 
of PGC-1α1 protein (103). While other studies have confirmed this, one report showed that in 
the fed-state FGF21 could promote PPARγ-mediated WAT adipogenesis (82). Therefore, a 
physiological model of how local or systemic FGF21 regulates adipose tissue is missing. 
Another secreted molecule shown to induce brown adipocyte differentiation through 
PRDM16 and PGC-1α1 is bone morphogenic protein 7 (BMP-7) (345). BMP-4, on the other 
hand, promotes commitment of mesenchymal precursors to beige adipocytes (281). 

Early studies demonstrated that cold exposure increases sympathetic tone, promoting 
catecholamine-mediated browning/beiging of adipose tissue. Acute cold exposure increases 
heart rate and promotes muscle-mediated shivering thermogenesis (32, 38, 168). This would 
suggest that heart and skeletal muscle are implicated in physiological responses that regulate 
body temperature and heat production. For example, upon cold exposure cardiomyocytes 
release atrial and brain natriuretic peptides (ANP, BNP), which promote browning/beiging of 
WAT (36, 226). In line with this, it has been proposed that this mechanism entails 
evolutionary advantages as it protects from cardiac hypertrophy during chronic cold exposure 
(333). Interestingly, aerobic exercise and cold-induced shivering are implicated in 
browning/beiging of WAT. As mentioned before, skeletal muscle PGC-1α1 and PGC-1α4 
lead to the release of circulating factors that impact adipocyte biology (37, 287, 293). 
Whether these myokines display a physiological role in regulating human systemic energy 
homeostasis through browning/beiging of adipose tissue needs to be further elucidated.  
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1.5.5 Immune Regulation of Adipose Tissue Homeostasis 
Numerous studies have found a role for different immune cell populations on metabolic 
health and disease (252, 263). Initial findings demonstrated that TNF-α negatively regulates 
glucose uptake in murine obesity (152). Similar findings in obese individuals confirmed that 
TNF-α production is higher in obesity and is inversely correlated with weight loss (151, 171). 
Later, macrophages were found to be the main source of TNF-α production in adipose tissue 
of obese mice (361, 373). These seminal studies suggested that low-grade inflammation 
could be associated with obesity and metabolic disease. Of all the organs affected by chronic 
inflammatory processes during obesity, WAT is the most investigated regarding the role of 
different immune populations (64). Immune cells in WAT integrate local and systemic 
signals to modulate metabolic homeostasis (253). It is now accepted that dysfunction of this 
immunological network in WAT can have deleterious effects for metabolic health (92, 206). 
Different examples including, but not limited to, transcription factors such as NF-κB, c-jun 
kinase (JNK) and interferon regulatory factor 4 (IRF4), as well as metabolite-sensing 
receptors PPARγ, farnesoid X receptor (FXR), liver X receptor and GPR120, have been 
described as regulators of immune-metabolic responses (206, 263). These observations have 
highlighted the importance of understanding in detail the interactions between the immune 
system and adipose tissue in lean and obese states. This will bring numerous insights of great 
therapeutic value for metabolic disease.  



 

 28 

 

Immune Cell Populations in Healthy White Adipose Tissue 
Observations in WAT of lean individuals have revealed that resident immune cell 
populations seem to be associated with anti-inflammatory type-2 immune responses (Figure 
12). It appears that the crosstalk between this specific immune adaptation and adipocytes 
results in an integrated regulation of energy homeostasis. Recently, AAMs have been 
associated with metabolic homeostasis in WAT (143, 252, 256). To keep their alternative 
state, these cells are dependent on IL-4, IL-13 and signal transducer and activator of 
transcription 6 (STAT6) (120, 252, 256). Initial studies demonstrated that specific deletion of 
PPARγ in AAMs decreases their number and worsens the metabolic outcomes imposed by 
HFD (254). Later, it was observed that exogenous administration of IL-4 improves AAMs 
response during diet-induced obesity (57, 292). In addition to their anti-inflammatory profile, 
AAMs improve glucose homeostasis and mitochondrial dysfunction by handling iron excess 
in WAT (262). As mentioned before, AAMs were shown to release catecholamines in 
adipose compartments, which then act on β3-adrenergic receptor to induce lipolysis and 
browning/beiging (201, 245, 282, 287). Again, this mechanism was shown to be dependent 
on IL-4/IL-13, IL-4Rα and STAT6 (282, 287). Other studies identified eosinophils as the 
principal source of IL-4 in lean WAT (367). These cells are dependent on IL-5 and the 
transcription factor GATA-binding protein 1 (GATA-1) (298, 300). Moreover, eosinophils 
largely contribute to type-2 immune responses, and their absence aggravates obesity and 
insulin resistance (298, 367). In agreement, mice with overrepresentation of this cell 
population in WAT were preserved from the negative consequences of diet-induced obesity 
(367, 374). It is still not known, however, if these cells have any other function in WAT.  

Another source of IL-4 in WAT are iNKT cells (128, 209). In WAT, iNKT cells seem to 
have a specific phenotype distinct from that observed in spleen and liver (209). They are in 
an alternative activated state and have the ability to produce IL-4 and IL-10. Moreover, they 
can be activated by lipid derivatives coming from adipocytes (165, 209, 286). It was observed 
that in both rodents and humans obesity decreases the relative numbers of iNKT cells in 
WAT. In addition, mice lacking this cell population display severe glucose intolerance and a 
type-1 immune response (209). Taken together, this evidence suggests that eosinophils and 
iNKT cells are the main source of IL-4, an important cytokine driving an anti-inflammatory 
immune profile.  

Another important immune cell population present in the steady state of WAT is composed 
of group 2 innate lymphoid cells (ILC2s) (232, 244). These cells were found to regulate the 
activity of eosinophils and AAMs (228, 249). Belonging to the innate immune responses, this 
group of cells is comprised by three subpopulations: ILC1s produce IFN-γ; ILC2s are 
GATA-3-dependent and produce IL-4, IL-13, IL-5 and IL-9; and ILC3s, RORγ-dependent 
and producing IL-17A and IL-22 (231, 326). Recent studies demonstrated that ILC2 in WAT 
are required to maintain eosinophils and AAMs via IL-5 and IL-13 (228). Moreover, it was 
shown that ILC2 numbers decrease in WAT during obesity, whereas antibody-depletion of 
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ILC2 aggravates insulin resistance and weight gain upon HFD feeding (128). In 2015, two 
different studies showed that ILC2 could directly regulate adipocyte function through the 
release of enkephalin peptides and IL-13 (42, 185), Brestoff and colleagues showed that 
ILC2-derived enkephalin peptides promote UCP1 expression to drive the formation of beige 
adipocytes (42). On the other hand, Lee and colleagues demonstrated that ILC2-derived IL-
13 induces the recruitment and proliferation of beige adipocytes (185).  

 

 

The cytokine IL-33 has been shown to contribute to the initial steps of type-2 immune 
regulation in lean WAT, and to induce the proliferation of ILC2 (230, 232, 244). IL-33 was 
later shown to be crucial to counteract diet-induced obesity (42, 225). Genetic deletion 
studies further confirmed that IL-33 and its receptor are required to prevent alterations in 
glucose metabolism during HFD (42, 225). In addition to IL33-mediated effects on innate 
immunity, this cytokine was found to regulate adaptive immune response in Th2 cells (228) 
and Tregs (311). Tregs are specialized cells on type-2 immune adaptations (44, 125). In 
WAT, evidence suggests that Tregs display a unique profile dependent on PPARγ, Foxp3 and 
IL-10 (66, 75, 100). It was further shown that Tregs contribute to insulin sensitivity via IL-10 
secretion (66, 100). Notably, in obese mice and humans, decreased Treg numbers have been 
observed (66, 100). This phenotype was reverted by exogenous administration of PPARγ-
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agonist (thiazolidinediones), showing that improvements in insulin resistance were due to 
Treg-mediated effects on adipose tissue (66). In sum, it appears that type-2 immune-
metabolic adaptations in lean WAT mediated by IL-33, ILC2s, ILC2-derived enkephalins, 
Tregs, IL-4/-13, IL-10, AAMs and AAM-derived catecholamines cooperate to regulate and 
preserve metabolic homeostasis during several physiological challenges.  

 

Immune Cell Adaptations in White Adipose Tissue during Obesity 
During the course of obesity WAT can suffer the effect of underlying inflammatory 
processes. If imposed chronically, inflammation can contribute significantly to the 
development of insulin resistance and associated complications. The constant accumulation 
of triglycerides drives hypertrophy of white adipocytes. These morphological changes could 
then lead to cellular hypoxia, oxidative stress (69, 266), and to the production of pro-
inflammatory signals such as leptin and resistin (14, 222, 263). This array of pro-
inflammatory mediators starts a cascade of signaling pathways that result in the proliferation 
of type-1 immune populations (Figure 13).  
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In the last decade it has been demonstrated that adipocyte-derived mediators including 
monocyte chemotactic protein (MCP-1), C-X-C motif chemokine 12, leukotrienes and 
prostaglandins, are potent activators of pro-inflammatory macrophages in WAT (6, 243, 
361). The initial response of these macrophages is to scavenge cellular debris (e.g. toxic 
lipids) from dying adipocytes (240). They also release IL-1β, TNF-α and IL-6 (205, 386), 
which can act locally or reach other organs where they can impair insulin sensitivity (123). It 
has also been shown that during HFD feeding and before pro-inflammatory macrophage 
infiltration, there is recruitment of adaptive immune cells such as CD8+ T cells (247, 288). In 
this setting, CD8+ T cells were also found to release IFN-γ (291), which induces CD4+ T 
cells polarization to Th1 pro-inflammatory responses and exacerbation of insulin resistance 
(62, 233, 328). Adipocytes also contribute to the onset of this Th1 response. They try to 
preserve energy homeostasis during excessive calorie intake by releasing leptin, which 
induces collaterally CD4+ T cell-dependent Th1 polarization (77). Collectively, this suggests 
that WAT-type-1 inflammatory responses are orchestrated by adipocytes, CD8+ T cells, 
CD4+ T cells and macrophages. This inflammatory loop will impose detrimental effects on 
WAT that subsequently lead to impaired insulin sensitivity. 

 

1.5.6 Nutrient Sensing by G Protein-coupled Receptors 

Although it is currently appreciated that one of the main contributing factors to obesity is an 
excessive caloric intake accompanied by decreased energy expenditure, it is still not well 
understood why obesity does not always mean glucose intolerance and insulin resistance 
(277). This has led to the suggestion that obesity alone does not cause metabolic disease (25). 
Instead, lifestyle factors such as diet composition might directly impact metabolic 
homeostasis. In fact, nutrients and their metabolites can serve as important signaling factors 
that transduce yet another environmental influence (84).  

GPCRs are membrane receptors that transduce information from local or systemic signals to 
the intracellular environment. These signaling pathways regulate diverse physiological 
processes such as those that mediate metabolic adaptations to our environment. In fact, many 
GPCRs and their ligands have been identified as crucial players in metabolism (30). As 
mentioned before, β-adrenergic receptors modulate environmental adaptations to cold 
exposure by altering adipose tissue metabolism (344). Likewise, GPR40 in pancreatic β-cells 
regulates insulin secretion by sensing fatty acids (157), whereas in intestinal enteroendocrine 
cells, mediates incretin release (83).  

Changes in diet-derived nutrients and metabolites have been proposed to influence systemic 
energy homeostasis (84). Living organisms have evolved molecular ways to transduce diet-
derived signals in an intricate network of organ communication. Moreover, organ-specific 
catabolism of nutrient-derived molecules will subsequently produce metabolites that carry 
downstream messages. From diet-derived Trp consumption to QUIN accumulation, KP-
metabolites are good candidates to be integrators of metabolism due to their interaction with 
different organ-networks. In agreement, KYN metabolite levels are associated with diet-
derived Trp ingestion, and seem to respond to physiological challenges. For instance, KYNA 
could be considered a message-carrier able to integrate environmental challenges as it is 
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produced under aerobic exercise (2, 312), and is a GPR35 agonist (354). The KYNA-GPR35 
interaction suggests they could be a molecular node relevant to metabolic function and 
disease. Indeed, specific agonists confirmed that GPR35-downstream signaling modulates 
glucose homeostasis in metabolic tissues (188). In addition, GPR35 appears to be activated 
by several endogenous ligands and to be mainly coupled to G-alpha subunits (Figure 14) (76, 
210). It was also shown that, in addition to GPR35-mediated regulation of inflammatory 
processes (95, 339), this receptor is activated endogenously by chemokine (C-X-C-motif) 
ligand 17 (CXCL17) at nM concentrations (215). This cytokine has anti-inflammatory 
properties and regulates angiogenesis (186), which further highlights the potential immune-
metabolic functions of this GPCR. Collectively, these observations suggest that GPR35 and 
KYNA could be a relevant cluster for the regulation and integration of systemic metabolic 
homeostasis. 
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2 AIMS 
 

The overall focus of the work presented in this thesis was to investigate the systemic impact 
of skeletal muscle conditioning through PGC-1α1 in the context of depressive and metabolic 
disease.    

Specific aims: 

• To understand and isolate the molecular effects of skeletal muscle conditioning on 
depression. 
 

• To investigate the molecular mechanisms by which physical exercise, through 
conditioned skeletal muscle, exerts beneficial effects on the progression of stress-
induced depression. 
 

• To investigate the behavioral response of skeletal muscle-specific PGC-1α1 
transgenic mice to stress-induced depression. 
 

• To identify novel pathways that mediate the effects of skeletal muscle PGC-1α1 on 
the central nervous system, especially in stress-induced depression.  
 

• To investigate which transcription factors act in concert with skeletal muscle PGC-
1α1 to regulate gene programs relevant to stress-induced depression.  
 

• To verify in both rodent and humans if novel pathways modulated by skeletal muscle 
PGC-1α1 and relevant to stress-induced depression are part of the physiological 
adaptations to exercise training.  
 

• To examine the effect of exercise training on kynurenine metabolism. In particular, 
the effect of skeletal muscle PGC-1α1 and KAT enzymes on KYNA production 
during aerobic exercise. 
 

• To investigate the role of KYNA on systemic energy homeostasis and peripheral 
metabolism. 
 

• To investigate the role of KYNA-GPR35 in adipose tissue function and inflammation. 
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3 RESULTS AND DISCUSSION 
 

 

Study I: Skeletal	
  Muscle	
  PGC-­‐1α1	
  Modulates	
  Kynurenine	
  
Metabolism	
  and	
  Mediates	
  Resilience	
  to	
  Stress-­‐Induced	
  

Depression	
  

 

Exercise interventions benefit human health and are used as a therapeutic strategy for the 
prevention and treatment of several disorders. These range from diabetes, obesity, 
cardiovascular, to even psychiatric diseases such as depression (56). For example, different 
components of exercise – skeletal muscle conditioning, central and immunological 
compartments, social effects among others – confer therapeutic value in the case of 
depression. However, the molecular mechanisms underlying the beneficial effects of 
individual compartments during exercise remain elusive. As mentioned before, skeletal 
muscle PGC-1α coactivators regulate many of the physiological adaptations to physical 
activity (303, 321). In fact, several findings have described that aerobic exercise increases the 
activity of PGC-1α1, which subsequently regulates mitochondrial biogenesis, fatty acid 
oxidation and angiogenesis (11). Exhibiting many of the chronic adaptations to aerobic 
exercise, transgenic mice with skeletal muscle-specific PGC-1α1 overexpression (mck-PGC-
1α1) (196), are a great tool to isolate the impact of skeletal muscle conditioning on diseases 
such as depression. 

The socioeconomic burden of depression stems from the fact that it is a highly debilitating 
disease, causing 35% of years lived with disability worldwide (WHO, Depression [395]). 
Depression has a heterogeneous etiology with underlying molecular mechanisms that remain 
elusive. Nevertheless, chronic stress has been proposed to drive pathophysiological processes 
that lead to disease progression (106). Emerging evidence suggests that stress-induced 
inflammatory changes in the brain affect neurotransmission and synaptic plasticity (203, 
380). Hence, we use one of the most validated models to induce depressive-like behavior in 
rodents (364), the chronic unpredictable mild stress (CMS) protocol. 

Given the different etiologies of depression, a clear understanding of its cause has made its 
treatment and complete remission difficult. Neurotransmitter levels (147), neuroinflammation 
(285), glutamate alterations (305) and synaptic homeostasis (54) are among the molecular 
mechanisms whose disturbance seems to heavily impact the development of this disorder. 
Interestingly, physical activity and exercise have been shown to positively influence most of 
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these disease-contributors (40, 93). Using a muscle-specific PGC-1α1 transgenic model that 
shows many of the chronic adaptations to endurance-type exercise (196), we have aimed 
isolate the physiologic impact of skeletal muscle conditioning in the progression of stress-
induced depression. In this study, we describe how skeletal muscle PGC-1α1 regulates 
peripheral KYN metabolism and prevents the development of stress-induced depression. 
When induced by exercise, PGC-1α1 acts in concert with the transcription factors PPARα/δ 
to induce the expression of KAT enzymes in skeletal muscle. This muscle-specific function 
on KYN metabolism diverts stress-induced KYN elevation in circulation towards the 
production of KYNA. This peripheral shift reduces central levels of kynurenines associated 
with disruption of synaptic homeostasis and depression (237). 

During chronic stress and inflammation peripheral Trp degradation towards the KP has been 
associated with neuroinflammation and the development of depression (316). In this study, 
circulating KYN levels increase after chronic stress and correlate well with its downstream 
toxic metabolite 3HK in the CNS. As mentioned before, during stress or inflammation KYN 
and 3HK can be further degraded towards QUIN in microglia (377). As an NMDAr agonist, 
this metabolite is known to cause exitotoxicity and lead to synaptic disruption. In agreement, 
under our experimental conditions we observe a clear association between circulating KYN 
and the expression of hippocampal synaptic proteins. Given that KYNA has been shown to 
be unable to cross the blood-brain barrier (109), switching peripheral KYN metabolism 
towards KYNA would ease centrally pathophysiological process caused by stress-induced 
inflammation. In fact, we observe that skeletal muscle PGC-1α1-mediated conversion of 
KYN to KYNA confers protective effects in the brain after chronic-stress exposure. 
Compared to wild-type mice, neuroinflammation and synaptic markers in mck-PGC-1α1 
animals are unaffected by chronic stress. Of interest, stressed-transgenic animals show 
reduced body weight gain similar to stressed wild-type mice and higher expression of 
inflammatory markers in skeletal muscle. Collectively, this suggests that mck-PGC-1α1 are 
resilient to stress-induced depression by specific mechanisms related to decreased 
kynurenine-derived toxic metabolites in limbic circuitry as opposed to overall stress-
protection.   

Increased peripheral Trp catabolism and elevation of KYN contribute to the development of 
depressed-like behavior in mice (250). In fact, peripheral exogenous administration alone is 
able to induced same behavioral responses (251). In line with this, mck-PGC-1α1 mice are 
protected from developing depressive-like behavior by intraperitoneal administration of 
KYN. On the other hand, mice with skeletal muscle-specific deletion of PGC-1α1 display a 
more pronounced behavioral response to exogenous KYN administration. In agreement, we 
observed a clear relationship between KYN administration and the expression of 
inflammatory markers in the hippocampus. Taken together, skeletal muscle PGC-1α1 and 
KAT enzymes harness peripheral stress-induced accumulation and central response of KYN.   

Furthermore, we observed that synaptic proteins are dysregulated by chronic stress in wild-
type mice. This suggests that synaptic homeostatic mechanisms might underlie depressive-
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like behavior. Despite these observations, the cause of depression remains unknown. Given 
that stress-induced inflammation mediates significant changes in astrocytic and microglial 
markers only in wild-type mice, this supports the idea that altering homeostatic processes 
regulated by other cell types in brain might directly contribute to synaptic disruption (15, 16, 
24, 71). Nevertheless, it is still unknown how these processes are timely regulated and 
compartmentalized. Interestingly, some regions of the limbic circuitry in mck-PGC-1α1 
display different expression levels at baseline of some synaptic and astrocytic markers. This 
argues for other muscle-to-brain signaling molecules that are regulated by PGC-1α1. As 
recently published (37), skeletal muscle PGC-1α1 regulates the expression of FNDC5, 
cleaved as Irisin, with effects on systemic energy homeostasis (37). This myokine was also 
found to regulate BDNF expression in CNS (366). In our study, we observe that the 
expression levels of BDNF are unchanged in mck-PGC-1α1, which suggests this pathway is 
unlikely to mediate resilience to stress-induced depression. Whether there are other 
contributing factors regulated by PGC-1α1 in skeletal muscle and relevant to stress-induced 
depression remains to be clarified.  

Emerging evidence suggests the presence of an underlying molecular association between 
insulin resistance and inflammation. In addition, alterations in the KP have been postulated to 
be the link between both conditions (265). Interestingly, skeletal muscle PGC-1α1 is reduced 
in diabetes and obesity, which suggests that KYN could contribute to disease progression. 
The same molecular mechanism could offer new avenues of research to clarify why 
individuals suffering from T2D display higher incidence of depression (302, 332).  

There are many components of exercise training with broad health benefits. In order to isolate 
the skeletal muscle compartment we used transgenic models of skeletal muscle conditioning. 
After identifying a mechanism in the skeletal muscle compartment that is relevant to stress-
induced depression, we next aimed at understanding whether this also was part of the 
physiological adaptations to exercise. Indeed, endurance exercise interventions in both 
humans and mice induce PGC-1α, PPARα/δ and KAT enzymes in skeletal muscle. This is 
accompanied by the elevation in circulating KYNA levels in mice. The same findings have 
been shown in humans, where circulating KYNA levels were found to robustly increase after 
extensive aerobic training (190). However, more interventional studies will be needed to 
confirm the role of skeletal muscle PGC-1α/KAT during exercise, especially in depressed 
individuals. In sum, our work has uncovered a physiological role for skeletal muscle, 
mediated through PGC-1α1 and PPARα/δ transcription factors, in the regulation of KYN 
metabolism. Dampening the stress-induced accumulation of toxic metabolites offers great 
therapeutic advantages for depression (316, 369) and other metabolic diseases (265). 
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Study II: Endurance	
  Exercise	
  Increases	
  Skeletal	
  Muscle	
  
Kynurenine	
  Aminotransferases	
  and	
  Plasma	
  Kynurenic	
  Acid	
  in	
  

Humans	
  

	
  

In this study, we show that aerobic exercise training in humans leads to the regulation of 
KYN metabolism. Endurance exercise elevates circulating KYNA levels and decreases 
QUIN/KYNA ratio. Furthermore, we observed that individuals with long-term adaptations to 
endurance exercise training display higher KAT enzyme gene and protein expression in 
skeletal muscle. In line with this, skeletal muscle PGC-1α1 and PPARα exhibit elevated 
expression levels in the same subjects. These results are consistent with our previous findings 
showing that a 3-week endurance exercise protocol in human volunteers induces skeletal 
muscle KAT enzymes. Moreover, we have shown in our previous study that the mechanism 
for KAT gene regulation is mediated by PGC-1α1 and PPARα/δ. In this study, we observe a 
clear relationship between KAT gene expression and PGC-1α1/PPARα, but not PPARδ. 
Supporting an exercise-induced transcriptional activity of PGC-1α1, we observe elevated 
expression of some of its downstream target genes including carnitine O-palmitoyltransferase 
1B (CPT1B), VEGFA and pyruvate dehydrogenase kinase isozyme 4 (PDK4).  

This study confirms a specialized skeletal muscle function on KYN metabolism, in particular 
in the context of endurance-exercise training. We show that the regulation of mRNA and 
protein levels of KAT enzymes in human skeletal muscle is part of the physiological 
adaptations to aerobic exercise. Moreover, this is accompanied by an elevation in circulating 
KYNA levels and a reduction of the QUIN/KYNA ratio. This suggests that during aerobic 
exercise there is a shift within Trp-kynurenine degradation pathway towards KYNA 
production. Interestingly, decreased plasma KYNA levels and high QUIN/KYNA ratio have 
been observed in depressed patients. Collectively, these observations highlight the great 
therapeutic potential of exercise-mimetics in modulating KYN metabolism in the periphery.  

To further investigate whether other type of exercise training influences KYN metabolism in 
humans, circulating KYNA and QUIN/KYNA ratio were determined after an eccentric 
exercise protocol. The latter consists of 100-drop jumps, which leads to skeletal muscle 
soreness and stress (166). In this experimental condition, we observed that KYNA levels and 
QUIN/KYNA ratio were unaffected. This suggests that KYN metabolism is regulated during 
more energy demanding exercise such as endurance-type. This has been previously shown by 
a study performed by Lewis and colleagues, in which circulating KYNA levels were 
substantially elevated in humans after running a marathon (190). In this study, we obtained 
similar results in human subjects that run half-marathon. Altogether, these findings suggest 
that production of KYNA is related to aerobic exercise training. The fact that skeletal muscle 
PGC-1α1 – a mediator of many of the chronic adaptations to endurance exercise including 
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expression of KAT enzymes – modulates this fate set aside skeletal muscle as one of the main 
regulators of KYN metabolism in the periphery.   

The increase in circulating KYNA levels after extensive endurance exercise might be 
correlated with availability of free Trp in plasma. At steady state, Trp is bound to albumin. 
However, in the course of endurance training FFAs are released into circulation, and 
competitively bind albumin (58). This mechanism suggests that skeletal muscle clears plasma 
free Trp for KYNA production. Despite these compelling observations, more studies are 
needed to clarify whether stress-induced accumulation of KYN could lead to higher 
availability of free-Trp or if conditioned skeletal muscle displays higher KYN clearance.  

In this study we further highlighted the effects of exercise on KYN metabolism in humans, 
especially a specialized skeletal muscle function on KYNA production during this metabolic 
challenge. Interestingly, KYNA kinetics after endurance exercise interventions show that 
KYNA rises transiently (1 hour) and is cleared from circulation after 5 hours. Whether 
KYNA is only excreted by the kidneys, as previously proposed (90), or whether it is partly 
used by other organs in the periphery to accomplish a metabolic role remains unknown. With 
this in mind, we wanted to investigate in our next study a possible role for KYNA in 
regulating organ-crosstalk adaptations to energy homeostasis.  

 

 

Study III: Kynurenic	
  Acid	
  and	
  GPR35	
  Regulate	
  Adipose	
  Tissue	
  
Energy	
  Homeostasis	
  and	
  Inflammation 

 

In the CNS, KYN metabolites have been associated with numerous processes including 
neuroinflammation and synaptic homeostasis (316). Moreover, the diverse actions of KYN 
metabolites appear to contribute to pathophysiological disturbances observed in psychiatric 
disorders such as schizophrenia and depression (316). It has been shown that many of these 
disorders display an inflammatory component considered today as one of the main drivers of 
disease progression (316). This concept has gained interest as an explanatory argument for 
the increased incidence of metabolic disease in subjects affected by mood disorders (214, 
248). At the intersection between synaptic and metabolic disturbances dysregulation of the 
KP appears to be a contributing factor to disease onset (265, 329). Given that KYN 
metabolism occurs initially in the periphery and that it contributes to its central regulation, 
understanding the molecular function of its metabolites could provide important therapeutic 
tools and targets. Accordingly, recent findings have observed aberrant levels of these 
metabolites in obesity and T2D (136, 181, 329). Despite this, more functional studies on the 
role of these metabolites in the periphery are still missing. In this study, we investigated the 
biological role of KYNA, an end metabolite of the KP induced by exercise and with anti-
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inflammatory properties (2, 105, 213, 312). Here we show that chronic elevation of KYNA 
(by exogenous administration) lead to regulation of systemic energy homeostasis. We 
observe that the systemic effects of KYNA are mainly mediated by the WAT compartment 
where it induces browning/beiging and an anti-inflammatory immune profile. Other 
molecules involved in mediating skeletal muscle to adipose tissue crosstalk have been 
described before and include Irisin (37), Metrnl (287), BAIBA (293), IL-6 (177) and lactate 
(53). In addition, we observe that KYNA-specific actions on WAT correlate well with the 
expression of GPR35 (expressed higher in WAT than BAT). With knockdown experiments 
in inguinal primary adipocytes, we further confirmed that KYNA-mediated effects depend 
upon GPR35-signaling. 

KYNA and GPR35 signal through elevation of intracellular Ca2+, ERK1/2 phosphorylation 
and increased PGC-1α1 stability. All of which regulate adipose function via adaptive 
thermogenesis and browning/beiging (199, 280, 356, 385). GPR35 association to Gαi/o has 
been shown to inhibit Gαs-dependent cAMP accumulation and mediate ERK1/2 
phosphorylation (210). In line with this, we observed that KYNA potentiates the effects of 
propranolol on β-adrenergic receptors and promotes ERK1/2 phosphorylation. GPR35 has 
also been shown to regulate Ca2+ signaling through interaction with Gq/11 subunits (210). 
Accordingly, we observe that in inguinal primary cultures KYNA increases intracellular Ca2+, 
in a GRP35-dependent manner. Moreover, we could confirm that some KYNA downstream 
target genes are dependent on the presence of GPR35 (for instance, PGC-1α1 and NRF1), 
while others seem to be mediated due to enhanced β-adrenergic activity when GPR35 is 
silenced. These results suggest that silencing GPR35 in inguinal primary adipocytes 
abrogates some of the acute effects mediated by KYNA while losing the dampening effect of 
GPR35 on β-adrenergic activity. Given this observation, we assessed whether chronic KYNA 
treatment sensitizes to a β-adrenergic receptors agonist. Indeed, we observed that a much 
lower dose of isoproterenol was required to elicit functional changes in adipocytes. This 
evidence suggested that KYNA and GPR35 crosstalk with β-adrenergic receptors. To 
evaluate this, we re-analyzed global gene expression profiles in inguinal primary adipocytes 
treated with KYNA. We found that one of the top-regulated genes was indeed a component 
of GPCR signaling, the regulator of G-protein signaling 14 (RGS14). RGS14, whose gene 
expression is dependent on GPR35, has been shown to bind GTP-Gα complexes promoting 
their dissociation to form inactive Gαβγ heterodimers (27, 61). We observed that RGS14 
silencing blunts the KYNA-sensitizing effect on isoproterenol induction of β-adrenergic 
activity. Interestingly, RGS14 has been previously shown to have high expression in brain 
where it regulates spatial learning (322, 323). Here we found that, in addition to the brain and 
spleen, RGS14 is highly expressed in WAT, in particular in subcutaneous WAT. Previous 
reports on Drosophila melanogaster have shown that lacking the RGS14 fly homologue leads 
to increased fat mass and low Gαs-cAMP signaling (198). Taken together, the KYNA-
GPR35-RGS14 axis offers great therapeutic value as it sensitizes β-adrenergic responses in 
adipocytes. This could substitute therapeutic interventions for metabolic disorders where 
direct β-adrenergic agonists confer undesired effects.  
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Seminal studies have demonstrated the role of the KP on immune regulation (213). Thus, 
production of KYN metabolites has been suggested to play a crucial role in breaking an 
overactive immune system (238). KYN and KYNA, in particular, dissipate inflammatory 
process by activating cellular populations specialized in type-2 immune responses. KYNA, 
for instance, dampens pro-inflammatory cytokine release in iNKT cells and mononuclear 
cells (95, 354). In this study, we show that exogenous chronic elevation of KYNA (at 
physiological levels) induces the expression of cytokines that mediate type-2 immune 
adaptations. By analyzing a panel of specific immune cell markers, we could observe that 
KYNA associates with AAMs, ILC2s and Tregs cellular markers. Importantly, these cell 
populations have been shown to reduce adipose tissue inflammation and improve insulin 
sensitivity (41, 183). In addition, we found that KYNA induces IL-33. This cytokine 
regulates the proliferation of Tregs and ILC2s, and induces browning/beiging of WAT (185). 
Moreover, IL-33 enhances ILC2-proenkephalin expression and is considered to play a crucial 
role in maintaining anti-inflammatory immune adaptations in WAT. We observed that 
KYNA induces a similar profile in both visceral and subcutaneous adipose depots. 
Collectively, these findings are in line with previous results indicating an anti-inflammatory 
role for KYNA. Hence, having a specialized immune function in WAT opens new avenues 
for KYNA-dependent modulation of the immune-metabolic interaction. This could offer 
alternative therapeutic interventions for insulin resistance and T2D.  

Given the KYNA-induced effects including regulation of systemic energy homeostasis, 
functional changes in adipocyte function, and immune regulation in WAT depots, we next 
investigated whether chronic KYNA administration could modulate similar processes in mice 
fed a HFD. Indeed, we observed that mice on a HFD and receiving exogenous KYNA reduce 
weight gain, ameliorate glucose tolerance and decrease triglycerides levels in plasma. In 
addition, KYNA rescues the HFD-mediated reduction in the expression of thermogenic and 
lipolytic genes. Moreover, we observed a KYNA-mediated anti-inflammatory immune 
profile in WAT of mice on a HFD.  

Interestingly, elevating KYNA levels both acute and chronically decreases circulating levels 
of some metabolites of the KP such as QUIN, 3HK and PA. Among these, QUIN and 3HK 
have been shown to be toxic in numerous tissues if they are accumulated. Furthermore, we 
observed that KYNA elevates circulating levels of nicotinic acid, which suggests that KYNA 
can regulate the levels of other metabolites from the KP and metabolites from other pathways 
that influence Trp catabolism. Understanding this mechanism could be of physiologic 
relevance, as KYNA accumulation would preserve the immune-tolerant effect of Trp-
degradation while avoiding accumulation of toxic metabolites. Of note, KYNA induces 
changes in PGC-1α1 and PPARα in WAT. These transcriptional regulators modulate the 
expression of KAT enzymes in skeletal muscle (2). In agreement, as KYNA modifies WAT-
depots towards a beige phenotype, it also increases the expression of KAT enzymes. This 
could possibly explain the observed circulating levels of KP metabolites. Collectively, these 
observations suggest that KYNA-mediated changes in adipose tissue function are 
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accompanied by modulation of KYN metabolism in the same organ. This overall metabolic 
regulation could have implications not only for metabolic disorders but also for depression.  
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4 CONCLUSIONS & FUTURE PERSPECTIVES 
 

The general aim of this thesis was to investigate molecular mechanisms in conditioned or 
exercised skeletal muscle that contribute to overall health. Using murine genetic models that 
mimic many of the chronic adaptations to aerobic exercise, we wanted to isolate the skeletal 
muscle compartment from other exercise components in the context of stress-induced 
depression. Our studies indicate that skeletal muscle PGC-1α1, together with PPARα/δ, 
regulate peripheral KYN metabolism via the expression of KAT enzymes. This mechanism 
shifts KYN degradation towards KYNA production. In addition, we verified in both rodent 
and humans that this axis is part of the physiological adaptations to endurance exercise. Since 
this exercised-mediated mechanism leads to accumulation of KYNA in the periphery, we 
investigated the role of this metabolite in regulating systemic energy homeostasis. Our results 
indicate that KYNA plays a role in peripheral energy metabolism as it contributes to the 
regulation of adipose tissue function and inflammation. These previously unknown functions 
of PGC-1α1 in skeletal muscle and KYNA in white adipose tissue offer promising 
therapeutic value for the treatment of depression and metabolic diseases such as T2D. The 
results can be summarized as follows: 

 

Study I 

• Mck-PGC-1α1 transgenic animals are resilient to chronic mild stress-induced 
depression. 

• Skeletal muscle PGC-1α1 induces the expression of kynurenine aminotransferases 
(KATs), and enhances peripheral metabolism of KYN to KYNA. 

• Mck-PGC-1α1 mice are resilient to depressive-like behavior induced by exogenous 
KYN administration. Whereas skeletal muscle-specific deletion of PGC-1α1 
sensitizes to KYN-induced depressive-like behavior. 

• PGC-1α1, together with PPARα/δ regulate myotube KAT enzyme expression. 
• Aerobic exercise training increases murine and human KAT expression in skeletal 

muscle. 

Study II 

• In humans, the PGC-1α1-PPARα-KAT axis is part of the physiological adaptations to 
aerobic exercise. 
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• Both mRNA and protein levels of skeletal mucle KAT enzymes increase after 
endurance-exercised training. 

• Endurance-training leads to the elevation of circulating KYNA 1 hour after the 
exercise intervention.    

Study III 

• KYNA regulates systemic energy expenditure and induces a brown/beige 
transcriptional signature in subcutaneous and visceral adipose depots. 

• Adipose depots of KYNA-treated mice reveal a gene expression profile of anti-
inflammatory immune cells. 

• Specific visceral WAT Tregs and ILC2 gene signatures are among the KYNA-
induced genes. 

• KYNA has cell-autonomous actions in inguinal primary adipocytes. The adipocyte 
gene expression signature generated by KYNA partially overlaps with that of other 
known thermogenic agents. 

• Activation of adipocyte GPR35 by KYNA activates Ca2+ / ERK / CREB / PGC-1α1 
signaling. 

• A crosstalk between KYNA-GPR35 and β-adrenergic receptor is mediated by RGS14 
• KYNA administration induces weight and adiposity loss and prevents high-fat diet-

induced weight-gain. 
• Brown/beige adipose tissue expresses high KAT levels. 

 

Skeletal muscle PGC-1α1 orchestrates many physiological states where cells  try to regain 
control of energy homeostasis. Therefore, the observation that this transcriptional coactivator 
modulates KYN metabolism may have relevant implications for several diseases. It would be 
interesting to evaluate if KYNA has an autocrine function in skeletal muscle, regulating 
either energy adaptions or different immune populations. This could have potential 
implications in the context of muscle-related diseases.  

Interestingly, PPARα/δ are transcriptionally regulating the expression of KAT enzymes in 
skeletal muscle. PPARα/δ are ligand-regulated transcription factors, which implies that their 
pharmacological manipulation could offer an alternative therapeutic intervention to modulate 
KYN metabolism. It would be interesting to assess whether such approach could be used in 
stress-induced depression as well as metabolic diseases.   

Skeletal muscle PGC-1α1-PPARα/δ-KAT enzymes with subsequent production of KYNA 
are part of the physiological adaptations to endurance exercise in both rodents and humans. It 
would be interesting to evaluate whether manipulation of this specific axis could increase 
exercise performance or enhance the molecular adaptations to exercise. 
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Peripheral shifting of KYN metabolism to KYNA can have broad applications for immune 
and metabolic disorders. It would be interesting to better understand which immune 
populations are being directly influenced by KYNA in other organs such as liver and 
pancreas. Likewise, what are the molecular downstream signalling events governing such 
regulations. 

KYNA appears to influence other metabolites from the KP. It would be interesting to 
understand how exactly KYNA regulates the levels of metabolites from the other branch of 
the pathway (3HK and QUIN), while increasing circulating levels of nicotinic acid. Of 
interest, the KYNA-nicotinic acid regulation could be further investigated as it could open 
new areas of research for understanding the possible KYNA-mediated regulation of NAD+ 
levels.  

The KYNA-GPR35 interaction seems to be a relevant molecular node for energy 
homeostasis. It would be compelling to assess what is the molecular mechanism controlling 
GPR35 expression. As this physiological interaction seems to integrate molecular responses 
to environmental challenges, its transcriptional regulation could offer a therapeutic window 
where activity of downstream signaling could be pharmacologically manipulated.  

The KYNA-GPR35-RGS14 axis seems to mediate crosstalk with β-adrenergic receptors. It 
would be interesting to find potent molecular activators of RGS14. This could offer open 
novel avenues for treatment of metabolic diseases where combined therapeutic interventions 
would reduce the side effects of β-adrenergic agonist.  

Exercise training promotes many molecular adaptations that are not limited to one specific 
organ or cell type. These widespread events are likely to impact many pathophysiological 
processes that silently drive disease progress. More than mimicking the entire plethora of 
adaptations to physical activity, understanding individual components in different disease 
context becomes important. This would allow us to manipulate exercise-mediated networks 
that are relevant to specific disorders. As the field progresses, it becomes evident that the 
physiological adaptations to exercise happen ubiquitously. This fact entails many challenges 
for future research that could be addressed with an integrative approach to study inter-organ 
communication. Finally, this will help us to understand the behaviour of specialized 
molecular nodes in the regulation of energy homeostasis and other physiological adaptations. 
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