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ABSTRACT 

Impaired cognitive function is a frequent consequence of multiple sclerosis (MS). It 

negatively affects vocational status, treatment adherence, physical independence, competence 

in activities of daily life, rehabilitation potential, driving safety and quality of life. All papers 

in this thesis concern cognitive function in relapsing-remitting MS (RRMS), with emphasis 

on clinical and neurophysiological predictors, moderating factors and the effect of 

natalizumab (NZ) treatment. 

I. The aim of this paper was to identify the strongest clinical predictors for cognitive 

impairment in RRMS patients. Patients with RRMS (n=72) and healthy control subjects 

(n=89) underwent comprehensive cognitive testing and clinical assessment. Physical 

disability (EDSS), fatigue (FSS), somatic and non-somatic components of depression (BDI-S 

and BDI-NS), disease progression rate (MSSS), and presence of psychotropic medication 

were included in the analysis. Patients had a mean EDSS of 2.7 and disease duration of 9.3 

years. Depression and fatigue estimates were significantly higher in patients than in control 

subjects (p<0.0001). Cognitive impairment had a prevalence of 30.5% in patients affecting 

preferentially executive functions, attention and processing speed. EDSS, FSS, BDI-NS and 

BDI-S were significantly correlated with several cognitive domains and global cognitive 

function in patients. In regression models, cognitive performance was best predicted by BDI-

NS alone or in combination with EDSS. Exclusion of patients with any psychotropic 

medication did not influence the main findings. 

II. The objective of paper II was to explore if cognitive impairment in RRMS is associated 

with abnormal neural function, and if there is evidence of neural compensatory mechanisms. 

The study population described in paper I underwent event-related brain potential (ERP) 

recordings with visual and auditory choice reaction tasks. Patients had increased visual P300 

amplitude frontally. Auditory and visual P300 amplitude were normal in other brain areas, 

and response time (RT) was normal. P300 latency was normal except for an increase in 

auditory latency occipitally. Cognitive performance correlated positively with visual and 

auditory parietal P300 amplitude in patients (p<0.0001 and p=0.009, respectively) but not in 

controls. Global cognitive score had a significantly stronger correlation (negative) with RT in 

patients than in controls (intergroup difference for visual stimulation p=0.015, and for 

auditory p=0.050). Notably, these associations were not an epiphenomenon of the cognitive 

impairment in patients, because parietal P300 amplitude and RT were normal. We concluded 

that patients with low P300 amplitude and long RT were more often cognitively impaired. 



III. The aim of paper III was to distinguish different mechanisms for cognitive reserve in 

RRMS. Thus, we wished to test the cognitive reserve hypothesis in the present study 

population. This hypothesis predicts that high premorbid intelligence, as may be estimated 

from years of education and vocabulary knowledge, attenuates the effects of disease burden 

on cognitive functioning. In this analysis, the normal effects of premorbid intelligence on the 

test scores need to be accounted for. Thus we compared the strength of the correlation 

between premorbid intelligence and cognitive performance in patients and controls, 

respectively. Contrary to the prediction, premorbid intelligence had no stronger effect on 

cognition in patients than in controls. This finding contrasted against the results in paper II 

where P300 amplitude and RT did have stronger effect on cognitive function in patients than 

in controls, i.e. showed features of a reserve against cognitive impairment in patients. The 

strongest neurophysiological (visual P300 amplitude and RT) and clinical (EDSS and BDI-

NS) predictors of cognitive function were studied in a hierarchical linear regression model. 

P300 amplitude and RT explained 34% of the variance in global cognitive function 

(p<0.001). EDSS and BDI-NS added significantly to explained variance, and the final model 

accounted for 44% (p<0.001) of the variation. In a separate analysis, we found that the effects 

of P300 and RT on cognitive function were not moderated by premorbid intelligence. 

IV. The objective of paper IV was to evaluate the cognitive effects of NZ treatment, 

compared to patients on stable first-line treatment and healthy control subjects. Fifteen MS 

patients (MS-NZ) underwent cognitive testing when starting NZ treatment and were tested 

again after one year. They were compared with fifteen MS patients on stable interferon beta 

therapy (MS-C) and twelve healthy control subjects (HC) who also were tested twice with an 

interval of one year. The effects of NZ on levels of self-reported depression, fatigue, daytime 

sleepiness and perceived health were also examined. MS patients (MS-NZ and MS-C) had 

significantly lower baseline cognitive performance compared to HC (global score, p=0.002). 

At follow-up, both MS-NZ and MS-C had improved significantly in four and five cognitive 

domains, respectively, and in global cognitive score (p=0.013 and p<0.001, respectively). HC 

improved significantly in three cognitive domains but not in global score. A regression 

analysis showed that participants with lower baseline scores had a significantly greater 

improvement, compared to those with a better initial performance (p=0.021). There were no 

significant changes in depression, fatigue, daytime sleepiness or perceived health in MS-NZ 

or MS-C. 

 

 



 

 

Conclusions 

Symptoms of depression, especially non-somatic symptoms, and level of physical disability 

are the most important clinical risk factors for cognitive impairment in RRMS patients. 

General factors such as ERP amplitude and RT are limiting for cognitive function in RRMS 

because P300 amplitude and RT have significantly stronger associations with cognitive 

performance in patients compared to HC. 

High P300 and fast RT reflect a physiological reserve which may be the strongest moderator 

of cognitive impairment in RRMS. In contrast, premorbid intelligence does not constitute a 

cognitive reserve in RRMS patients. 

The observed increase in frontal P300 amplitude suggests activation of compensatory 

networks. 

There is no evidence of a beneficial effect on cognitive performance after one year of NZ 

treatment. Retest effects are significant and are important to recognize in studies of cognitive 

performance. 
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1 INTRODUCTION 

1.1 MULTIPLE SCLEROSIS 

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) 

primarily affecting persons between 20-40 years of age. MS is a leading cause of neurologic 

disability among young adults in the developed world. Worldwide, there are more than 2.5 

million MS patients [1]. In Sweden, the incidence and prevalence of MS has been estimated 

to 10.2 and 188.9/100 000/year, respectively, resulting in approximately 17 500 patients, with 

a female to male ratio of 2.35:1 [2, 3].  

Pathologically, MS is characterized by widespread lesions, or plaques, in the brain and spinal 

cord, causing a variable degree of inflammation, gliosis and neurodegeneration. The 

pathogenesis involves both the innate and adaptive immune system leading to widespread 

focal lymphocytic infiltration. The exact cause of MS is yet unknown. A complex interaction 

of genetic and environmental factors which triggers an abnormal immune response is 

suggested [4]. Inflammatory lesions primarily affect the myelin sheath causing inhibition of 

axonal transmission which eventually leads to irreversible axonal loss. MS is mainly regarded 

as a demyelinating disease of the white matter in the brain, but involvement of the cortical 

grey matter is also an important element and not restricted to the progressive stages of the 

disease [5].  

The diagnosis of MS rests on a combination of disease history, clinical signs and defined 

paraclinical findings [6]. Depending on the disease course, MS patients are separated into 

three subgroups: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and 

primary progressive MS (PPMS) [7]. The disease typically presents as RRMS where 

neurological symptoms evolve sub-acutely and then persist for days or weeks before they 

gradually remit, however, often leaving some permanent residual neurological symptoms. 

Neurological deficits depend on the location of the lesions within the CNS but are usually 

motor, sensory or visual, or a combination of all. The relapse rate is highly variable between 

patients. The degree of residual symptoms tends to increase with reoccurring relapses. After a 

variable period of time, most RRMS patients enter a progressive phase where physical 

disability gradually increases without clear relapses (SPMS). In PPMS, the disease is 

progressive from start. Importantly, in SPMS and PPMS, neuroinflammation is less 

pronounced and disease progression is driven mainly by other, less well characterized, 

mechanisms [4].  

During the last 20 years, an increasing number of effective drugs for MS have become 

available. Disease modifying treatment (DMT) has the ability to reduce the frequency of 

clinical relapses, the accumulation of neurological disability and the radiological signs of 

disease activity [8]. To date, the use of DMT is restricted to patients with RRMS. The list of 

currently approved DMTs in Sweden includes interferon beta (1a and 1b), glatiramer acetat, 

natalizumab, fingolimod, dimethyl fumarate, teriflunamide and alemtuzumab [9]. Overall, the 
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basic principle of action for DMTs is inhibition of lymphocyte activity, proliferation and/or 

migration, thus affecting only the inflammatory component of the disease [8]. 

1.2 COGNITIVE IMPAIRMENT IN MS 

Besides motor, sensory and visual deficits, MS leads to mood and cognitive disturbances. In 

the last decades, research in MS has increased remarkably. However, at the beginning of this 

research project, the amount of research dedicated to the cognitive field of MS had not 

increased equally [10]. Cognitive impairment in MS is frequent, affecting up to 65% of 

patients in cross sectional studies [14, 15]. It is detectable at all stages and subtypes of the 

disease [16], including patients with clinically isolated syndrome (CIS) [17]. In RRMS, the 

prevalence of cognitive dysfunction is estimated to 22-40% [16, 18]. Patients with SPMS or 

PPMS tend to have an even higher frequency of cognitive impairment [19]. Cognitive 

impairment in MS usually persists and worsens over time [14, 20]. The need for a deeper 

understanding of MS-associated cognitive impairment is stressed by its detrimental effects on 

many activities of daily life such as physical independence, employment, coping, medication 

adherence, symptom management, rehabilitation potential and driving safety [11]. Self-

perception of cognitive performance in MS patients is unreliable and not predictive of 

objective cognitive functioning [12, 13] and formal testing is therefore necessary. 

Cognition is not a uniform entity, but includes many aspects of complex mental functions. 

Various domains of cognitive functioning can be affected in MS. Reduced performance has 

been demonstrated in information processing speed, attention, executive functions and 

memory. Verbal fluency, but not core language abilities, is often reduced in MS. Impaired 

information processing speed and learning and memory are often considered the major 

cognitive deficits in MS [21].  

While there is an overall consensus about the general profile and importance of cognitive 

impairment in MS, there is less consensus on clinical risk factors. Previous studies have 

found a modest or moderate association between cognitive performance and level of physical 

disability [18, 22, 23], but this relationship is likely to be less pronounced or lacking when the 

level of physical disability is lower [10]. Cognitive impairment may exist independently of 

physical disability [24]. A consistent finding in previous studies has been a weak or absent 

correlation between duration of MS and cognitive impairment [15, 18, 21, 23]. However, an 

association is likely to emerge when disease duration exceeds 10 years [10]. The speed of 

clinical disease progression can be measured with the Multiple Sclerosis Severity Score 

(MSSS) which is an algorithm based on disease duration and level of physical disability [25]. 

To our knowledge, the MSSS has not previously been evaluated regarding its possible 

relationship with cognitive performance.  

The relationship between depression in MS and cognitive impairment has not been clear [21], 

but an association has been demonstrated in adequately powered studies [26] and primarily 

between depression and the cognitive domains of information processing speed and executive 

functions [27, 28]. Commonly used scales for depression include items rating presence and 
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severity of somatic symptoms which can be confounded by disease related symptoms in 

clinical samples such as MS patients. In these depression scales, somatic and non-somatic 

items can usually be separated but most prior studies have not made this distinction. 

However, in studies where cognitive performance was correlated with the separate 

components of depression, a stronger association was reported for the non-somatic symptoms 

[29, 30]. 

Fatigue is a common symptom in patients and an association with decreased information 

processing speed has been reported [31]. However, several other studies did not find 

subjective fatigue to be associated with cognitive impairment [32, 33].  

A concomitant use of CNS-active psychotropic medication against depression, fatigue, pain 

and insomnia is often present in MS patients. These drugs may have effects, negative or 

positive, on cognitive performance. In studies on cognitive functioning in MS patients, 

information regarding the use of psychotropic medication is frequently lacking. 

1.3 IMAGING AND COGNITIVE IMPAIRMENT IN MS 

Magnetic resonance imaging (MRI) is the most commonly used paraclinical tool to 

investigate MS pathology and to monitor disease evolution. Cognitive deficits in MS has 

been related to a disconnection syndrome caused by involvement of white matter tracts [34]. 

However, most studies have shown a modest or moderate association between visible lesions 

and cognitive impairment in MS [35]. The overall effect of lesion volume on cognitive 

impairment is limited and lesion assessment alone is not considered adequate to assess and 

monitor cognitive function in MS patients [35].  

With disease progression, white matter abnormalities change from predominantly focal and 

periventricular to more subtle and diffuse. Such changes are accompanied by an increase in 

the extent of demyelination within the grey matter [36]. Some grey matter atrophy is found 

early in the disease course but becomes prominent in SPMS [37] and the rate of brain atrophy 

is considered to accelerate around conversion from RRMS to SPMS [38]. As compared to 

assessment of lesions, measures of global or regional brain atrophy have a more robust 

association with cognitive performance in MS [39, 40]. However, quantification of brain 

atrophy has so far not been available in clinical practice. The presence of diffuse damage in 

the white and grey matter, as identified with experimental and more advanced MRI 

techniques, are likely to be important for the cognitive impairment [35].  

Brain cortical activation can be visualized with functional MRI (fMRI). Several fMRI studies 

have indicated that cognitive task performance is associated with increased or altered cortical 

activation patterns in patients with MS [41]. RRMS patients with normal performance in a 

test of processing speed and working memory activated larger frontal cortical areas compared 

to healthy control (HC) subjects. In contrast, this increased activity was less pronounced in 

RRMS patients with a lower cognitive performance [41].  
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1.4 MODERATING FACTORS OF COGNITIVE IMPAIRMENT 

As described, the relationship between measures of disease burden and cognitive outcomes is 

incomplete and the amount of explained variance in statistical models remains moderate [35, 

42]. This phenomenon is not restricted to MS but is seen in other neurological diseases also. 

For example, higher levels of premorbid intelligence and educational attainment may be 

factors associated with a slower deterioration in Alzheimer´s disease (AD). This has been 

attributed to a larger ‘cognitive reserve’, attenuating the effects of the disease process on 

cognitive functioning [43]. More generally, cognitive reserve can be defined as a brain 

structure or function that optimizes the individual cognitive performance in the presence of 

brain pathology or injury. Because direct measurement of cognitive reserve is not available, 

proxy or surrogate variables are used. Premorbid intelligence, as estimated from years of 

education or performance in vocabulary tests, is tested as a moderating factor together with 

other predictors of cognitive outcomes [44, 45]. Cross-sectional studies in populations of 

mixed sub-groups of MS have reported a moderating effect of premorbid intelligence on the 

relationship between MRI variables of disease burden and cognitive impairment [46-49]. The 

effect of cognitive reserve can be assessed in a correlation analysis between premorbid 

intelligence and cognitive test performance. To support the cognitive reserve hypothesis this 

correlation needs to be significantly stronger among patients than in healthy individuals [50, 

51] (Fig. 1). Previous studies have reported such a finding in MS patients [52, 53]. Cognitive 

reserve in MS is however still a novel field of research, and the need for replication has been 

stressed [54]. 

It is important to recognize the pervasive effects of education on cognitive test performance 

in normal healthy individuals [55]. Premorbid intelligence may be of clinical importance even 

if it does not retard the speed of cognitive decline. Let us assume that there is a certain level 

where the cognitive decline becomes critical for work abilities and activities of daily life (Fig. 

2).  For individuals with high premorbid intelligence at disease onset, it takes longer to reach 

this critical level than for those with low premorbid intelligence. This difference may be 

thought of as a ‘reserve’ but is not meant with ‘cognitive reserve’. 
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Fig. 1. Schematic illustration of the cognitive reserve hypothesis. The correlation between 

premorbid intelligence (e.g. educational attainment) and cognitive performance should be 

significantly stronger in the clinical sample (black solid line) than in the normal healthy 

sample (black interrupted line). 

 

Fig. 2. Schematic illustration of the cognitive reserve hypothesis in a longitudinal analysis. 

The decline in cognitive performance should be slower in patients with high premorbid 

intelligence (red solid line) than in patients with low premorbid intelligence (blue solid line). 

Note that even in the absence of this phenomenon, patients with high premorbid intelligence 

(red interrupted line) will reach a level of clinical impairment (grey solid line) at a later stage 

and thus still benefit from a higher premorbid intelligence. 
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1.5 NEUROPHYSIOLOGICAL ASSESSMENT OF BRAIN FUNCTION 

1.5.1 Event-related potentials 

All mental functions are mediated through highly complex neuronal activity within the CNS. 

This is associated with electrical activity causing voltage fluctuations on the scalp which can 

be recorded in the electroencephalogram (EEG). Specific fluctuations can be elicited in the 

EEG in response to standardized discrimination tasks involving sensory stimuli (events). 

Event-related potentials (ERPs) can be elicited when a subject differentiates between two 

different stimuli and responds to the target with a button press. The stimuli are usually 

auditory (different sounds) or visual (different visual patterns on a screen). The tasks are not 

difficult to perform but require the participant´s attention. ERP recordings are non-invasive 

and have an excellent temporal but moderate spatial resolution [56]. 

Different testing paradigms exist. In the odd-ball design, the subject is instructed to respond 

only to a predefined infrequent target stimulus in a train of frequent non-target stimuli. In a 

choice-reaction task design, the subject responds to both of the different stimuli, with a left or 

right hand button press. Each stimulus (visual or auditory) generates a small electrical signal 

which is recorded in the EEG. In order to distinguish this signal from the background 

spontaneous EEG activity, it is necessary to perform an averaging of repeated events. The 

ERPs appear as a series of positive and negative voltage fluctuations (components), which 

can be quantified with regard to amplitude and latency [56].  

Three main models have been proposed for the mechanisms how ERPs are generated [57]. 

According to the evoked model, ERPs are created when silent neurons are activated by the 

stimulus. Another model suggests a resetting mechanism where neurons with ongoing 

oscillatory activity undergo sudden transition to a specific phase due to the stimulus. A third 

model proposes that the stimulus induces high frequency oscillations which in turn are 

correlated with low frequency activity and a baseline shift. The subsequent signal averaging 

cancels the high frequency component, leaving the baseline shifts in the EEG. 

ERPs are classified in a standardized manner after polarity (N, negative or P, positive) and 

approximate peak latency. The most widely studied ERP is the large positively deflecting 

component peaking around 300 ms after the stimulus event and before the motor response 

(P300). P300 is generated over widespread bilateral cortical regions and dominates over 

centro-parietal scalp regions [58, 59]. There is general agreement that P300 is not a unitary 

phenomenon but rather represents distributed neural activity that comprises several 

functionally distinct and mutually overlapping subcomponents. E.g., in easy tasks 

subcomponents of the P300 add together, whereas in more difficult conditions they diverge 

leading to a reduced amplitude [60]. Furthermore, a more frontally dominating component 

can be elicited depending on the nature of the stimulus paradigm [61]. The P300 component 

is commonly regarded as the neural origin of the cognitive processes related to volitional 

detection behavior and the P300 amplitude increases in proportion to the amount of 

attentional capacity invested in the event categorization [60]. The amplitude of P300 is also 
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dependent on the nature and presentation of the given stimulus. Character and appearance 

probability (such as inter-stimulus interval) of the targets influence the amplitude [61]. P300 

latency is considered to measure the time required to detect and evaluate a given stimulus 

[62]. Any brain disorder affecting cognitive processes may reduce amplitude and increase 

latency of the P300 [63]. 

Early ERP components, appearing <200 ms after a stimulus, are commonly regarded as 

sensory or exogenous in nature with no relation to cognitive processes. However, an 

association between early components and cognitive function has been described in diabetes 

mellitus [64]. 

1.5.2 Event-related potentials and MS 

Previous research with ERP assessments in MS patients is heterogeneous due to 

discrepancies in sample size, clinical characteristics, cognitive testing and EEG electrode 

numbers [65, 66]. Most previous ERP-studies have included mixed samples of MS-patients, 

including both patients with RRMS and those with progressive subtypes of the disease, 

making inferences or generalizations regarding subgroups of MS difficult. These studies have 

generally reported reduced amplitude and increased latency of the P300 component [65, 66]. 

Larger effects on P300 are seen in the SPMS and PPMS, compared to RRMS [67]. Some 

studies report normal P300 amplitudes in MS patients, despite reduced cognitive test 

performance [68, 69]. In CIS patients with reduced cognitive performance, P300 amplitude 

and latency are normal [70].  

Few studies have combined MRI and ERP recordings in MS. P300 latency has been reported 

to be increased and to be correlated with MRI lesions [71]. In another study, P300 to auditory 

and visual stimuli were normal in three groups of MS patients stratified after degree and 

distribution of MRI lesions [72]. In MS, early ERP components were found to be both normal 

[69, 71] and abnormal [73-76]. 

1.5.3 Response time 

Performance in time-dependent cognitive tests is often reduced in MS patients. The response 

time (RT) of auditory and visual target detection can be assessed during ERP recordings but 

is frequently lacking in studies with MS patients. RT in ERP stimulation tasks has been 

reported to be slower [72, 75] or normal [77] but the studies differ with regard to MS patient 

characteristics and type and difficulty of stimuli. Fast RT is associated with better cognitive 

abilities in healthy individuals [78]. Similarly, a relationship between RT and measures of 

processing speed has been reported in RRMS patients [79]. They found that RT in choice 

reaction tasks was a more sensitive measure of impaired information processing in RRMS as 

compared to a simple RT task. 

1.6 TREATMENT OF COGNITIVE DYSFUNCTION IN MS 

There is no proven effective rehabilitation program or symptomatic treatment for MS-related 

cognitive dysfunction. Symptomatic drug treatment to ameliorate cognitive impairment in 
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MS patients has been investigated. A randomized clinical trial with donepezil (an acetyl 

cholinesterase inhibitor approved for AD) was negative [80]. Furthermore, the evidence from 

trials using central stimulants is weak or non-existing [81]. Many studies have reported some 

cognitive improvement in MS patients following cognitive rehabilitation programs. However, 

the evidence reported in the literature remains inconclusive, mainly due to methodological 

weaknesses [82, 83].  

All approved DMTs reduce the accumulation of brain damage as measured by MRI and thus 

should have the potential to slow or restore cognitive function in patients. However, data is 

not abundant regarding the specific effects of DMTs on cognitive functioning in MS. Most 

studies report an improvement or less deterioration in patients receiving DMTs. However, the 

interpretation of data in clinical trials with DMTs is complicated because cognitive 

performance is usually a secondary outcome measure and cognitive testing is often restricted 

to a single test [81]. Natalizumab (NZ) is one of the more potent DMTs available. Studies 

regarding its effect on cognitive outcome in RRMS have reported beneficial effects, however 

often lacking control groups [84-91].
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2 AIMS OF THE THESIS 

2.1 GENERAL AIM 

The general aim of this thesis was to identify clinical risk factors and neurophysiological 

correlates of cognitive impairment in RRMS patients, and to study the effect of NZ treatment 

on cognitive functioning. 

2.2 SPECIFIC AIMS 

The aim of paper I was to identify the strongest clinical risk factors for cognitive impairment 

in RRMS patients. Physical disability, depression and fatigue are known to be interrelated in 

MS and may all influence cognitive function. The comparison included the importance of the 

disease progression speed vs. physical disability, the somatic vs. non-somatic component of 

depression, and the possible confounding effect of psychotropic medication (e.g. 

antidepressants). 

The aim of paper II was to explore if cognitive impairment in RRMS patients is associated 

with abnormal neuronal function, if there is evidence of neural compensatory mechanisms 

and if the association between cognitive function and ERP variables is different in patients 

compared to HC subjects. 

The aim of paper III was to distinguish how different factors influence cognitive function in 

RRMS. In particular, we tested if cognitive impairment in RRMS is influenced by premorbid 

intelligence, how much of the variance in cognitive function is explained by clinical and 

neurophysiological predictors, and if the associations of P300 and RT with cognitive 

performance are moderated by premorbid intelligence. 

The aim of paper IV was to examine the effects of the first year of NZ treatment, compared 

with a control receiving standard DMT, on cognitive functioning in RRMS patients. A 

second objective was to study the effects on measures of depression, fatigue, daytime 

sleepiness and perceived health. 
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3 SUBJECTS AND METHODS 

3.1 SUBJECTS 

RRMS is the largest subgroup of MS and the only one in which DMTs are approved. The 

degree of cognitive impairment may vary depending on subgroup [19]. For these reasons, 

only RRMS patients were included in this research project. 

The thesis is based on the results from two sets of data. Dataset 1 (paper I, II and III) is a 

cross-sectional analysis including RRMS patients (n=72) and HC subjects (n=89). The 

patients were recruited at the Department of Neurology at the Karolinska University Hospital 

in Stockholm (Solna) between April 2006 and May 2011. The HC subjects were recruited 

randomly by the aid of the Swedish population registry (Statistiska centralbyrån).  

Dataset 2 (paper IV) is a longitudinal analysis including RRMS patients (n=30) and HC 

subjects (n=12), tested twice with an interval of one year. The participants in dataset 2 were 

recruited between February 2010 and June 2012. The HC subjects in paper IV were chosen 

from the HC subjects of dataset 1.  

3.2 CLINICAL INSTRUMENTS 

All patients and control subjects were clinically evaluated. The instruments used for the 

different groups are indicated in the list below. 

The Kurtzke Expanded Disability Status Scale (EDSS) [92] was used to assess physical 

disability in patients. This scale has been designed specifically for MS patients and is the 

most frequently and widely used scale to rate physical disability.  

Multiple Sclerosis Severity Score (MSSS) [25] was used to rate disease severity. The MSSS 

is an algorithm relating the score on EDSS with disease duration.  

Beck Depression Inventory (BDI) [93] was used to assess symptoms of depression in 

patients and HC subjects in all papers. BDI is a widely used self-report questionnaire for 

scoring depressive symptoms, and it is recommended for use in populations with MS [94, 

95]. The BDI score was also separated into its non-somatic (BDI-NS, items 1-13), and its 

somatic part (BDI-S, items 14-21). 

Center for Epidemiologic Studies - Depression (CES-D) [96] is a scale for self-assessment 

of depressive symptoms given to patients in paper IV, in addition to the BDI. CES-D is 

widely used and has good accuracy for predicting clinical depression in MS [97].  

Fatigue Severity Scale (FSS) was used for the assessment of subjective fatigue in patients 

and controls in all papers. The nine item FSS is the most widely used scale to rate fatigue in 

MS, showing high reliability, validity and internal consistency [98].  
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Fatigue Scale for Motor and Cognitive functions (FSMC) [99] is a scale for rating 

subjective fatigue and it is designed specifically for the use in MS patients. It was given to 

patients in paper IV.  

Epworth Sleepiness Scale (ESS) [100] was used to measure daytime sleepiness in patients in 

paper IV.  

Perceived health (PH) was evaluated with the first item from the Health Related Quality of 

Life Short Form (SF-12®) [101]. It was scored on a Likert scale (1 to 5) where 1 is 

“excellent” and 5 is “poor”. PH was evaluated in patients in paper IV. 

The scores from CES-D and FSMC may be divided and reported as four (CES-D) or two 

(FSMC) subscales [96, 99]. However, due to the limited sample size in paper IV and in order 

to reduce the number of comparisons, we included only the total scores. For the same 

reasons, only the total BDI score was reported in paper IV.  

The HC subjects in paper IV (n=12) had received the BDI and FSS at their first test session 

(dataset 1) but not the CES-D, FSMC, ESS and PH. Thus, they were only given the BDI and 

FSS at the second evaluation. 

3.3 COGNITIVE EXAMINATION 

Patients and controls underwent a comprehensive cognitive evaluation covering six cognitive 

domains (memory, verbal ability, attention, executive functions, visual perception and 

organization and processing speed). The included tests were available in Swedish and could 

be administered, after sufficient training, by a non-neuropsychologist. All participants were 

tested in a distraction-free and quiet environment. Several tests measure more than one 

cognitive ability and were thus included in more than one cognitive domain. The grouping of 

tests and subtests into cognitive domains was theoretical and decided after discussion among 

the authors of paper I (Table 1). The included tests are listed below. 

Benton Visual Retention Test (BVRT-5) (Form C, Administration A) [102]. The task is to 

memorize and reproduce visual patterns. Domains: memory, visual perception and 

organization. 

Rey Auditory Verbal Learning Test (RAVLT and RAVLT-recall) [103]. The task is to 

learn and recall a list of words. Domain: memory. 

Vocabulary from the Synonyms, Reasoning and Block Test, part 1 (SRB:1) [104, 105]. The 

task is to identify correct synonyms. Domain: verbal ability. In paper III, the SRB:1 is treated 

as a surrogate marker for premorbid intelligence [55]. 

Controlled Oral Word Association Test from the Delis-Kaplan Executive Function System 

(D-KEFS) [106]. The task is to verbally produce, in 60 sec, as many words as possible, 

beginning with a specific letter. Domains: verbal ability, executive functions, processing 

speed. 
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Color-Word Interference Test from D-KEFS [106]. The test consists of four timed subtests. 

Condition 1 (color naming), condition 2 (word reading), condition 3 (inhibition) and 

condition 4 (inhibition and switching). Domains: attention (Condition 1 and 2), executive 

functions (Condition 1, 2, 3 and 4). 

Trail Making Test from D-KEFS [106]. The test consists of five timed subtests. Condition 1 

(visual scanning), condition 2 (number sequencing), condition 3 (letter sequencing), condition 

4 (number-letter sequencing) and condition 5 (motor speed). Domains: attention (Condition 

1, 2, 3 and 5), executive functions (Condition 1, 2, 3, 4 and 5). 

Block Design Test from the Wechsler Adult Intelligence Scale - third edition (WAIS-III) 

[107]. The timed task is to reproduce patterns using a set of cubes. Domain: visual perception 

and organization. 

Digit Span Test (Forward and Backward) from WAIS-III [107]. The task is to verbally 

repeat, forward or backward, series of digits. Domains: attention (Forward, Backward and 

Total), executive functions (Backward). 

Digit Symbol Coding Test from WAIS-III [107]. The task is to fill in as many correct 

symbols as possible in 120 sec. Domains: visual perception and organization, processing 

speed. 

Symbol Search Test from WAIS-III [107]. The task is to correctly complete as many symbol 

comparisons as possible in 120 sec. Domains: visual perception and organization, processing 

speed. 

Additionally, premorbid verbal IQ was assessed by the Swedish Lexical Decision Test 

(SLDT) [108] in all HC subjects and in patients in paper IV. The total number of cognitive 

test scores was twenty. However, RAVLT and RAVLT-recall were not part of dataset 1 

because they were not initially included in the patients´ study protocol. Besides test grouping 

into domains, a global score was calculated and included in all papers. The total number of 

cognitive test sessions in the present thesis was 218. 
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Cognitive domain 

 

Cognitive tests 

 

Memory Benton Visual Retention Test     

Rey Auditory Verbal Learning Test 

Rey Auditory Verbal Learning Test – recall 

 

Verbal ability Controlled Oral Word Association Test 

Vocabulary Test 

 

Attention Color-Word Interference Test, condition 1 and 2 

Digit Span Test, Forward                         

Digit Span Test, Backward 

Digit Span Test, Total 

Trail Making Test, condition 1,2,3 and 5 

 

Executive functions Color-Word Interference Test, condition 1-4 

Controlled Oral Word Association Test 

Digit Span Test, Backward 

Trail Making Test, condition 1-5 

 

Visual perception and organization Benton Visual Retention Test 

Block Design Test 

Digit Symbol Coding Test 

Symbol Search Test 

 

Processing speed Controlled Oral Word Association Test 

Digit Symbol Coding Test 

Symbol Search Test 

 

Global score 

 

All tests, including subtests 

 

Table 1. Cognitive tests and cognitive domains  

 

3.4 NEUROPHYSIOLOGICAL INVESTIGATIONS 

3.4.1 Recordings 

All patients and HC subjects underwent a neurophysiological investigation which was 

conducted in a separately located EEG room, designated for research subjects, at the 

Department of Neurophysiology at the Karolinska University Hospital (Solna). The 

investigation was usually performed within a few days from the cognitive and clinical 

evaluations and in many cases it was performed on the same day. EEG was recorded with a 

23-channel EEG amplifier (Nervus Digital Equipment Cephalon, Copenhagen, Denmark). 

The EEG silver cap electrodes were placed over both hemispheres according to the 10–20 

International System. The participants first underwent a standardized resting EEG followed 
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by auditory and visual choice reaction tasks. The collected neurophysiological data were 

auditory and visual ERPs in the two modalities. 

The specific procedures regarding test-response epochs, recording reference, ground 

electrode, inter-stimulus intervals, eye movements monitoring, sampling rate, post processing 

of signals and artifact rejection are detailed in paper II. 

3.4.2 Auditory ERPs 

Auditory ERPs were recorded during an auditory choice reaction task where the participants 

were seated with their eyes closed and were instructed to press response keys with their left 

and right index finger upon hearing low and high pitch signals, respectively. The signals were 

delivered through a loud speaker device at 65 dB and with a duration of 100 ms. Auditory 

ERP data were obtained by averaging trials with low and high pitch, respectively. P300 was 

identified as the largest positive peak in the interval 200-500 ms. 

3.4.3 Visual ERPs 

Visual ERPs were recorded with a visual choice reaction task using Kanizsa images of an 

illusory square or a non-square (Fig. 3). The subjects were seated in front of a screen 

(distance 150 cm), and instructed to press with their right or left index finger, according to 

given instructions, when an illusory square or a non-square was presented. Visual ERP data 

were obtained by averaging trials with illusory squares and non-squares, respectively. P300 

was identified as the largest positive peak in the interval 200-500 ms. P150 was identified as 

the largest positive peak in the interval 130-200 ms. 

3.4.4 Response time 

Response time (RT) was measured simultaneously with the ERP recordings in the auditory 

and visual experiment, respectively. RT was recorded from the onset of the stimulus to the 

time for response (button press). RT data were obtained by averaging trials of auditory 

stimuli (to both auditory targets) and visual stimuli (to both visual targets), respectively. 

 

Fig. 3. Images for the visual choice reaction task. Kanizsa illusory square (left panel) and 

non-square (right panel). 
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3.5 CALCULATIONS AND STATISTICS 

3.5.1 Normalization 

The cognitive test scores were normalized (z-scored) in order to adjust for the normal effects 

of age, sex and education. First a linear regression model of the effects of age on each 

cognitive test score, respectively, was calculated in the HC subjects separately for men and 

women. The residuals were then used to study the normal effect of education (years in school 

and higher education) in a second linear regression model and a final set of residuals was 

obtained. 

The regression lines obtained in the healthy control group for each test score, respectively, 

were used on the patient data to adjust for the effects of age separately for men and women 

and education, and the final residuals were obtained for each subject and test. Z-scores were 

calculated by dividing the final residuals with the standard deviation (S.D.) of the final 

residuals in the healthy controls. In this way the tests scores obtained the same weight and the 

cognitive domain scores could be calculated from the mean scores of the included tests. For 

each participant, a global score was constructed as the average of the z-scores obtained for all 

tests. 

ERP variables and RT were normalized to adjust for the normal effects of age and sex, 

following the same linear regression procedures described for the cognitive scores. Mean 

ERP parameter values were calculated for illusory squares and non-squares, and for low and 

high pitch signals, respectively. These calculations resulted in z-scored parameter values in 

each electrode position. Similarly, RT parameter values were also z-scored. 

3.5.2 Missing data 

In dataset 1, missing or excluded cognitive data were replaced with the mean value for each 

score in patients and controls, respectively. In dataset 2, missing data were not replaced. Only 

complete data, with both a baseline and follow-up value, entered the paired t-test analysis. 

3.5.3 Group comparisons, correlations and regression analyses 

Values were given as mean ± S.D. Significance level was p<0.05.  Differences in means 

between groups were tested using t-test. Correlation analyses were performed with ranked 

data (Spearman´s correlation). Multiple regression analysis was performed with robust linear 

regression. Paper III includes both parametric and non-parametric correlations, as indicated. 

In paper IV, baseline group differences were analyzed with ANOVA or Chi-square test. 

Other group comparisons at baseline were made with t-test or with Wilcoxon rank sum test in 

case of non-normal distributed data. Paired t-test was used to analyze changes in data 

between the first and second examination. 

3.5.4 Multiple comparisons 

To reduce the number of comparisons, cognitive test results were only analyzed on domain 

levels and as a global cognitive score. The included regression analyses have primarily used 
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global score as the dependent variable. In paper I, only clinical variables with a significant 

effect on the global score were considered to be significant. In paper II the number of 

comparisons was reduced by grouping electrode positions in five brain regions: frontal (F3, 

F4, F7, F8, Fz, Fp1, Fp2 and Fpz), central (C3, C4 and Cz), parietal (P3, P4 and Pz), temporal 

(T3, T4, T5 and T6) and occipital (O1, O2 and Oz). In the correlation analyses between 

cognitive performance and ERP variables (amplitude and latency), electrode data from 

responses to both targets were analyzed together in the auditory and visual modality, 

respectively. The Bonferroni procedure was used to correct for multiple independent 

comparisons. In paper II, the cumulative binomial distribution was used for multiple 

dependent comparisons because simultaneously recorded EEG electrode data from different 

locations are not independent from each other [109]. 

3.6 ETHICAL CONSIDERATIONS 

All subjects were informed about the nature and purpose of the study before consenting to 

participate. The protocol was approved by the regional ethics committee (Regionala 

etikprövningsnämnden i Stockholm). The study was conducted in accordance with Good 

Clinical Practice guidelines and the principles of the Declaration of Helsinki. 
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4 RESULTS 

4.1 PAPER I 

Sundgren, M., Maurex, L., Wahlin, Å., Piehl, F. and Brismar, T. (2013) Cognitive 

impairment has a strong relation to nonsomatic symptoms of depression in relapsing-

remitting multiple sclerosis. Arch Clin Neuropsychol, 28(2), pp. 144-55. 

RRMS patients (n=72) and HC subjects (n=89) were evaluated with a large cognitive test 

battery and an extensive clinical assessment. The clinical variables of interest were disease 

duration, physical disability (EDSS), disease severity (MSSS), fatigue (FSS), depression 

(BDI, BDI-NS, BDI-S) and presence of psychotropic medication (e.g. antidepressants). There 

were no significant differences between patients and HC in age (mean 37.9 and 38.2, 

respectively) or years of education (mean 13.8 and 14.1, respectively). In patients, mean 

disease duration was 9.3 years, EDSS 2.7 and MSSS 4.1. As expected, patients had 

significantly more symptoms of depression and fatigue compared to HC (p<0.0001). In 

patients, 31.9% had a BDI score ≥ 10 indicating an increased risk of depression. Patients had 

a high level of subjective fatigue as 52.8% had an FSS score ≥ 5. 

Patients had significantly lower cognitive performance than control subjects (global score -

0.71, p<0.0001), affecting preferentially executive functions (-0.92), attention (-0.88), 

processing speed (-0.64), and visual perception and organization (-0.49). Cognitive 

impairment, defined as z-score < -1.5 in two or more cognitive domains, had a prevalence of 

30.5%. Cognitive performance in patients had significant negative correlations (non-

parametric) with several of the clinical variables. E.g., global cognitive score correlated with 

EDSS (r= -0.36), FSS (r= -0.31) and BDI-NS (r= -0.32). BDI-NS had stronger correlation 

with cognitive function than BDI-S. Disease duration and MSSS had no or little association 

with cognitive impairment. In HC subjects, cognitive performance did not correlate with FSS, 

BDI-NS or BDI-S. 

Importantly, several of the clinical variables associated with cognitive impairment in patients 

were intercorrelated. E.g., FSS was strongly correlated with EDSS, BDI-NS and BDI-S 

(p<0.0001). However, MSSS was not associated with FSS or BDI. Multiple regression 

analysis was performed to separate the effects of the clinical risk factors on cognitive function 

in patients. BDI-NS had stronger effect than other clinical variables, including BDI (total) 

and BDI-S, on cognitive function in all cognitive domains except verbal ability which had no 

significant predictor. The strongest relationship was between BDI-NS and executive 

functions (p<0.0001, adjusted r2= 0.223) and visual perception and organization (p<0.0001, 

adjusted r2= 0.198). Because depression may be secondary to the level of physical disability, 

we also performed a hierarchical regression analysis with EDSS as the first predictor. The 

model EDSS + BDI-NS resulted in higher adjusted r2 values, as compared to BDI-NS as the 

single predictor, in two cognitive domains. A model with EDSS + FSS was not significant in 

any cognitive domain. The regression analyses were repeated after exclusion of the RRMS 
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patients (n=25) that were receiving any psychotropic medication. However, the results were 

similar. 

4.2 PAPER II 

Sundgren, M., Nikulin, V. V., Maurex, L., Wahlin, Å., Piehl, F. and Brismar, T. (2015) 

P300 amplitude and response speed relate to preserved cognitive function in relapsing-

remitting multiple sclerosis. Clin Neurophysiol, 126(4), pp. 689-97. 

The study population described in paper I also underwent a neurophysiological investigation 

with ERP and RT assessments.  

Visual ERP 

Patients had a significant decrease in P150 amplitude and increase in P150 latency in the 

frontal region compared to controls. Patients displayed an increase in the P300 amplitude in 

the frontal region. E.g., in the Fpz electrode position the P300 amplitude (illusory square 

stimulation) was 8.9 ± 3.9 and 7.4 ± 3.3 µV in patients and controls, respectively (p<0.03). 

There were no differences between patients and controls regarding visual P300 amplitudes 

over any other brain region. Visual P300 latency was normal in patients.  

Auditory ERP 

The auditory P300 amplitude in response to both targets was normal in patients. There was a 

small but significant increase of auditory P300 latency in five, mainly occipital electrodes, in 

the low and high pitch stimulation (p=0.002). 

ERP and correlation with cognitive function 

The P150 amplitude and latency were not related to cognitive function in patients or control 

subjects. Contrary, there were consistent and significant correlations between cognitive 

function and P300 amplitude of both stimulation modalities in patients, in contrast to HC. In 

the linear correlation analysis between parietal visual P300 amplitude and global cognitive 

function the correlation coefficient was 0.44 (p<0.0001) in patients and 0.11 (n.s.) in controls. 

The strongest correlations (non-parametric) were seen for visual P300 in the parietal region 

(global score, r= 0.51, p<0.0001). P300 amplitude in other brain regions also had significant 

correlations with cognitive function, however less strong compared to the parietal P300. 

Auditory P300 amplitude correlated significantly with cognitive function in patients, albeit 

less so than visual. In HC subjects cognitive performance had a weak correlation (p<0.05) 

with visual P300 amplitude in the central region, but not in any other brain region and not 

with auditory P300 amplitude. The correlation analyses were repeated after exclusion of the 

patients with ongoing psychotropic medication (n=25), as specified in paper I, and the main 

findings were similar. 

Visual P300 latency in patients was not correlated with global score in patients and controls. 

Auditory P300 latency showed a positive correlation with three cognitive domains and the 
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global score. This correlation was strongest in the central region (global score, r= 0.32, 

p=0.007). There was no correlation between auditory P300 latency and cognitive 

performance in controls. Our finding differed from the findings by Whelan et al. (2010) (see 

Errata) who described a negative correlation similar to the association between P300 latency 

and cognitive performance in dementia disorders where the latency is increased [63]. Our 

patients had normal auditory P300 latency in the central region. A possible explanation for 

the present finding is that the P300 often has multiple intra-component peaks in the normal 

interval [61]. A selective reduction of the later components would make the peak latency 

appear earlier.  

Visual and auditory RT 

Visual RT was 0.47 ± 0.08 and 0.45 ± 0.07 seconds and auditory RT was 0.62 ± 0.15 and 

0.60 ± 0.15 seconds, in patients and controls, respectively (n.s.).  

RT and correlation with cognitive function 

In linear correlation analysis, visual RT correlated significantly with global cognitive function 

in patients (-0.53, p<0.001) and in controls (-0.21, p<0.001). Auditory RT correlated 

significantly with global score in patients (-0.40, p<0.001) and in controls (-0.15, p=0.02). 

Similar to the results regarding P300, the intergroup difference in strength of correlation was 

significant.  

In patients, RT correlated significantly with the global score and all cognitive domains except 

memory (e.g., visual RT and global score, r= -0.52, p<0.001). In control subjects, significant 

correlations between RT and cognitive function were only present for visual RT, and the 

strongest association was observed for global score (-0.44, p<0.001). 

Subsequently we tested if the identified neurophysiological predictors were associated with 

the previously identified strongest clinical risk factors, but there were no significant 

correlations. 

4.3 PAPER III 

Sundgren, M., Wahlin, Å., Maurex, L. and Brismar, T. (2015) Event related potential 

and response time give evidence for a physiological reserve in cognitive functioning in 

relapsing-remitting multiple sclerosis. J Neurol Sci, 356(1-2), pp. 107-112. 

In paper III, we tested the cognitive reserve hypothesis in our sample of RRMS patients, 

using demographic data regarding participants´ formal education and level of vocabulary 

knowledge (SRB:1). The results were compared to the findings in paper II.  

Global cognitive function had a significant positive correlation with education in both 

patients (r= 0.102, p=0.007) and controls (r= 0.085, p=0.001). Similarly, global score 

correlated with vocabulary knowledge in patients (r= 0.29, p=0.004) and controls (r= 0.23, 

p=0.0003). The differences in strength of correlation between groups were however not 
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significant. Similarly, no intergroup differences were detected when the same correlation 

analyses were performed for each of the cognitive domains.  

The neurophysiological variables with the strongest association with global cognitive 

function in patients (visual RT and visual parietal P300 amplitude) and the strongest clinical 

predictors (EDSS and BDI-NS), were entered into a hierarchical multiple linear regression 

model where P300 and RT were Block 1, EDSS Block 2 and BDI-NS Block 3. The 

neurophysiological variables (Block 1) explained most of the variance (adjusted r2 = 0.335). 

The clinical predictors (Block 2 and 3) added significant variance, and the final model had an 

adjusted r2 of 0.444 (p<0.001). The regression analysis was repeated for the separate 

cognitive domains as the dependent variable, respectively. P300 and RT explained most of 

the variance (16-29%) in five of six domains. Memory was not predicted by P300 or RT or 

any of the clinical predictors. 

A possible moderating effect of premorbid intelligence on the association between P300/RT 

and cognitive function was tested in hierarchical regression models with global score and the 

six cognitive domains as dependent variables, respectively. Education (years) and vocabulary 

knowledge, respectively, were tested in Block 1 and P300 and RT, respectively, were tested 

in Block 2. The interactions education*P300, education*RT, vocabulary*P300 and 

vocabulary*RT were entered in Block 3, respectively. However, none of the interactions 

were found to be significant. 

4.4 PAPER IV 

Sundgren, M., Piehl, F., Wahlin, Å. and Brismar, T. Cognitive function did not improve 

after initiation of natalizumab treatment in relapsing-remitting multiple sclerosis. A 

prospective one-year dual control group study. Manuscript 

MS patients starting NZ (MS-NZ, n=15), MS controls with stable interferon beta therapy 

(MS-C, n=15) and healthy control subjects (HC, n=12) performed cognitive testing twice 

with an intertest interval of one year. The effects of NZ on levels of self-reported depression 

(BDI, CES-D), fatigue (FSS, FSMC), daytime sleepiness (ESS) and perceived health (PH) 

were also examined. There were no differences in age, sex, years of education or verbal IQ 

between the three groups. MS patients (MS-NZ and MS-C) had significantly lower baseline 

performance in all six cognitive domains and in global cognitive function compared to HC 

(global score, p=0.002). However, there were no significant baseline differences between 

MS-NZ and MS-C in cognitive performance. 

After one year, MS-NZ had improved significantly in memory (p=0.015), verbal ability 

(p=0.005), visual perception and organization (p=0.030), processing speed (p=0.003) and in 

global score (p=0.013). Similarly, MS-C improved significantly in memory (p=0.016), 

attention (p=0.030), executive function (p=0.016), visual perception and organization 

(p<0.001), processing speed (p<0.001) and global score (p<0.001). The HC group improved 

significantly in verbal ability (p=0.035), visual perception and organization (p=0.002) and 

processing speed (p=0.021), but not in the other three cognitive domains or in global 
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cognitive score. Due to these results, we hypothesized that the improvements could be 

secondary to a stronger retest effect in subjects with low baseline test performance. A 

regression analysis including baseline cognitive z-score and z-score change showed that 

participants with lower baseline scores had a significantly greater improvement at follow-up, 

compared to those with a better initial performance (Spearman´s rho -0.36, p=0.021). 

There was no significant change in depression, fatigue, daytime sleepiness or perceived 

health in MS-NZ or MS-C. HC subjects improved significantly in FSS (p=0.031). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

22 

5 CONCLUSIONS 

5.1 PAPER I 

Symptoms of depression, especially non-somatic symptoms, and level of physical disability 

are the most important clinical predictors of poor cognitive performance in RRMS patients. 

Fatigue is not a predictor when controlling for the effects of depression.  

Cognitive performance in RRMS is not related to MSSS or treatment with psychotropic 

medication.  

5.2 PAPER II AND III 

P300 and RT have stronger association with cognitive test performance in patients than in 

healthy controls. In specific, patients with larger P300 amplitude and faster RT had less 

cognitive impairment than those with lower P300 amplitude and RT. For this reason, P300 

amplitude and RT may be markers of a physiological reserve for cognitive functioning in 

RRMS.  

The increase in frontal P300 amplitude in patients may reflect compensatory mechanisms. 

The average P300 and RT showed only small differences between patients and controls, and 

for that reason they are not sensitive markers of brain dysfunction in RRMS. 

The proposed physiological reserve may be the strongest moderator of cognitive impairment 

in RRMS. Physiological reserve and clinical risk factors (physical disability and depression) 

explain a considerable amount of the variance in cognitive functioning in RRMS. In contrast, 

premorbid intelligence does not constitute a cognitive reserve in RRMS. 

5.3 PAPER IV 

There is no evidence of a beneficial effect of NZ treatment on cognitive functioning across 

one year. Significant improvement may be artificial and due to retest effects. 

Adequate control groups are essential when evaluating cognitive functioning in intervention 

trials in RRMS patients.  
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6 LIMITATIONS 

In dataset 1, memory function was restricted to the BVRT-5. It was not a sensitive test to 

detect impaired memory in patients, despite being a test of immediate visual memory which 

is considered to be vulnerable in MS [21]. In dataset 2, the memory domain also included the 

RAVLT and RAVLT-recall. In paper IV, patients had significantly lower performance in 

memory, compared to HC. 

Reduced eye saccadic initiation time and fine motor control of the hand may negatively 

interfere with the performance in written cognitive tests in MS, even in patients with low 

EDSS [110]. This could potentially have influenced performance in time-dependent tests. 

Depression was assessed with self-report scales. Thus, only subjective symptoms of 

depression were evaluated. A clinical diagnosis of depression would have required a deeper 

psychiatric interview using standardized major depression criteria. However, both BDI and 

CES-D have shown good diagnostic accuracy for depression in MS patients [97, 111]. 

Anxiety is related to depression but should be regarded as a separate psychological disorder. 

However, a separate measure of anxiety symptoms was not included among the clinical 

instruments.  

Disease burden was only assessed with clinical measures. MRI can provide additional 

information regarding lesion volume and brain atrophy. 

In Paper III, the cognitive reserve hypothesis was tested using years of education and 

vocabulary knowledge as proxies. However, there are other proposed surrogate markers of 

cognitive reserve that were not included, such as IQ or questionnaires grading the level of 

premorbid cognitive leisure activities. A test of verbal IQ (SLDT) was given to all healthy 

control subjects and MS patients entering the longitudinal study, but not to the majority of 

MS patients in dataset 1. 

In Paper IV, the relatively small numbers per group increased the risk of a type-II error 

regarding change in depression, fatigue, daytime sleepiness and perceived health.  
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7 DISCUSSION AND FUTURE PROSPECTS 

7.1 CLINICAL RISK FACTORS 

We identified depression, especially non-somatic symptoms of depression, and physical 

disability as the strongest clinical predictors of cognitive impairment in RRMS. The 

separation of the somatic and non-somatic items in the BDI was justified because BDI-NS 

had a stronger association than BDI-S with cognitive function in patients. Subjective fatigue 

was common in patients but it was not a significant predictor for cognitive impairment when 

the effects of EDSS and BDI-NS were included in regression models. Notably, the means of 

EDSS and BDI were not high (2.7 and 8.8, respectively). In comparison, the level of fatigue 

was high as more than 50% of patients scored ≥5 in the FSS. Our finding that subjective 

fatigue is not a prominent predictor of cognitive impairment in MS is in agreement with 

previous reports [32, 33]. Similarly, we replicated the finding that disease duration is not 

associated with cognitive impairment in MS [15, 18, 21, 23]. Disease progression rate, as 

measured with MSSS was also not associated with cognitive impairment in patients. 

Furthermore, MSSS was not associated with depression or fatigue.  

In MS studies with cognitive outcome measures, the presence of CNS-active psychotropic 

drugs with potential effects on cognitive performance is frequently overlooked. However, 

psychotropic medication was not a confounding factor in our study. It is important to point 

out that the patients receiving psychotropic medication were heterogeneous with regard to 

indication, pharmaceutical substances, dosage and possible combinations of drugs. 

EDSS is regularly monitored in RRMS patients in contrast to symptoms of depression. The 

results point at the importance of evaluating depression, especially non-somatic mood 

symptoms, in RRMS patients with cognitive impairment. As a consequence, clinicians should 

consider the possibility of reduced cognitive function in clinically depressed patients. 

If there is an association between depressive symptoms and cognitive impairment in RRMS, 

would cognitive function improve if depression is successfully treated? This has not been 

sufficiently studied [27]. One controlled clinical study reported objective cognitive 

improvement parallel to improved mood [112], a finding that was not confirmed in a later 

study [113]. Despite the overall high prevalence of depression in persons with MS [114], 

there is a lack of well designed clinical trials for the treatment of depression in MS patients 

[115]. In future such studies, it should be considered that depressed but otherwise physically 

healthy individuals have an increased risk of cognitive impairment. Cognitive performance is 

not immediately restored after successful anti-depressive treatment [116, 117], not even when 

other abilities have returned to normal [118]. This issue relates to the topic regarding 

cognitive effects of concomitant psychotropic medication, discussed above. In our material, 

antidepressants were the most common psychotropic medication. 
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7.2 PHYSIOLOGICAL RESERVE 

A major finding was that cognitive performance in RRMS patients is strongly correlated with 

the strength of the electrical brain signal and time for response in choice reaction tasks. These 

correlations were absent or weaker in healthy individuals. Importantly, RT and parietal P300 

amplitude were normal in patients, and the correlations were not epiphenomena of reduced 

cognition. Additionally, P300 and RT were not correlated with EDSS. Similarly, in a 

previous study, auditory and visual P300 amplitude were normal and not significantly 

different between MS patients stratified according to level and distribution of MRI lesion 

volume [72]. The results suggest that RRMS patients rely more than healthy individuals on 

their level of brain attentional resources and behavioral response speed, for their cognitive 

performance. In other words, high P300 amplitude and fast RT may be protective against 

cognitive dysfunction in RRMS.  

In contrast, years of education and vocabulary knowledge influenced cognitive test 

performance equally in patients and healthy control subjects. Accordingly, premorbid 

intelligence did not constitute a cognitive reserve in patients. This is in variance with previous 

reports [52, 53]. We do not rule out that educational attainment and vocabulary knowledge 

attenuate the degree of cognitive impairment in MS patients with more advanced or severe 

disease [53]. 

A physiological reserve hypothesis can be formulated in the same way as the cognitive 

reserve hypothesis. Accordingly, patients should have a stronger correlation between the 

physiological reserve variable and cognitive function than healthy individuals. Our results 

show that P300 amplitude and RT, in contrast to premorbid intelligence, have this association 

with cognitive function in RRMS. We suggest that physiological reserve is as a cognition-

related neural buffer system that helps patients to compensate for the negative cognitive 

effects of MS pathology. Importantly, the physiological reserve explained as much as 34% of 

the variance in global cognitive function in RRMS. The combined effect of physiological 

reserve, physical disability (EDSS) and depression (BDI-NS) explained 44% of the variance.  

The description of a measurable physiological reserve in RRMS is a novel finding and may 

help identifying RRMS patients at increased risk of cognitive impairment. 

Physiological reserve has similarities with the definition of neural reserve proposed by Stern 

et al. [119]. Neural reserve represents the natural inter-individual variability in brain network 

efficiency and ability to perform a task. Thus, individuals with higher brain network 

efficiency may be better at coping with brain pathology.  

Neural compensation is another concept of cognitive reserve and refers to the process by 

which individuals suffering from brain pathology use different brain networks, or existing 

networks differently, to compensate for the disruption imposed by brain disease [44, 45]. In 

paper II we found a small but significant increase in frontal P300 amplitude in RRMS 

patients. This finding may correspond to an increased, and possibly compensatory, fMRI 

signal previously described in MS patients performing cognitive tasks [41, 120, 121]. 
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Previous studies have investigated the degree to which premorbid intelligence moderates the 

association between MRI indices of MS pathology and cognitive impairment [47-49]. The 

proposed physiological reserve should be tested similarly. Does the level of P300 amplitude 

and RT moderate the relationship between brain atrophy (or lesion load) and cognitive 

function in RRMS? Ideally, a physiological reserve hypothesis should be tested in a 

longitudinal study of sufficient length. Does high P300 amplitude and short RT reduce the 

risk of cognitive decline associated with MS? Or conversely, are patients with a lower 

physiological reserve at higher risk for cognitive impairment? Identification of patients with 

increased risk of cognitive dysfunction has recently been highlighted as an important 

challenge in MS [35]. MS typically begins at an earlier age than other common CNS 

disorders. Other concurrent dementing medical conditions are rare at this age and normal age-

related cognitive decline is not yet large, which facilitates such studies. 

7.3 FUTURE INTERVENTION STUDIES 

In the present papers we have compared the findings in the patients with control subjects. In 

paper IV, it was shown that after one year, NZ therapy did not improve cognitive function as 

compared with the control group of other MS patients. Presumably, the increased test 

performance in both MS groups was artificial and due to retest effects that were stronger in 

patients with a lower baseline performance. The results underscore the importance of 

including control groups when evaluating cognitive outcomes in intervention trials. Learning 

or retest effects are seen in several cognitive domains, are largest in young adults, and may be 

significant also after many years [122]. Retest effects are not restricted to healthy individuals 

as they have been described in a variety of clinical samples including MS-patients [123-125]. 

Uncontrolled studies on cognitive function have therefore limited value. Besides the need for 

control groups, several methods for attenuating or eliminating retest effects have been 

proposed, such as alternate forms of tests, standardized massed practice and creation of 

reliable change indices. However, there is no consensus on the best method [126]. Contrary to 

common belief, alternate forms do not eliminate retest effects [127] and may, if forms are not 

psychometrically equivalent, introduce irrelevant variance [126]. Including only healthy 

individuals as controls is not likely to be sufficient, since retest effects cannot be assumed to 

be equal in magnitude in healthy and clinical samples or in individuals across different ages 

[122, 128]. Indeed, paper IV showed that the retest effect was larger in patients with a lower 

baseline performance. Regardless these constraints, these aspects need to be addressed in 

future studies, especially intervention studies with symptomatic drug treatment or cognitive 

rehabilitation programs. Targeted enrollment of MS patients with a lower cognitive reserve, 

thus at increased risk of developing cognitive impairment, has been suggested [129].  

Regarding the cognitive outcome of DMT interventions, comparable non-intervention patient 

control groups can not readily be created, for obvious ethical reasons. If DMT mainly limits 

progression, rather than restoring function, a future study on cognitive function would 

probably need to extend over several years because the natural rate of progression of 

cognitive dysfunction may be slow [14]. Considering the difficulties constructing well 
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designed controlled clinical DMT trials with cognitive outcomes, are there acceptable 

alternatives? One option may be large scale observational data, which could be achieved 

through MS-registries [130]. However, currently only a single cognitive test (symbol digit 

modalities test, SDMT) is regularly monitored, and additional tests may be needed to better 

cover the spectrum of cognitive deficits. A three test screening battery, the Brief International 

Cognitive Assessment for Multiple Sclerosis (BICAMS), has been proposed to monitor MS 

cognitive performance [131]. The BICAMS, which does not require expert skills to 

administer, includes two memory tests (verbal and visual, respectively) besides the SDMT. 

The findings in the present thesis also suggest that inclusion of relevant moderating variables 

would improve the interpretation of cognitive outcomes following DMT interventions. 
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8 POPULÄRVETENSKAPLIG SAMMANFATTNING PÅ 
SVENSKA 

Den övergripande problemställningen i denna avhandling är kognitiv nedsättning vid multipel 

skleros (MS). MS är en kronisk sjukdom som drabbar unga vuxna, företrädesvis i åldern 20-

40 år med övervikt för kvinnor. I Sverige finns ca 18 000 personer med MS. Vid sjukdomen 

uppträder återkommande lokaliserade inflammationer (”plack”) inom centrala nervsystemet 

vilka kan ge upphov till en rad olika neurologiska symptom såsom gång-, kraft-, känsel- och 

synstörningar. En stor andel av MS-patienterna drabbas även av försämrade kognitiva 

funktioner. Särskilt ses nedsättning inom processhastighet, minne, uppmärksamhet och 

flexibilitets- och organisationsförmåga. MS-patienter med kognitiva problem har en ökad risk 

för arbetslöshet och sämre yrkeskarriär, sämre följsamhet mot ordinerad behandling och 

sämre upplevd livskvalitet. Inom den största MS-gruppen med s.k. skovvis förlöpande MS 

(relapsing-remitting MS, RRMS), uppskattas betydande kognitionssnedsättning föreligga hos 

mellan 22-40%.  

Frågeställningarna i avhandlingens delarbeten I-III var: Vilka faktorer och sjukdomsuttryck 

kan öka risken för att utveckla kognitiv nedsättning vid RRMS? Är det hur länge man haft 

sjukdomen, grad av neurologiska bortfall, försämringstakten, grad av depression eller abnorm 

uttröttbarhet (s.k. fatigue) som är av störst betydelse?  

De första delarbetena baseras på en tvärsnittsstudie av patienter med RRMS (n=72) och friska 

kontrollpersoner (n=89). Patienterna undersöktes kliniskt och fick besvara en rad 

frågeformulär. Patienter och friska undersöktes med ett kognitivt testbatteri. Hos patienterna 

var prestationen signifikant sämre jämfört med de friska. Som förväntat hade patienterna 

också betydligt högre förekomst av depression och fatigue än de friska kontrollerna. 

Analysen visade att depressionssymptom, ensamt eller i kombination med neurologiska 

bortfallssymptom, var de starkaste riskfaktorerna för kognitiv försämring vid RRMS. 

Betydelsen av depressionssymptomen var ännu tydligare om man exkluderade de symptom 

som berör kroppsliga depressionsuttryck (t.ex. dålig sömn och oro för sitt hälsotillstånd), 

eftersom dessa kan vara uttryck för själva grundsjukdomen. Våra fynd är viktiga eftersom de 

belyser att depressionssymptom, även måttliga, är kognitivt betydelsefulla och bör 

uppmärksammas av behandlande läkare.  

Deltagarna testades också med s.k. event-related potentials (ERP) som är en EEG-metod, och 

samtidigt mättes reaktionstiden. I synnerhet studerade vi styrkan i en specifik ERP-signal 

(P300). Vi fann att sambandet mellan P300 och kognitiv prestationsförmåga var betydligt 

starkare i patientgruppen jämfört med friska kontroller. Samma mönster sågs vad gällde 

reaktionstiden. Detta betyder att patienter som har, eller förmår upprätthålla, en starkare 

hjärnsignal (eller snabbare reaktionstid) var betydligt mindre benägna att uppvisa kognitiv 

nedsättning. Detta vittnar om att det finns en fysiologisk kognitiv reservkapacitet som 

utnyttjas vid RRMS, som kan förhindra eller minimera kognitiv försämring. 
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Kognitiva reservmekanismer har studerats tidigare, framför allt inom demensforskningen. 

Medfödda eller förvärvade faktorer har i viss utsträckning visats kunna skydda personers 

kognitiva funktioner i händelse av en sjukdom som drabbar hjärnan. Hög utbildningsnivå och 

god s.k. vokabulär kunskap har ansetts vara en sådan faktor, även vid MS. Vi testade denna 

hypotes på vårt studiematerial. I sådana jämförelser måste man ta hänsyn till att dessa 

faktorer även påverkar testresultatet hos friska försökspersoner, och testdata måste korrigeras 

därefter. Vi fann att patienter med högre utbildning och god vokabulär inte hade en mindre 

grad av kognitiv nedsättning jämfört de patienter som hade lägre utbildning. Hög utbildning 

och vokabulär kunskap utgjorde därmed ingen kognitiv reserv vid RRMS. Detta till skillnad 

från hög P300 amplitud och snabb reaktionstid som alltså uppvisade de kännetecken som 

karaktäriserar en kognitiv reserv. P300 och reaktionstiden kunde i våra beräkningar förklara 

en stor del av risken att utveckla kognitiv nedsättning vid RRMS. Denna reserv har tidigare 

inte beskrivits inom MS och kan komma att förbättra möjligheterna att identifiera MS-

patienter med högre respektive lägre risk för kognitiv svikt.  

Många s.k. bromsmediciner finns idag för behandling av RRMS. En vanlig 

förstahandsbehandling vid RRMS är interferon-beta men flera alternativ har tillkommit under 

de senaste åren och som inkluderar behandlingar som i mycket hög utsträckning minskar den 

inflammatoriska komponenten i sjukdomen. Det har emellertid gjorts få studier som specifikt 

utvärderar dessa läkemedels effekter på de kognitiva förmågorna. En av de mest effektiva 

bromsmedicinerna är natalizumab (NZ). Vår hypotes i delarbete IV var att NZ-behandling 

kunde motverka eller reversera kognitiv försämring vid RRMS. Vi genomförde en 

longitudinell studie där en grupp RRMS-patienter (n=15) som startade NZ-behandling 

jämfördes med stabila patienter på förstahandsbehandling (n=15) samt friska kontrollpersoner 

(n=12). Alla tre grupper testades kognitivt två gånger med ett års mellanrum. I båda MS-

grupperna, och i viss utsträckning även också hos de friska kontrollerna, sågs signifikanta 

förbättringar efter ett år. NZ-behandlade patienter förbättrades inte mer än den andra MS-

gruppen. Vi drog slutsatsen att de förbättrade kognitiva testresultaten var s.k. 

inlärningseffekter. Vi fann också att inlärningseffekten var starkare hos individer med ett 

sämre första resultat. Tidigare kognitionsstudier på NZ har sällan inkluderat kontrollgrupper 

och därmed inte observerat denna effekt. Vår slutsats är att NZ inte ger en mätbar kognitiv 

förbättring efter ett års behandling. Framtida behandlingsstudier bör ha noggrant definierade 

kontrollgrupper, beakta normala inlärningseffekter, löpa över längre tid samt med fördel även 

inkludera uppskattningar av deltagarnas kognitiva reservkapacitet. 
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