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ABSTRACT 

Common variable immunodeficiency (CVID) is the most frequently 

encountered primary immunodeficiency disorder in clinical practice and is a 

cause of significant morbidity and mortality for patients. The main clinical 

features are hypogammaglobulinemia, recurrent infections and autoimmune 

disorders. Unlike the majority of primary immunodeficiency disorders, 

pinpointing a specific genetic association has been challenging.  

The objective of this work was to use next generation sequencing (NGS) 

technology in the form of whole exome sequencing (WES) to identify genetic 

associations with CVID. 

Candidate patients were selected based on parental consanguinity and 

availability of clinical specimens from them and their family members. Whole 

exome sequencing was performed and identified potential mutations which 

were confirmed by Sanger sequencing, followed by characterization of the 

novel mutations by immunological techniques. 

In Paper I, genetic analysis identified four novel CD27 mutations: homozygous 

missense mutations C96Y and R78W; heterozygous nonsense C10X; and 

compound heterozygous W8X-R107C resulting in a clinical phenotype of 

CD27 deficiency. 

In Paper II, whole exome sequencing revealed a novel W56X mutation in the 

RAC2 gene resulting in a CVID-like phenotype with prominent autoimmune 

disease. Newly identified abnormalities of neutrophil granules were identified 

by transmission electron microscopy. 

In Paper III, five novel mutations in the LRBA gene resulting in varied clinical 

phenotypes were presented in the context of a review of all published cases, 

thus providing a clinical summary. 

In conclusion, this work has shown the validity of employing whole exome 

sequencing in identifying genetic associations with CVID and CVID-like 

disease; and has provided a better overview of the diverse clinical phenotypes 

associated with mutations in CD27, RAC2 and LRBA and their resultant protein 

deficiencies. 
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1 INTRODUCTION 

 

1.1 PRIMARY ANTIBODY DEFICIENCY 

 

The spectrum of the disease phenotypes related to disorders of immunity 

encountered in clinical practice are numerous and lead to much suffering for 

patients [1-4]. Primary immunodeficiency disorders (PIDs) occur as a result 

of mutations affecting genes related to the function of proteins and cells of 

the immune system [5-9]. Primary antibody deficiencies (PADs) represent 

the most common forms of PIDs according to the majority of studies and 

national registries [2, 3, 10-38]. Alternatively, some studies suggest that 

PADs are less frequent than other PIDs in those populations [39-45]. 

Among PADs, the most common clinical phenotype is selective IgA 

deficiency (IgAD), followed by common variable immunodeficiency 

(CVID), a disorder characterized by hypogammaglobulinema, a varied 

phenotype and an onset that might range from early childhood to late 

adulthood [2, 46-49].  

Common variable immunodeficiency comprises a heterogeneous group of 

disorders with a wide spectrum of immunological and clinical features [2, 

50, 51]. Common clinical and laboratory characteristics include 

hypogammaglobulinemia, inadequate response to antigen challenge and 

recurrent infections (mostly of the respiratory tract) [52-59]. 

However, other clinical features also occur, including autoimmune disorders 

(e.g., autoimmune cytopenias, autoimmune hepatitis, primary biliary 

cirrhosis), inflammatory bowel disease (IBD), IBD-like disease, nodular 

lymphoid hyperplasia (NLH) and liver disease/abnormal liver function tests 

(LFTs) [2, 53, 58, 60, 61]. 
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1.2 PREVALENCE, DIAGNOSIS AND ETIOLOGY/GENETICS OF 
CVID 

 

Precise data on the prevalence of CVID is lacking, but estimates are between 

1:10,000 and 1:100,000 of the population worldwide suffers from the 

disease, with no predilection for race [62-64], making it the most common 

symptomatic primary immunodeficiency encountered in clinical practice 

[22, 65]. Most cases of CVID are sporadic, but approximately ten percent 

demonstrate familial clustering [66]. 

Establishing a diagnosis of CVID (and subsequent treatment plans) is not 

always a simple task [2, 67-69], as reflected by the latest Working 

Definitions for Clinical Diagnosis of PID from the European Society for 

Immunodeficiencies (ESID) [70].  

The current diagnostic criteria are as follows: 

 

1. At least one of the following: 

 infectionبtoبsusceptibilityبIncreasedب•

 Manifestations of autoimmune diseaseب•

 diseaseبGranulomatousب•

 lymphoproliferationبpolyclonalبUnexplainedب•

 deficiencyبantibodyبwithبmemberبfamilyبAffectedب•

2. AND marked reduction of IgG and IgA levels with or without low 

IgM levels (measured at least twice; less than 2 standard deviations of 

the normal levels for age); 

3. AND at least one of the following: 

بabsentبand/or)بvaccinesبtoبresponseبantibodyبPoorب•

isohaemagglutinins); 
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 proportions of switched memory B cells (<70% of age-relatedبLowب•

reference value) 

4. AND secondary causes of hypogammaglobulinaemia have been 

excluded 

5. AND a diagnosis should be established after the 4th year of life 

(however, symptoms may occur before the age of 4 years) 

6. AND the absence of profound T cell deficiency, which is defined as  

the presence of two out of the following three parameters (y=year of 

life): 

CD4ب•
+
 T cell count/microliter:  

 2y-6y <300,  

 6y-12y <250,  

 Above 12y <200 

of naive CD4بProportionب•
+
 T cells:  

 2y-6y <25%,  

 6y-16y <20%, 

 Above 16y <10% 

  Absent T cell proliferationب•

 

The significant variation in clinical features, challenges in 

establishing/unifying laboratory cut-off  values across different populations 

and the considerable overlap that exists between other conditions (e.g., class-

switch recombination (CSR) defects) and CVID, has led to the designation 

“CVID-likeبdisease”بforبcasesبthatبareبinitiallyبlabelledبasبCVIDبorبthatبdoب

notبfulfillبtheب‘official’بdiagnosticبcriteria[72 ,71]ب. 

Investigations into the underlying etiology of CVID have led to the 

identification of several genes associated with CVID and CVID-like disease. 
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Many studies conducted in the search for genetic causes of CVID have been 

performed on mixed cohorts of IgAD and CVID patients, as both disorders 

may occur in the same kindred or progress from IgAD to CVID [66, 73-75].  

Genetic defects identified thus far include mutations in the genes encoding 

ICOS (inducible costimulator) [76-81], TNFRSF13B (tumor necrosis factor 

receptor superfamily member 13B), also known as TACI (transmembrane 

activator and CAML interactor) [82-84], BAFFR (B-cell activating factor 

receptor) [85], IL-21 (interleukin-21) [86], MSH5 [87], CD20 [88], LRBA 

(lipopolysaccharide responsive beige-like anchor protein) [51], IRF2BP2  

(Homo sapiens interferon regulatory factor 2 binding protein 2) [89],  

CTLA4 (cytotoxic T-lymphocyte-associated protein 4) [90], CLEC16A (C-

type lectin domain family 16, member A) [91], CD27 [92, 93], RAG1 

(recombination-activating gene 1) [94], JAK3 [95], ITPKB (inositol 1,3,4, 

trisphosphateبkinaseبβ)[96]ب, CD19 [97], CD21 [98], PI3KR1 [99] and CD81 

[100]
 
.  

However these mutations only account for the etiology of approximately 

10% of CVID patients, and the potential genetic associations remain largely 

unknown in the vast majority of cases [50, 51, 101, 102].  

Conventional approaches for determining the potential genetic etiologies for 

PIDs have included the candidate gene approach, conventional Sanger 

sequencing, polymorphism analysis, positional cloning, somatic cell-fusion 

experiments, fluorescence in situ hybridization (FISH),  genetic linkage 

and/or homozygosity mapping [92, 98, 103-116]. Genome-wide association 

studies (GWAS) have also been employed [91, 117, 118].  

The advent of more advanced technologies, such as next-generation 

sequencing (NGS), coupled with enhanced algorithms for bioinformatics 

have enabled a much wider approach for genetic analysis and has been 

successful in the search for genetic associations with PIDs [119-128]. The 

process has subsequently become less labor-intensive, more cost-effective 
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and, from a clinical standpoint, offers shorter turn-around times for reaching 

definitive or tentative genetic diagnoses in patients with immunodeficiencies 

by using whole exome sequencing (WES) or whole genome sequencing 

(WGS) alone, or combined with conventional methods [99, 118, 121, 122, 

125, 126, 129-158]. 

 

1.3 GENETIC LINKAGE ANALYSIS 

 

Genetic linkage studies have been conducted in the context of CVID/IgA 

deficiency with earlier studies focusing on the major histocompatibility 

complex (MHC) region on chromosome 6 and mostly show linkage without 

pinpointing the exact location of the putative disease-related gene in the 

MHC region [159-161]. The MHC susceptibility locus was designated 

IGAD1 [162, 163]. 

Following these studies, genome-wide linkage studies were performed. An 

analysis of 210 IgA deficiency/CVID families identified HLA-DQ/DR as the 

major IGAD1 locus [164]. Further genome-wide linkage analysis of 101 

families with 383 marker loci showed the highest linkage scores at the short 

arm of chromosome 6, and these scores were not obtained in any other 

location of the genome [164]. Subsequent re-analysis specifically searching 

for CVID-associated loci (40 families with a minimum of one member 

affected by CVID) showed a susceptibility locus on the long arm of 

chromosome 16 and the WWOX (WW domain-containing oxidoreductase) as 

a putative CVID-associated gene, but no mutations were detected upon 

sequencing [73]. 

 

Another study identified genetic linkage of autosomal dominant CVID to 

chromosome 4q in a genome-wide scan of a five-generation family with five 
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cases of IgAD, six cases of CVID, and three cases of 

dysgammaglobulinaemia [74]. Further extension of the study to include 32 

families (with at least one case of CVID and another case with CVID or 

IgAD) supported the linkage to chromosome 4q. Potential candidate genes in 

the region (NFκB1, SCYE, CASP6, DAPP1, BANK1) were sequenced in a 

single individual from the large family but no mutations were identified. 

 

1.4 GWAS AND NGS IN CVID 

 

CVID shows heterogeneity in both clinical features and in immunological 

phenotype which would point to a high probability of a complex polygenic 

etiology. Genetic mutations have been identified in a small proportion of 

CVID cases. 

Most studies have focused on monogenic defects causing or contributing to a 

CVID or CVID-like phenotype, as well as a limited number of genetic 

linkage studies. Advances in technology have allowed high-throughput 

genome-wide single nucleotide polymorphism (SNP) genotyping. 

Recently, Abolhassani et al, using a combination of homozygosity mapping 

and whole exome sequencing, identified a hypomorphic recombination-

activating gene 1 (RAG1) mutation in a patient with CVID-like disease [94]. 

Mutations in LRBA were identified in five cases of early-onset 

hypogammaglobulinemia with autoimmunity and IBD-like disease using 

genome-wide SNP typing, DNA sequencing and genetic linkage analysis 

[51]. Additional novel LRBA mutations were identified using WES and 

confirmatory sequencing in CVID-like disease and IBD-like disease [142, 

149].  

Li et al. compared 778 CVID cases with approximately 11,000 controls 

across 123,127 SNPs using the Immunochip (a genotyping array with dense 
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coverage of SNPs across 186 known disease loci identified in 12 immune-

mediated diseases), thus identifying a novel CVID susceptibility locus 

harboring CLEC16A (C-Type Lectin Domain Family 16, Member A) [91]. 

van Schouwenburg et al. used whole genome sequencing and RNA 

sequencing (RNAseq) on 34 patients of Caucasian origin with sporadic 

CVID who fulfilled the ESID diagnostic criteria at the time of enrollment 

[165]. Their cohort included 29 patients who were analyzed in the study by 

Orange et al [117]. The study identified 43 potentially pathogenic rare 

variants of which 39 were located in the MHC region. Their results 

corroborated earlier findings of variation in TNFRSF13B, TNFRSF13C and 

NLRP12 [82, 166-169]; and identified variants that would potentially 

produce a CVID-like phenotype by affecting B-cell receptor (BCR) function, 

including IKBKB, CD79a, BTK, KRAS, ARID3A, INPP5D, BANK1, BLK, 

GAB2, BTK, BLK and ARID3A. 

Additional potential pathogenic pathways leading to the development of 

CVID were identified. Among these, the death receptor pathway was 

identified by both whole genome sequencing and RNA-seq analyses. This 

finding, coupled with the increased expression of the apoptosis inducing 

receptor gene FAS, and variations in other apoptosis related genes (TNFAIP3 

and TNIP1), suggest dysregulated apoptosis in patients with CVID [165, 

170]. 

A role for defects of the non-homologous end joining (NHEJ) pathway (an 

essential pathways V(D)J recombination and class–switch recombination) in 

the pathogenesis of CVID-like disorders has been hypothesized based on 

observations of an incomplete developmental block in B cell ontogeny in the 

bone marrow of CVID patients compared to healthy subjects [171-173]. van 

Schouwenburg et al. also detected variants in DCLRE1C, PRKDC, RAG2, 

NHEJ1, MRE11A, ATM and NLRP2 which are all important in the NHEJ 

pathway in B cells [165]. 
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Overall, these studies illustrate the utility of GWAS, NGS and RNAseq 

analyses in investigating the genetic etiology/associations with CVID and 

CVID-like disease pointing to a polygenic etiology of these 

immunodeficiencies. 
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2 AIMS 

2.1 GENERAL AIM 

The general aim of the work presented in this thesis was to identify a genetic 

association with common variable immunodeficiency by screening probands 

from consanguineous families to confirm any genetic associations and to 

perform follow up analyses. 

 

2.2 SPECIFIC AIMS 

2.2.1 Paper I 

To functionally characterize the novel CD27 mutations identified and to 

provide a clinically relevant summary of all cases of CD27 deficiency reported. 

2.2.2 Paper II 

To functionally characterize the novel loss-of-function mutation identified in 

the RAC2 gene leading to a CVID-like phenotype. 

2.2.3 Paper III 

To provide a clinically relevant summary of all reported cases of LRBA 

deficiency together with five novel mutations leading to the LRBA deficiency 

phenotype. 

 

2.3 TRANSLATIONAL AIM 

The translational aim of this thesis was to provide clinicians treating patients 

suffering from PIDs with the following: 

1. Updated clinical, laboratory and mutation analysis for selected cases of 

common variable immunodeficiency. 

2. Provide awareness of the feasibility of using whole exome sequencing to 

identify a genetic etiology for PIDs.
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3 MATERIALS AND METHODS 

 

3.1 SELECTION OF PROBANDS 

 

Medical records and family pedigrees were evaluated for patients and family 

members (n =130 families) from multiple medical centers including follow-up 

of previously reported patients. Informed consent was obtained from all patients 

and/or their legal guardians. Ethical permits were obtained from the ethics 

committees of all participating centers. Candidate probands for whole exome 

sequencing were selected based on the clinical history, family history of 

parental consanguinity and availability of clinical samples for DNA extraction 

from the probands and family members. 

3.2 WHOLE EXOME SEQUENCING 

3.2.1 DNA extraction, library preparation and exome sequencing 

 

Genomic DNA was extracted using the salting-out method on peripheral blood 

samples collected from the probands and their family members [174].  Three 

micrograms of genomic DNA was randomly fragmented using the Covaris 

Acoustic System. Adapters were then ligated to both ends of the fragments. The 

adaptor-ligated DNA templates were purified with Agencourt AMPure SPRI 

beads where fragments with an insert size of about 200 bp were excised. 

Extracted DNA was then amplified by the ligation-mediated PCR (LM-PCR), 

purified and hybridized to the Agilent SureSelect Human All Exon 50 Mb kit 

for enrichment. The hybridized fragments were subsequently bound to 

streptavidin beads and non-hybridized fragments were washed off after 24 

hours. Captured LM-PCR products were subjected to quantitative PCR by an 

Agilent 2100 Bioanalyzer to measure the magnitude of the enrichment. Each 

captured library was then loaded on a Hiseq2000 Illumina sequencer according 
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to the protocol of the manufacturer and high-throughput sequencing was 

performed to obtain the desired sequencing depth.  

3.2.2 Read mapping and variant analysis 

 

Processing of raw image files was done using the Consensus Assessment of 

Sequence and Variation software (CASAVA, version 1.7) for base calling using 

default parameters.  Then sequences for each subject were generated as 90-bp 

paired-end reads. The sequenced reads were aligned to the human genome 

reference (UCSC hg 19 version; build 37.1) with SOAP aligner (soap2.21) 

software [175]. This was followed by filtering out duplicated reads and only 

uniquely mapped reads were kept for further analysis. SOAPsnp (version 1.03) 

software  [176]  was then used with the default parameters to assemble the 

consensus sequence and call genotypes in target regions. For single nucleotide 

polymorphism (SNP) quality control, low-quality SNPs that fulfilled one of the 

following four criteria were filtered out:  

(1)  Quailty of genotype < 20  

(2)  A sequencing depth  < 4 

(3)  Estimated copy number > 2 

(4)  Distance from the adjacent SNPs < 5 base pairs.  

The Unified Genotype tool from GATK (version v1.0.4705) [177] was 

employed to detect  small insertions/deletions after alignment of the high-

quality reads to the human reference genome by using the Burrows-Wheeler 

transformation (version 0.5.9-r16) [178]. 

3.2.3 Analysis protocol for exome sequencing results 

 

Synonymous mutations were filtered out and then common variants (frequency 

> 1%) were eliminated. The prioritization of non-synonymous/splice site 
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(NS/SS) changes and insertion/deletions (Indels) was performed according to 

the following criteria: 

1. The presence of homozygous or compound heterozygous variants;  

2. Primary immunodeficiency disease associated genes based on the RAPID 

website (http://rapid.rcai.riken.jp/RAPID/index_html) and in-house 

database;  

3. The core obtained by predictive software scoring the probability of 

pathogenicity (Polyphen-2: http://genetics.bwh.harvard.edu/pph2 and 

SIFT: http://sift.bii.a-star.edu.sg).  

4. Searching genes in the regions previously highlighted by homozygosity 

mapping analysis. 

 

3.3 CONFIRMATORY SANGER SEQUENCING  

 

Confirmatory sequencing for mutations was performed using sequence-specific 

primers using standardized protocols as previously described for CD27 [179], 

RAC2 [94, 180] and LRBA [51]. 

3.4 TRANSMISSION ELECTRON MICROSCOPY 

 

Neutrophil transmission electron microscopy was performed according to the 

previously published method [51]. 

 

3.5 SOLUBLE CD27 ENZYME-LINKED IMMUNOSORBENT ASSAY 

 

The concentration of soluble-CD27 (sCD27) was determined by enzyme-linked 

immunosorbent assay (ELISA) in stored serum samples using the PeliKine 

http://rapid.rcai.riken.jp/RAPID/index_html
http://genetics.bwh.harvard.edu/pph2
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Compact
TM

 human soluble CD27 ELISA kit (Sanquin, Amsterdam, The 

Netherlands) followingبtheبmanufacturer’sبinstructions. 

 

3.6 B CELL ACTIVATING FACTOR (BAFF) ELISA  

 

The concentration of soluble BAFF was measured using the Human BAFF 

SimpleStep ELISA
TM

 kit (Abcam, Cambridge, United Kingdom) following the 

manufacturer’sبinstructions. 

3.7 STATISTICAL ANALYSES  

 

Statistical analysis was performed using the SPSS software package v21. One-

sample Kolmogrov-Smirnov test was used to estimate the type of distribution of 

the ELISA data. Parametric and nonparametric analyses were subsequently 

performed based on this evaluation and a p value of less than 0.05 was 

considered statistically significant 

3.8 RAC2 WESTERN BLOTTING 

 

Wild type and RAC2 mutant expressing constructs were generated by 

previously described methods [181]. The expressing constructs were transfected 

intoبhumanبfibroblastبcellبlinesبusingبTurbofectبaccordingبtoبtheبmanufacturer’sب

protocol (Fermentas, Berlington, Ontario, Canada).  

ProteinبsamplesبwereبdilutedبinبLaemmli’sبsampleبbufferب(Bio-Rad, CA, USA), 

and 30 µg of total cell lysates/lane was subjected to 12% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The resolved proteins 

were transferred onto Amersham Hybond electrogenerated chemiluminescence 

(ECL) Nitrocellulose membranes (Amersham, GE Healthcare, United 
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Kingdom) using a mini-Trans-Blot cell system (Bio-Rad). Following transfer, 

membranes were washed with Tris-buffered saline containing 0.1% Tween-20 

(TBST) and then blocked in Blocking buffer (5% skim milk in TBST) for one 

hour at room temperature. The membranes were then incubated overnight with 

anti-RAC2 rabbit polyclonal carboxy-terminus antibody at a dilution of 1:5000 

(07-604; EMD Millipore, MA, USA) in TBST containing 5% skim milk at 4ºC. 

After washing five times for 5 min in TBST, membranes were incubated with 

anti-Rabbit immunoglobulin conjugated with horseradish peroxidase (HRP) at a 

dilution of  1:50000 (P0399; Dako Agilent Technologies, CA, USA) for one 

hour at room temperature. The membranes were washed four times (10 min per 

wash) with TBST. Finally, proteins were visualized with ECL Plus Western 

Blotting Detection Reagent (Amersham, GE Healthcare, United Kingdom), and 

exposed to Hyperfilm ECL (Amersham, GE Healthcare, United Kingdom). 

3.9 LRBA WESTERN BLOTTING  

 

Peripheral blood mononuclear cell (PBMC) extracts were obtained by standard 

techniques and protein levels were measured using the Micro BCA
TM

 Protein 

Assay Kit according to the manufacturer’s instructions (Thermo Scientific, MA, 

USA). Western blotting was performed according to standard techniques and 

anti-LRBA antibody as previously described [51] with the substitution of the in-

house gel with pre-cast Mini-PROTEAN® TGX
TM

 4%-20 gradient gel (Bio-

Rad, CA, USA). 

3.10  TREC AND KREC ANALYSIS  

 

T-cell recombination excision circles (TREC) and kappa-deleting element 

recombination circle (KREC) analysis was performed according to the 

previously published protocol [182] on DNA samples obtained for whole 

exome sequencing by the salting out method.  
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4 RESULTS AND DISCUSSION 

 

This research project focused on searching for genetic alterations potentially 

contributing to the pathogenesis of primary antibody deficiency by employing 

whole exome sequencing as the primary investigative tool in selected candidate 

probands. 

The search culminated in the identification of ten novel mutations associated 

with CVID, CVID-like disease, lymphoproliferative disease and inflammatory 

bowel disease.  

 

4.1 PAPER I 

 

Novel Mutations in TNFRSF7/CD27: Clinical, Immunologic, and 

Genetic Characterization of Human CD27 Deficiency 

 

4.1.1 Novel mutations resulting in CD27 deficiency 

 

Four novel mutations that resulted in CD27 deficiency were identified: 

 Homozygous missense c.G287A (p.C96Y) 

 Homozygous missense c.C232T (p.R78W) 

 Heterozygous nonsense c.C30A (p.C10X)  

 Compound heterozygous c.G24A - c.C319T ( p.W8X - p.R107C)  

Two homozygous mutations (p.W8X and p.C53Y) resulting in a CD27 

deficiency phenotype had been described previously [92, 93, 146]. The 

identification of these novel mutations correlated with the finding in the 
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previously published patients and also suggested that a compound heterozygous 

mutation can also lead to a CD27 deficiency phenotype. The location of the 

novel mutations and previously identified mutations are illustrated in Figure 1. 

 

 

 

Figure 1. Three-dimensional structure of human CD27 showing the locations of the identified 

mutations. [179] (Paper I) 

 

Analysis of the  c.C319T/p.R107C mutation  in silico using the Scratch Protein 

Predictor [183] showed that it would induce a disulphide bond to form between 

Cysteine residue 107 and Cysteine residue 112, resulting in replacement of the 

bond between Cysteine residue 106 and Cysteine residue 112, potentially 

resulting in the formation of a mis-folded protein.   

The SIFT (Sorting Intolerant From Tolerant) and PolyPhen-2 (Polymorphism 

Phenotyping v2) software programs were used to predict the effect of the 

substitution of an amino acid on protein structure and function.  
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The SIFT (0.04) and PolyPhen-2 (1.000) scores for p.C96Y predicted a 

damaging effect on protein function. The p.C96Y mutation would probably 

abolish the formation of a disulphide bond involved in protein folding [184].  

The SIFT (0.01) and PolyPhen-2 (1.000) scores for mutation p.R78W also 

predicted a damaging effect on protein function.  

For the p.R107C mutation, a damaging effect was predicted by the SIFT score 

(0.02), and a possibly damaging effect was predicted the by PolyPhen-2 score 

(0.767). 

 

4.1.2 Variable phenotype of CD27 deficiency 

 

Although Epstein-Barr virus (EBV) infection, Epstein-Barr virus-associated 

lymphoproliferative disease (EBV-LPD), hemophagocytic lymphohistiocytosis 

(HLH) and malignancy appear to predominate in CD27 deficiency, a single 

genotype appears to result in different phenotypes. Primary antibody deficiency 

was not the dominant feature overall as it occurred in a minority of patients (P1, 

P15 and P17), all of whom had EBV-related clinical features. As with other 

primary immunodeficiencies, environmental factors and modifier genes might 

impact the clinical phenotype. This was striking in the case of the p.C96Y 

mutation in members of two unrelated kindreds (kindreds G and H, Table I in 

Paper I) where siblings P13 and P14 had a milder clinical phenotype compared 

with P15 and P16, despite all patients having the same genotype. These variable 

clinical phenotypes have been observed in other primary immunodeficiencies 

[185-187]. 
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4.1.3 Reduced expression of CD27 

 

A marked reduction of cell surface expression of CD27 was observed in both T 

and B cells (Figures 2 and 3), and decreased soluble CD27 (sCD27) in 

members of kindred H (P15, P16 and family members) (Figure 4). The 

switched memory B lymphocyte panel shows absent expression of surface 

CD27 for patient P16. Other family members (heterozygous) had expression 

levels similar to the father. 

 

 

Figure 2: Flow cytometric lymphocyte immunophenotyping showing the proportion of 

CD21
+ 

and CD27
+
 B cells in the CD19

+
 B-cell fraction was evaluated in P16 (homozygous 

C96Y), the father of P16 (heterozygous C96Y), and in a healthy control. PerCP, peridinin-

chlorophyll-protein complex; PE, Phycoerythrin (Paper I). 
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Figure 3: Flow cytometric lymphocyte immunophenotyping of patients P11, P12, P13, P14 

and their parents compared to healthy controls. Hom, homozygous; Het, heterozygous (Paper 

I). 
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Figure 4  : Comparison of ELISA results of soluble-CD27 between 25 anonymized healthy 

controls and 10 CVID patients without CD27 deficiency, 4 individuals with a heterozygous 

C96Y mutation (measured 4 times) and patient P16 with the homozygous C96Y mutation 

(measured 4 times). 

 

4.1.4 Increased susceptibility to EBV infection and cellular 
features 

 

The increased susceptibility to EBV infection in patients with CD27 deficiency 

manifests as a spectrum of severity including a relatively benign course, 

recovery after therapy or hematopoietic stem cell transplantation (HSCT), 

severe morbidity, and death due to various complications. 

This finding is significant in view of epidemiologic studies indicating that more 

than 95% of adults worldwide have been infected with EBV [188]; and that 

there is a robust life-long immunologic control of EBV infection in 
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immunocompetent individuals dependent on priming of T cells [189, 190]. 

Indeed, studies on murine lymphocytes indicate that there is a significant defect 

of CD8
+ 

T cell priming as a result of CD27 deficiency, which will be discussed. 

In the T cell compartment, CD4
+
 and CD8

+
 T cell subset numbers were normal 

in the majority of cases. This finding is consistent with findings in the murine 

CD27 knockout (CD27 KO) model, where proportions were similar to WT 

(wild type) mice [191]. However, as human beings are the only known natural 

host of EBV [192], drawing conclusions from murine studies with regards to 

this particular susceptibility is extremely challenging.  

Naive CD4
+
 and CD8

+
 T cells constitutively express CD27 and expression is 

upregulated upon activation [193-195]. The difficulty in interpreting the 

consequences of the presence or lack of CD27 stimulation in vivo, isبCD27’s 

relationship with its only natural ligand, CD70, which also functions as a 

receptor for signal transduction in T and B lymphocytes, dendritic cells (DCs) 

and macrophages [195-199]. In vitro studies using lymphocytes transfected 

with either CD27 or CD70 show that both molecules have important roles in 

interaction between T cells and between T cells and B cells, as well as autocrine 

functions [191, 200-203].  

The absolute counts of CD8
+
 T cells were high in four patients, which might be 

due to the timing of analysis during active infection. A reduced proportion of 

CD8
+
CCR7

+
CD45RA

-
CD45RO

+
 T cells was observed in one patient (P16) 

which might be a result of impaired generation and maintenance of EBV-

specific CD8
+
 T cells. Murine studies show impaired secondary cytotoxic CD8

+
 

T cell expansion in CD27 KO mice exposed to lymphocytic choriomeningitis 

virus [204]. 

In vitro analysis of murine CD8
+
 T cells shows that stimulation via the 

CD27/TCR pathway in the absence of signaling via the interleukin-2 receptor 

results in CD8
+
 T cell proliferation without differentiation into effector cells 
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[201]. The enhanced cell survival apparently results from CD27-mediated 

facilitation of interleukin-7α (IL-7α) expression [201].  In vivo, IL-7 is essential 

for the survival of peripheral murine CD8
+
 T cells [205].  

Murine studies also indicate that signaling via CD27 is important for T cell 

survival, particularly by inducing the production of interleukin-2 (IL-2) that 

stimulates CD8
+
 T cells in an autocrine manner enhancing anti-viral and anti-

tumor immunity as a result of increased survival and accumulation in tissue and 

draining lymph nodes [202]. CD27
 
KO mice had significantly lower numbers of 

IL-2
+ 

interferon-γ
+
 (IFNγ)

+
 CD8

+
 T cells in splenic tissue, pulmonary tissue, and 

draining lymph nodes after influenza virus infection [202]. A similar 

mechanism might be involved in human CD27 deficiency, leading to the 

deficiency of an EBV-specific subset of CD8
+
 T cells (both memory and 

effector cells).  

CD27 KO C57BL/6 mice were found to have decreased accumulation of CD8
+
 

and CD4
+
 effector T cells in the lungs, which was in contrast to the normal 

immune response to infection with the influenza virus [203]. The decrease in 

influenza virus-specific CD8
+
 T cells in the lungs was a further indicator that 

CD27 was a major determining factor in the cellular response at the infection 

site. 

Murine studies have also shown that the in vivo role of the CD27-CD70 

costimulatory pathway is non-redundant for the activation of naive CD8
+
 T 

cells [206]. CD27 promotes gene expression toward a Th1 phenotype and 

facilitates the accumulation of antigen-specific CD4
+
 T helper cells at tissue 

sites and priming sites, thus also facilitating an improved supportive capacity 

for a primary cytotoxic CD8
+
 T cell response in a setting of antigen fragment 

cross-presentation [207]. 

Other indirect in vivo observations in murine studies using blockade of CD70, 

indicate that the loss of CD27 costimulation results in inhibition of CD8
+
 T cell 
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priming during viral infections (vesicular stomatitis virus and vaccinia virus) 

and bacterial infection (Listeria monocytogenes) [206]. A similar defect might 

occur in humans where CD8
+
 T cell priming in EBV infection is affected. 

Regarding the B lymphocyte compartment, cell-surface expression of CD27 is 

used in flow cytometry-based lymphocyte subset immunophenotyping of 

memory B cells in order to classify primary immunodeficiencies, including 

CVID [208, 209]. Stimulation of CD27 on human B lymphocytes has been 

linked to the promotion of immunoglobulin production in a coordinated pattern 

related to other surface receptors including CD40 (and its ligand CD154) and 

CD134 (and its ligand OX40) [210, 211]. 

CD27
+
 B lymphocytes appear morphologically and functionally distinct from 

CD27
-
 B lymphocytes. CD27

+
 B lymphocytes are larger and contain more 

abundant cytoplasm, and are present in different stages of the cell cycle;  

whereas CD27
-
 B lymphocytes are smaller and contain scant cytoplasm, and are 

in a single stage of the cell cycle [212, 213]. 

Murine B lymphocytes do not express CD27 at the naive and transitional stages, 

and only begin to express CD27 during the germinal center reaction 

(centroblasts). Somatically mutated B cells do not express CD27 and only a 

minority of memory B cells express CD27 [214]. This is in contrast to human B 

cells, where CD27 is expressed on a larger proportion of germinal center B 

cells, is maintained during differentiation and is expressed on the majority of 

memory B cells [209, 215, 216]. This difference in expression pattern would 

expectedly result in a dramatically different outcome with regards to immune 

responses and subsequent immunoglobulin production. Although 

hypogammaglobulinemia has not been reported in the CD27 KO murine model, 

delayed IgG responses were observed despite influenza virus-specific IgG 

antibody responses [214]. Additionally, the smaller germinal centers observed 

in both human CD27 deficiency [92] and murine CD27 KO lymph nodes [214] 

might indicate a yet unidentified cellular immune defect. 
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Jacquot et al. observed that CVID patients with an extremely low percentage of 

CD27
+
 memory B cells had more severe clinical phenotypes, profound 

hypogammaglobulinemia and reduced peripheral B cells compared to patients 

with a higher percentage of CD27
+
 memory B cells. Additionally, the kinetic B 

cell profiles of two patients failed to upregulate to the levels observed in other 

patients, despite both having a normal percentage of T cells [217].  

Studies on human cell lines have shown that EBV-induced transformation of 

B lymphocytes is prevented by the EBV-specific antibodies in human 

intravenous immunoglobulin (IVIG) [218]. Although the CD27 deficiency 

patients did produce EBV-specific antibodies, the total amount of antibodies 

required to prevent transformation of all transforming B cells might have been 

reduced due to the primary or secondary hypogammaglobulinemia. 

The absence of CD27 does not solely explain the primary 

hypogammaglobulinemia in some patients, who nevertheless mounted a 

specific antibody response to EBV. In certain cases CD27 deficiency might be a 

progressive disease with more severe manifestations occurring as a result of 

deleterious pathophysiological mechanisms secondary to severe EBV infection. 

Regarding NK cells, it has been observed that impairment of NK cell function 

increases anب individual’sب susceptibilityب toبEBVب infectionب andبEBV-associated 

malignancy [189, 219]. CD27 appears to contribute to NK cell physiology at 

multiple levels and, thus impairment at the CD27-CD70 interface would result 

in perturbed function. 

Peripheral blood NK cell function was found to be reduced in the majority of 

patients tested (5/7) and all had EBV-associated clinical manifestations. The 

impaired function might be a direct result of CD27 deficiency or secondary to 

infection with EBV. In addition, impaired function was measured in peripheral 

blood NK cells, which only represents a subset of NK cells. 
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Based on the expression of CD27, two distinct subsets of NK cells exist in both 

murine [220] and human [220-222] lymphocyte populations. In humans, 

approximately 6% of peripheral blood CD3
-
CD56

+
 NK cells express CD27 

[222]; and CD56
high

 NK cells express higher levels of CD27 [223]. The surface 

expression pattern of CD27 appears to be an ontological marker of maturity. 

Stage I to stage III NK cells are CD27
-
, stage IV NK cells are CD27

+
, and stage 

V NK cells are CD27
-
 [222]. 

Activation of human NK cells using recombinant IL-2 results in an upregulated 

expression of CD27, with the highly enriched NK cell population showing less 

upregulation compared to the less enriched population, suggesting that 

interaction with other PBMCs might be required for full NK cell activation 

[223]. CD27
+
 and CD27

-
 NK cells express different levels of NK receptors 

(bothبinhibitoryبandبactivating),بIFNγبandبcytolyticبproteins[222]ب. 

The intensity of surface expression of CD56 is related to that of CD27. CD56
high

 

CD27
high

 NK cells are the dominant population in tonsils and lymph nodes; and 

CD56
low

 CD27
low

 NK cells predominate in peripheral blood [224, 225]. The 

distinct tissue distribution of a given lymphocyte subset might provide a tissue-

specific immune response. Murine NK cells constitutively express CD27 [226]. 

Murine CD27
low 

cells are the dominant NK cell population in peripheral blood; 

form a mixed population with CD27
high

 NK cells in bone marrow; are abundant 

in pulmonary tissue and relatively scarce in lymph nodes [226]. 

Human CD56
high

 CD27
high

 NK cells are poorly cytotoxic [227] which is in 

contrast to murine CD27
high

 NK cells, despite similar expression of NK cell 

receptors on both cells [221]. Murine CD27
low

 NK cells have low proliferative 

capacity [220]. Human and murine CD27
high

 NK cell have been shown to be 

potent producers of IFNγب [220]. In vitro,ب IFNγب productionب afterب ligationب ofب

CD27 on CD56
high

 NK cells is enhanced [228]. A reductionب inبIFNγ levels in 

secondary lymphoid tissues (particularly tonsillar tissue) as a result of CD27 
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deficiency might contribute to predisposition to increased severity of EBV 

infection and induction of EBV-associated malignancy. 

Moreover, both human and murine studies show that the CD27-CD70 

interaction is an important mechanism in immunity to tumors [229-235]. In 

vivo, murine NK cells reject tumor cells that express CD70 [233]. One hundred 

percent of all subtypes of Hodgkin lymphoma have been shown to express 

CD70 [236]. The loss of CD27 expression in patients with CD27 deficiency, 

might thus deprive them of vital immune responses against tumors cells, 

especially those that express CD70. 

Determining the exact role of the loss of CD27 expression will depend on 

analyzing lymphocytes (T, B and NK cells) and other cells at specific 

anatomical sites related to ongoing infection, as well as investigating the 

interaction between lymphocyte subsets that are not conventionally thought to 

contribute to antibody responses (e.g., B cells and NK cells) and which have not 

been extensively studied [237, 238].  The oropharyngeal lymphoid tissue (to 

investigate EBV infection) and bone marrow and mucosal lymphoid tissue (to 

investigate antibody deficiency) should be the primary focus.  

In conclusion, CD27 deficiency results in immunodeficiency with varied 

clinical features. Although our patients represent a relative “knockoutبmodel”بofب

disease, CD27 deficiency cannot strictly be considered a monogenic cause of 

the clinical phenotype(s). 

  



 

28 

4.2 PAPER II 

 

RAC2 Loss-of-function Mutation in 2 Siblings with Characteristics 

of Common Variable Immunodeficiency 

 

4.2.1 Identification of a novel mutation in the RAC2 gene 

 

4.2.1.1 W56X mutation 

 

Whole-exome sequencing analysis of DNA from the proband revealed a novel 

homozygous nonsense mutation in codon 56 (W56X) of the RAC2 (Ras-Related 

C3 Botulinum Toxin Substrate 2) gene. This mutation was validated by 

confirmatory Sanger sequencing and was found to be in a homozygous form in 

her brother. The mother carried a heterozygous form of the mutation. DNA 

from their father was not available to confirm if he was a heterozygous carrier, 

however, he would most probably be a carrier given the parental consanguinity.  

4.2.1.2 Immunodeficiency phenotype of RAC2 deficiency 

 

The clinical phenotype of the proband and her sibling (case histories in Paper 

II) contrasted significantly with the primary neutrophil dysfunction phenotype 

observed in the two previously reported patients with the D57N mutation ([239-

241] and Table E4 in Paper II).  

The first reported case was a male infant born at term with delayed separation 

of the umbilical cord who subsequently presented with peri-rectal abscess, and 

peri-umbilical infections from which Escherichia coli and Enterococcus species 

were cultured. The absence of granulation tissue in the wound was noted with 
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subsequent recurrence of the peri-rectal abscess. Complete wound healing was 

only achieved after granulocyte transfusions [240]. 

The second reported patient was an apparently healthy two week old full-term 

male infant, who was found to have reduced TREC counts in the Wisconsin 

statewide Newborn Screening for T cell lymphopenia program [241, 242]. 

Further clinical evaluation revealed leukocytosis, increased neutrophils, and 

CD4
+
 T cell lymphopenia with an increased percentage of memory 

CD4
+
CD45RO

+
 T cells. However, the magnitude of reduction in lymphocyte 

subset counts was not as low as those typically observed in infants suffering 

from severe combined immunodeficiency (SCID). At 26 days of life, the infant 

presented with fever and omphalitis, requiring surgical debridement. At day 56 

he developed a paratracheal abscess requiring drainage. Stenotrophomonas and 

Prevotella species were subsequently grown from the cultures of the abscess. 

Neutrophil chemotaxis was severely reduced in the patient [241]. 

The proband and her brother were born to consanguinous parents and were 

apparently healthy at birth and did not present with soft tissue infections that 

were described in the two unrelated previously reported patients born to non-

consanguinous parents [239-241]. The proband and her brother later manifested 

with recurrent infections, hypogammaglobulinemia, post-streptococcal 

glomerulonephritis, autoimmune hypothyroidism and endocrine hormone 

abnormalities (for details see Paper II).  

In our patients with the novel W56X mutation, the increased levels of 

parathyroid hormone (PTH) in the proband might be linked to RAC2 

deficiency, as human RAC2 (and murine Rac2) expression is mainly 

hematopoietic cell/tissue-specific [243-246]. Osteoclasts are cells of 

hematopoietic origin and are the only cells that possess resorptive function for 

bone modelling [247-250]. Several abnormalities related to osteoclasts occur in 

Rac2 KO mice [251]. These abnormalities include increased trabecular bone 

mass in male mice, increased numbers of osteoclasts per total bone area, 
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increased expression of Rac1 (a separate Rac family protein), an abnormal actin 

cytoskeleton, reduced chemotaxis and an impairment of resorptive capacity. 

Similar defects might have affected osteoclasts in our patients resulting in 

impaired calcium homeostasis.  The proband had a slightly reduced serum 

calcium level of 8.1 mg/dL (normal range: 8.5-10.2 mg/dL), a finding that 

might correspond to the impairment of resorptive capacity present in Rac2 KO 

mice. Bone resorption is an essential mechanism for the maintenance of normal 

calcium levels in blood [252]. Though serial measurements of serial calcium 

were not performed, and more importantly ionized calcium levels were not 

documented, hypocalcemia might have been a trigger for the secretion of 

increasing amounts of PTH through the feedback mechanism that regulates 

blood PTH levels, thus causing secondary hyperparathyroidism [253, 254]. 

Rac2 KO mice have an augmented anabolic response to treatment with 

exogenous PTH, as evident from increased cortical bone thickness and 

increased bone mass density [255]. This increased anabolic response might also 

occur in human oseteoclasts, and might lead to certain pathologic changes. 

The deficiency of growth hormone in the sibling is harder to explain in relation 

to RAC2 deficiency. Growth hormone is secreted by the anterior pituitary gland 

(adenohypophysis)ب andب theب ‘classic’بmodelب ofب theب embryonicب developmentب ofب

the adenohypophysis states a non-neural origin [256]. However, an alternative 

neural origin has been suggested [257]. Another RAC protein, RAC3 is the 

predominant RAC protein expressed in brain tissue, whereas RAC2 is not 

[245]. Investigating the expression pattern of Rac2 in animal models might 

offer some insights into the role Rac2 might play in pituitary function and 

hormone secretion/regulation. 

 

  



 

 31 

4.2.2 Loss of RAC2 protein expression 

 

There was a complete loss of expression of RAC2
W56X

 in transfected human 

fibroblasts (Figure 1C in Paper III). As W56X is a missense mutation the loss of 

expression is expected. This finding is in contrast to the finding of reduced 

expression of RAC2
D57N

 mutant protein that had a dominant negative effect, 

resulting in reductions of neutrophil oxidative metabolism  [239, 240]. 

 

4.2.3  Neutrophil features in RAC2 deficiency 

 

4.2.3.1 Normal cell size 

 

The total volume of cytoplasm (measured in two dimensions) was similar in 

both the healthy control and in the proband's neutrophils (10.1 ± 1.7 µm
2
 and 

10.2 ± 1.4 µm
2
, respectively) indicating no differences in cell size.  

 

4.2.3.2 Numerical abnormalities of neutrophil granules 

 

By comparing the number of primary (azurophilic) granules and secondary 

(specific) granules, a significant reduction in the number of granules was 

observed in proband neutrophils compared to control neutrophils (n = 15 for 

each). 

The average counts of specific and secondary granules were 3.8 ± 0.7/µm
2
 in 

the proband’s neutrophils compared to 5.9 ± 1.3/µm
2
 inب theبhealthyب control’sب

neutrophils (P = 2.3 × 10
-5

, Student t test).  

Neutrophil granules are classified as primary (azurophilic, peroxidase-positive) 

and secondary (peroxidase-negative) granules [258]. Neutrophils from Rac2 
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KO
 
mice have been observed to show the complete loss of ability to release 

primary granules in response to both physiologic and artificial priming [259]. 

Subsequent murine studies supported this finding, while showing that murine 

secondary granule release was independent of Rac2 function [260, 261]. This 

functional abnormality of absence of primary granule release was also observed 

in the first human case [239], and a later study supported a role for human 

RAC2 in primary granule release [262]. 

A link apparently exists between these (numerical and functional) abnormalities 

of neutrophil granules and impaired cytoskeleton function, which is strongly 

suggested to exist in Rac2/RAC2 deficiency. Human neutrophil phagocytosis 

and (primary and secondary) granule exocytosis are regulated by the actin 

cytoskeleton [263-266]. Murine Rac2 regulates chemotaxis (in both neutrophils 

and macrophages) and appears to be essential for formation of neutrophil 

extracellular traps (NETs), both of which are processes that are thought to be 

dependent of cytoskeletal function [243, 267-269]. NETs formation is also a 

feature of human neutrophils [265, 270]. In addition, studies on murine 

macrophages expressing the dominant negative Rac2
D57N

 mutant protein show 

decreased micropinocytosis, another process dependent on a functional 

cytoskeleton [271]. 

Murine Rac2, in contrast to RAC2 in human neutrophils, is not the predominant 

Rac protein in murine neutrophils and is expressed at similar levels to its 

isoform Rac1 [272]. Thus, it is plausible that a compensatory role for Rac1 

diminishes the effects of Rac2 deficiency on cytoskeletal function relating to 

granule regulation in murine neutrophils, but which does not occur in human 

neutrophils, thus resulting in the abnormalities observed in our patient. 
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4.2.3.3 Abnormal secondary granule morphology 

 

The shape of the secondary granules in the proband’sب neutrophils was often 

more elongated or collapsed compared to the control (Figure 5c-d). 

 

4.2.3.4 Increased cytoplasmic inclusions 

 

Dense multi-membrane cytoplasmic inclusions wereبobservedبinبtheبproband’sب

neutrophils (Figure 5a and e) which were not present in control neutrophils 

(Figure 5b and f). These inclusions were interpreted to be autophagosomes.  

Rac2 (and RAC2) protein has not been linked to altered autophagy. However, a 

decreased level of autophagy has been observed in cells of a human HeLa cell 

line transfected to overexpress RAC3 [273]. Perturbed RAC3 activity has been 

linked to breast cancer [274] and prostate cancer [275]. 

 

4.2.3.5 Abnormal neutrophil chemotaxis 

 

Neutrophil chemotaxis of the sibling was mildly reduced when compared to 

reference ranges (Table 1 in Paper II). This is in contrast to the marked 

reduction in neutrophil chemotaxis observed in the patients with the RAC2
D57N

 

dominant negative mutant protein [239-241]. 

4.2.4 Increased serum BAFF levels 

 

Serum levels of BAFF in two independent samples from the living sibling were 

analyzed and a 5 to15 fold higher level of BAFF was detected in the patient as 

compared to controls (6.9 ng/mL and 2.3 ng/mL; controls 0.41-0.47 ng/mL). 
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Elevation of serum BAFF has been observed in autoimmune thyroid disease 

[276] and in chronic urticaria [277]. 

 

4.2.5 RAC2 deficiency and other leukocytes 

 

4.2.5.1 Lymphocyte abnormalities 

 

The decreased recent thymic emigrants, relative B lymphopenia and the 

impaired antibody production in our patients support a role of RAC2 in T- and 

B-cell development and function, as evidenced by murine studies [278-280] as 

well as some T- and B-lymphopenias observed in the second reported patient 

carrying the D57N mutation [241].  

Murine studies indicate that both Rac1 and Rac2 have redundant, but critical, 

parts to play in T cell development [281]. Rac2 deficiency has been linked to 

defective immune tolerance in mice due to impairment of the restimulation-

induced cell death (RICD) mechanism in T cells [282]. Potential impairment of 

peripheral immune tolerance in our patients with the W56X mutation could 

account for the autoimmune hypothyroidism common to both siblings. RAC2 

has been suggested to be a susceptibility gene for the development of 

autoimmune diseases based on studies of haplotype analysis of patients with 

Crohn’sبdisease,بmultipleبsclerosisبandبageبmatchedبhealthyبcontrolsبwhoبwereب

all of (Italian) Caucasian ethnicity [283].  

Rac1 and Rac2 are required for adequate generation of the common lymphocyte 

progenitor in murine bone marrow [281]. However, in contrast to our patients, 

Rac2 KO C57BL/6 mice showed a 40% increase in the proportions of 

peripheral blood B cells [280]. Additionally, these mice had reduced bone 

marrow B cell counts, due to reduced recirculating  B220
high

sIgM
+
 B cells, and 

absent splenic marginal zone (MZ) B cells; and reduced CD5
+
sIgM

+
 peritoneal 
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B-1a lymphocytes [280]. These mice also showed 2-8 fold elevations of IgG1 

and IgG2b, which also contrasted with the normal levels in the proband and 

reduced levels observed in the sibling. 

Murine Rac2 is a key protein in the downstream signaling cascade after B cell 

receptor (BCR) antigen recognition [284]. The activation of Rac2 and Rap1 

connects BCR-proximal signaling with activation of leukocyte function-

associated antigen-1 (LFA-1)-mediated adhesion facilitating the formation of 

immunological synapses [284]. Human RAC2 might also have a similar 

downstream role in BCR signaling and immunological synapse formation, and 

thus a deficiency might directly contribute antibody deficiency. 

4.2.5.2 Mast cells 

 

The urticaria may be related to the significant impairment of mast cell functions 

observed in murine studies. Rac2 is abundantly expressed in murine mast cells 

and is required for exocytosis in these cells [285]. Murine Rac2
 
KO bone 

marrow-derived mast cells have reduced expression of the mouse mast cell 

protease 7 (MMCP-7) gene, a major component of the secretory granules of 

mature mast cells. The impaired mast cell tryptases, especially MMCP-7, are 

responsible for airway smooth muscle hyper responsiveness and other allergic 

reactions, as well as regulate fibrin-platelet clot formation [286]. However, 

pinpointing a specific mechanism leading to urticaria will require additional 

investigation. 
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Figure 5. Transmission electron micrographs of neutrophils: a) proband neutrophil: 

cytoplasmic inclusions (arrow). b) control neutrophil, normal ultrastructure. c) proband 

neutrophil: fewer cytoplasmic granules, with the majority secondary granules displaying an 

abnormal shape (arrow). d) control neutrophil: normal, rounded secondary granules (arrow). 
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e) proband neutrophil: cytoplasmic inclusion, showing multi membrane structure (arrow) 

surrounded by a double membrane (arrowhead).  f) control neutrophil: normal ultrastructure. 

N, nucleus. (Paper II). 
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PAPER III 

 

Spectrum of Phenotypes Associated with Mutations in LRBA 

 

This review provided a summary of previously reported cases of LRBA 

deficiency [51, 142, 149, 287-293] in addition to case histories and mutation 

analysis of five novel LRBA mutations. 

4.2.6 Clinical features of LRBA deficiency 

 

The clinical features of patients in this review correlate with those recently 

found by Gámez-Díaz et al [294] and Lo et al [295]. Although Gámez-Díaz et 

al. grouped enteropathy and autoimmunity together; the most common clinical 

features (chronic diarrhea, autoimmune disease, hypogammaglobulinemia, 

respiratory tract infections) were in line with our findings. 

4.2.6.1 LRBA deficiency present in early childhood 

 

This study shows that LRBA deficiency is a disorder that presents in childhood, 

an observation that has been confirmed in other studies [294, 295].  

The presenting features are most commonly gastrointestinal, autoimmunity-

related or infectious, with significant overlapping of clinical manifestations 

(Figure 6). 



 

 39 

 

 

Figure 6. Venn diagram illustrating the percentages of overlap of clinical 

phenotypes among patients with LRBA deficiency (Paper III).  

4.2.6.2 ‘Asymptomatic’ phenotype of LRBA deficiency 

 

One of the unexpected findings of this review was that two patients (P22 and 

P26), both from different kindreds and with symptomatic siblings carrying the 

homozygous mutations p.S2713fs*13 and  p.S1605X, respectively, were 

asymptomatic at the time of analysis (P22 had been completely asymptomatic 

despite lymphopenia [288], and P26 was a clinically well adult with the 

exception of some respiratory infections during childhood) and neither 

expressed the LRBA protein on Western blot analysis ([288] and Figure 1G in 

Paper III). This finding shows that, like other PIDs, LRBA deficiency in 

individuals with the same genotype mightبhaveبaبrelativelyب‘benign’بphenotype. 
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4.2.6.3 Neurologic complications 

 

A striking feature of LRBA deficiency is that more than a fifth of the patients 

had neurological complications. Despite being from different kindreds and 

having distinct genotypes, the similarity of neurologic complications warrants 

special attention for clinicians. 

Radiologic evaluation of patients P1 and P3 showed cerebral granulomas (P3 

also suffered seizures); patients P28 and P31 both suffered unilateral optic 

nerve atrophy; and patient P29 developed a lesion in the parietal lobe. 

Myasthenia gravis in patient P5 might be categorized as an autoimmune 

disease; however, notwithstanding that, approximately 20% of the LRBA 

deficiency patients did develop neurologic conditions. In their cohort of 22 

LRBA deficiency patients, Gámez-Díaz et al mention only one patient with 

neurologic/psychiatric features and one patient with deafness [294]; and Lo at 

el, mention one patient with seizures [295]. 

Histologic analysis of human neuronal tissue (including glial and neuronal 

cells) reveals that LRBA is expressed in cerebral, cerebellar and hippocampal 

tissue [296]. The role of the LRBA protein deficiency has been thought to be 

limited to immune dysfunction in lymphoid tissues [51], however, in view of 

these neurologic features, the role of LRBA in neuronal tissue should be 

investigated.  

 

4.2.7 Novel LRBA mutations 

 

Five novel mutations were identified using WES and presented with the clinical 

and laboratory findings form previously published cases. The novel mutations 

are presented in Table 1. 
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All patients with novel mutations (P24-P31) were born to consanguinous 

parents. 

Table 1. Summary of clinical data in patients with novel mutations in LRBA deficiency. 

 

Patient Sex Ethnicity 

Age of 

onset 

(years) 

Mutation Main phenotype 

P24 F Iranian 3 c.1014+1 C>T HGG, RTI, AID, OM 

P25 M Iranian 2 p.S1605X HGG, RTI, CD, OM 

P26 M Iranian NA p.S1605X 
Asymptomatic 

(past RTI) 

P27 M Iranian 2 p.R182X HGG, CD, AID, OM 

P28 M Iranian 0.2 enoN dNtNetNd HGG, RTI, CD, OM 

P29 F Lebanese 3 p.N988fs*7 HGG,RTI, OM 

P30 F Iranian 6 c.4729+2insA HGG, RTI, AID, OM 

P31 F Iranian 13 c.4729+2insA AID, OM, RTI 
 

M, male; F, female; HGG, hypogammaglobulinemia; RTI, respiratory tract infections; AID, 

autoimmune disease; OM, organomegaly; CD, chronic diarrhea; NA, not applicable. 

 

4.2.7.1 Novel mutations: Loss of LRBA protein expression  

 

Western blot analyses from patients P25-P28 and P30-31 showed complete loss 

of expression (Figure 1G in Paper III). These findings are in line with the recent 

findings of Gámez-Díaz et al [294] who identified both homozygous and 

compound heterozygous mutations leading to loss of expression of LRBA. 
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5 CONCLUSIONS AND FUTURE PERSPECTIVES 

 

5.1 OVERALL CONCLUSIONS 

 

 The spectrum of disorders encompassing PADs, represented by CVID 

appear to be ever-expanding, particularly as the definition of CVID 

remains fluid. 

 

 The novel mutations identified in this work indicate the viariable 

genotype-phenotype relation, as observed in other PIDs. 

 

 

 WES is an effective method to identify mutations resulting in 

immunodeficiencies and other disorders. 

 

5.2 CONCLUSIONS FROM INDIVIDUAL PAPERS 

 

 Paper I 

Homozygous and heterozygous mutations affecting the CD27 gene 

predispose to the occurrence of EBV infections together with other 

infections in individuals with or without hypogammaglobulinemia 

causing significant morbidity and high mortality. CD27 deficiency 

should be considered in the differential diagnosis of all cases regardless 

of consanguinity. CD27 expression on lymphocytes should be 

implemented as a diagnostic screening test for all patients with a history 

of clinically severe EBV infection, lymphomas, or both, and in all cases 

of atypical EBV infection. Comprehensive immunologic, serologic and 

molecular testing for EBV infection and primary immunodeficiency 
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should be performed, in addition to a complete physical examination, 

with particular emphasis on considering atypical features of EBV 

infection.  

 Paper II 

The W56X nonsense mutation is a novel mutation affecting the RAC2 

gene associated with a CVID-like disorder, autoimmunity and neutrophil 

granule abnormalities.  

 Paper III 

LRBA deficiency might result in a variable clinical phenotype and should 

be considered in the clinical evaluation of CVID and CVID-like 

disorders. 
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5.3 FUTURE PRERSPECTIVES 

 

As new patients are being diagnosed with mutations in CD27, RAC2 and LRBA, 

compiling the information will allow for pinpointing the precise defect(s) by 

genetic, biochemical and cellular analyses. We are now in the process of 

proposing a registry on CD27 deficiency to increase awareness among 

clinicians for finding and collecting patient samples and data.  The proposal will 

be presented at the upcoming meetings of the German, Austrian and Swiss 

Pediatric Immunologists (API) and the European Society for 

Immunodeficiencies (ESID). 

Both human and animal studies are required to identify novel pathways/defects 

that CD27 (and CD70), RAC2 and LRBA are involved in and the subsequent 

function/dysfunction at the cellular and/or systemic level. Ex vivo studies might 

offerبparticularبinsightsبintoبtheseبaspects,بgivenبthatبmurineبmodelsبmayب“sub-

optimally”بreflect their roles in humans. 

The characterization of distinct genes and mutations contributing to the 

pathogenesis of primary antibody deficiency and other primary 

immunodeficiencies will prompt both the designing of more accurate diagnostic 

tools and the targeted therapeutic correction of genetic errors at the molecular 

level before or during the early stages of clinical symptoms and signs, thus 

preventing their effects from progressing to systemic complications. Indeed, 

mutation-targeted therapies are now being developed that mitigate the 

pathological mutation at the nuclear level, based on the accurate 

characterization of mutations. 

Examples of such targeted therapies include read-through compounds and 

chimeric RNA/DNA oligonucleotides (chimeraplasts) that are already being 

developed for the treatment of genetic diseases other than primary 

immunodeficiencies [297].  
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The conventional difficulty encountered in clinical practice in screening for 

mutations in multiple PID genes can now be overcome in a cost-effective 

manner using NGS, either employing WES, WGS or a targetedب “chip”ب

sequencing of PID-associated genes. This analytic approach has proved 

valuable in cases with informative pedigrees (parental consanguinity) as well as 

those with other cases. 
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6 LAY SUMMARY 

 

Let’sبthinkبofبeachبcellبinبaبlivingبcreatureبasبaبcomputer;بandبrememberبthatبaب

computer can only function properly as long as it has a good (software) 

operating program. 

All living creatures possess a master software program molecule called 

deoxyribonucleic acid (DNA) within each cell, based on which all the functions 

of the cell are orchestrated and organized. Cells specialize and multiply forming 

bodily systems that must work in harmony for the creature to function normally 

in its environment. 

If we think of the human body as a nation, then like any nation composed of 

billions of inhabitants (cells), the body must be protected by an efficient 

combined defense and fighting force equipped with deterrent barriers and 

weapons. The immune system represents this system in the human body. It is 

composed of what you might think of as an administrative command, military 

academies, armed forces, weapons factories and support structures, the quality 

of which are directly or indirectly dependent on that master program coded in 

DNA. 

Enemies that attack the body might be foreign (bacteria, viruses and parasites), 

domestic (cancer) or a combination of both. Sometimes, a native inhabitant (a 

cell) will join forces with a foreign agent (a virus), transforming the former into 

a cancer cell. An example of such a foreign agent is the Epstein-Barr virus 

(EBV). Most of us have been infected with itبandبdon’tبrealizeبitبorبjustبhad a 

brief illness thatبwe’veبlongبforgotبabout. It is the virus that causes the disease 

nicknamedب“mono”,ب“kissingبdisease”بorب“glandularبfever”.بOnceبweبhaveبhadب

it, we develop life-long protective immunity to it (if we have healthy immune 

systems). Sometimes EBV joins forces with a cell, turning that cell into a 

cancer cell. Hodgkin lymphoma is one example of this phenomenon. 



 

48 

If the immune system is defective due to a problem relating to DNA, then the 

defectب isبcalledب ‘primaryب immunodeficiency’. That problem is often related to 

theبorderبofبtheب‘code’بofبDNA.بThinkبofبDNAبasبtheبveryبparagraph you are 

reading right now. A change or addition of a single letter can change the 

meaning of the word, and then also change the meaning of the sentence. For 

example, ‘fat’بbecomesب‘fit’,ب ‘cat’بbecomesب‘bat’,بandب ‘slim’بbecomes ‘slime’. 

This defect is known asبaب‘mutation’. 

A healthy person generally recovers from infections because the immune 

system fights back, eliminating or destroying the harmful agents. If a person has 

a primary immunodeficiency caused by a mutation, then the story of the 

infection changes. For example, instead of recovering from EBV infection, the 

infection becomes really severe, turns body cells into cancer cells, causes 

medical complications or even leads to the person’sبdeath. 

In order to identify the defects within the immune system, we need special 

tools. The most modern tool we have today is next generation sequencing 

(NGS). This basically gives us the ability to sequence (read) the DNA code just 

as a computer reads zeros and ones. In the past, sequencing a tiny fragment of 

DNA took months or years to do. NGS technology has now helped us sequence 

much more DNA in a much shorter period (days or weeks).  

In this study, my colleagues and I, gathered medical records, blood samples and 

DNA specimens from hundreds of patients and members of their families. 

Using NGS, we were able to identify several mutations in DNA that we think 

contributed to our patients developing the diseases that they suffered from. We 

then performed additional medical tests to determine the impact these mutations 

might have had on their immune systems. We identified mutations in CD27, 

RAC2 and LRBA, all of which are fragments of DNA (genes) that encode 

molecules that function in cells of the immune system. The patients with CD27 

mutations, suffered from severe EBV infections, Hodgkin lymphoma and other 

diseases resembling lymphoma (Paper I). The sister and brother with the RAC2 
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mutation suffered from multiple infections, kidney disease and thyroid disease 

(Paper II). Finally, the patients with LRBA mutations suffered from multiple 

health problems which included infections and chronic diarrhea (Paper III). 

We hope that these discoveries will help health care professionals and scientists 

all over the world to quickly diagnose new patients with primary 

immunodeficiency, develop new therapies, and perhaps even prevent potential 

patients from getting disease by pre-emptively treating them before they 

develop symptoms. 
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7 LAY SUMMARY IN SWEDISH ‘SAMMANFATTNING FÖR 
LEKMÄN’ 

A translation of the lay summary by Gustav Östervall 

 

Låt oss tänka på varje enskild cell i en levande varelse som en dator; och 

komma ihåg att en dator endast kan fungera ordentligt om den har en mjukvara 

av hög kvalitet.  

Alla levande varelser har deoxyribonukleinsyra (DNA), en molekyl av 

mjukvara inuti varje enskild cell som ligger till grund för hur samtliga av 

cellens funktioner är organiserade. Genom att specialisera sig och föröka sig 

formar celler kroppsliga system och dessa system måste fungera i harmoni för 

att varelsen skall fungera normalt i sin miljö.  

Om vi föreställer oss den mänskliga kroppen som en nation, så måste kroppen 

liksom vilken annan nation som helst, bestående av flera miljarder invånare 

(celler i detta fall), beskyddas med hjälp av en militärstyrka utrustat med vapen 

och avskräckande barriärer. Det immunologiska systemet är den mänskliga 

kroppens motsvarighet till en sådan militärstyrka. Immunsystemet utgörs av vad 

du kan föreställa dig motsvara en administrativ myndighet, beväpnade styrkor, 

vapenfabriker och stödstrukturer, vilkas kvalitet är direkt eller indirekt beroende 

av mjukvaran DNA.  

Fienderna som angriper kroppen kan vara främlingar (bakterier, virus och 

parasiter), inhemska (cancer) eller en kombination av båda. Ibland kan en 

invånare (en cell) förena sig med ett för kroppen främmande agens (t. ex. ett 

virus) och omvandlas till en cancercell. Ett exempel på ett sådant främmande 

agens är Epstein-Barr-virus (EBV). Merparten av oss har varit infekterade med 

detta virus utan att ha märkt det eller med en övergående allmän 

sjukdomskänsla som följd. Det är detta virus som orsakar sjukdomen känt som 

“körtelfeber”ب iبdagligtب tal.بEfterب attب viبdrabbatsب avب infektionenبutvecklarبviب enب
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livslång immunitet mot EBV (förutsatt att vårt immunförsvar är friskt). Ibland 

kan detta virus alliera sig med en cell och omvandla denna cell till en 

cancercell. Hodgkins lymfom är ett av dessa sjukdomar. 

Om immunsystemets funktion felar och problemet har sin grund i DNA kallas 

tillståndetب förب ‘primärب immunbrist’.ب Dettaب problem är oftast relaterat till den 

ordning med vilket DNA kodas. Föreställ dig att det textstycke du nu läser 

motsvarar DNA. Att så lite som en enda bokstav ersätts av en annan eller att 

ytterligare en bokstav läggs till kan förändra betydelsen för hela ordet och 

därmedبhelaبfrasen.بTillبexempelبattبordetب“fet”بblirب“fat”,ب“katt”بtillبordetب“hatt”ب

ochب“mat”بblirب“matt”.بDennaبdefektبbenämnsبmutation. 

En frisk individ återhämtar sig vanligtvis från infektioner tack vare att 

immunsystemet slåss tillbaks, förstör och eliminerar skadliga agens. 

Förutsättningarna förändras dock om individen ifråga är drabbad av primär 

immunbrist orsakat av mutationer. Istället för att tillfriskna från en infektion 

med EBV så blir infektionen extremt allvarlig med omvandling av kroppsegna 

celler till cancerceller och kan framkalla medicinska komplikationer eller till 

och med resultera i dödsfall.  

I syfte att kunna identifiera defekter i immunsystemet fordras speciella verktyg. 

Det mest moderna verktyget vi idag använder oss av ärب “massivب parallellب

sekvensering”ب (NGS;ب “nextب generationب sequencing”)ب avب DNA.ب Dettaب gerب ossب

möjligheten att sekvensera (avläsa) DNA-koden på samma sätt som en dator 

avläser ettor och nollor. Förr i tiden tog det månader eller åratal att sekvensera 

ett litet DNA-fragment. Ny teknologi har numera gjort det möjligt för oss att 

sekvensera betydligt större mängder DNA inom kortare tidsramar (dagar eller 

veckor).  

Jag och mina kolleger samlade i denna studie ihop patientjournaler, blodprover 

och DNA-exemplar från hundratals patienter samt deras familjemedlemmar. 

Med hjälp av NGS-teknik identifierade vi flertalet mutationer i DNA som vi 
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anser bidrog till patienternas sjukdomsutveckling. Därefter utförde vi ytteligare 

medicinska tester i syfte att utröna den grad av påverkan mutationerna ifråga 

hade på immunsystemet. Vi identifierade mutationer i CD27, RAC2 och LRBA, 

av vilka samtliga är DNA-fragment (gener) som kodar för de molekyler som 

uppfyller funktioner i immuncellerna. Patienterna med mutationer i CD27 led 

av extrema EBV-infektioner, Hodgkins lymfom och sjukdomar som liknar 

lymfom (Papper I). Syskonparet, en syster och en bror, med mutation i RAC2 

hade multipla infektioner och njursjukdom (Papper II). De patienter med 

mutationer i LRBA led av multipla hälsoproblem, inklusive infektioner och 

kronisk diarré (Papper III). 

Vi hoppas att dessa upptäckter skall underlätta för vårdgivare och forskare att i 

tidigt skede diagnosticera nya patienter med primär immunbrist, att utveckla 

nya behandlingar och förhoppningsvis till och med förhindra att 

högriskindivider drabbas av sjukdom genom att behandla dem innan de 

utvecklar symtom.  
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8 A TRANSLATION OF THE TITLE(S) INTO ARABIC (THESIS AND 
PAPERS) 
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husband, Faisal, for his great friendship; Umm Mohammad and Umm 

Osama for always making family gatherings joyful. 

All my beloved nephews and nieces, especially Yusuf, Mohammad, 

Hassan and Abd’Allah, who would so lovingly pick me up at the airport 

and drop me off, during my visits to Riyadh. 

I bear witness that no one has the right to be worshipped except Allah, 

and I bear witness that Muhammad is His servant and messenger. 
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