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“Surprises and reverses can serve as an incentive for great accomplishment. There are 
no rules here, we're just trying to accomplish something.” 

 
- Thomas A. Edison 



 

 

  



 

 

ABSTRACT 
Oxidative stress is implicated in the pathogenesis of many human diseases, thus it is 
interesting to study the relationship between antioxidants, the development and 
progression of diseases. The thioredoxin and glutaredoxin systems are ubiquitous 
redox-active proteins known to be induced in chronic inflammatory related processes, 
such as cancer and diabetes, to protect against oxidative stress. The thioredoxin system 
is composed of thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH. The 
glutaredoxin system comprises glutathione reductase (GR), glutathione (GSSG/GSH), 
glutaredoxin (Grx) and NADPH. Trx is an important antioxidant and a redox regulator, 
crucial for the activation of transcription factors and modulation of intra- and 
extracellular signaling pathways. While, Grx is another crucial redox regulator with an 
important role in maintaining intracellular GSH-disulfide-dithiol exchange, apoptosis 
and cell differentiation. In fact, Trx, Grx and TrxR have been suggested biomarkers for 
disease monitoring. Thus, there is a current need for new techniques to detect and 
monitor Trx, Grx and TrxR activities in human patient samples; since the traditional 
methods showed several limitations related to background, specificity and sensitivity. 
The aim of this thesis was to develop highly sensitive and reproducible assays to enable 
analysis of Trx, TrxR and Grx activities in clinical patient samples. Thus, we optimized 
the synthesis of two fluorescent substrates, dieosin-diglutathione (Di-E-GSSG) and 
fluorescein labelled insulin (FITC-insulin), which both gave higher fluorescence upon 
disulfide reduction. The latter, FITC-insulin, was used to develop highly sensitive 
microplate assays for Trx (≥ 0.4 picomoles) and TrxR (≥ 40 femtomole). Moreover, 
this method allowed reproducible measurements of re-activated Trx, commonly present 
in frozen or over-oxidized samples from cell, tissue (biopsies) and blood plasma origin 
(manuscript I). The former Di-E-GSSG, was an excellent substrate of Grx and could be 
used to glutathionylate proteins (such as BSA, yielding E-GS-BSA), thus becoming a 
useful fluorescent marker for glutathionylated proteins in gel electrophoresis. This 
mixed disulfide substrate, E-GS-BSA, allowed measurements of Grx1 and Grx2 
activities in picomole concentrations (manuscript II). E-GS-BSA was further a key 
substrate for reverse-S-glutathionylation catalysis studies, which facilitated the 
characterization and study of the catalytic properties of human recombinant Grx5 
(paper IV). In addition, we applied these optimized methods to the study of relevant 
clinical samples from patients showing a mutation in the selenocysteine insertion 
sequence–binding protein 2 gene, which lead to a multisystem selenoprotein deficiency 
disorder. Our measurements of TrxR activity in skin biopsies and PBMCs from these 
patients, showed significant decreased TrxR activity and concomitant increased of ROS 
levels when compared to healthy controls (paper III). In conclusion, we present novel 
sensitive tools to study Trx, TrxR and Grx activities in complex samples from 
biological origin. Since these redox enzymes have been suggested as potential 
biomarkers for several diseases; the actual relevance of our newly developed 
methodologies, goes beyond the enzymatic measurements performed, as these methods 
might assist in detecting and/or analyzing disease progression with clear biomedical 
applications.  
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1 INTRODUCTION 
 
  Reduction and oxidation reactions, known as redox, are chemical reactions 
characterized by the transfer of one or more electrons from one atom to another. A 
reduction takes place when an atom or molecule gains electrons whereas oxidation 
occurs when an atom or molecule loses electrons. The redox homeostasis is preserved 
by molecules that induce reduction or oxidation reactions and these are referred to 
antioxidants or pro-oxidants. Redox state is the balance of oxidized and reduced 
molecules in biological systems such as cells or organs, which is preserved by an 
interaction between the anti- and pro-oxidants. The maintenance of the redox state is 
important for living organism in order to sustain crucial biological processes such as 
growth, metabolism, gene expression, etc. The intracellular milieu is always maintained 
in a reduced state while the environment outside cells is prone to be more oxidized. The 
delicate redox state of a cell can however be perturbed as a result of low antioxidant 
protection or exposure to high amounts of oxidants resulting in oxidative stress. Redox 
state imbalance consequentially alters cellular processes, causing damage to cellular 
components such as DNA, lipids, and proteins among others. The formation of free 
radicals (atoms or molecules with unpaired number of electrons) and peroxide ions 
(O2

2-) are common sources that perturb the redox homeostasis. These types of atoms or 
molecules are commonly known as reactive oxygen species (ROS).  
 
 
1.1 REACTIVE OXYGEN SPECIES 

  Aerobic organisms require oxygen for the cellular respiration in order to produce 
energy. During this process derivatives of oxygen may produce ROS (1,2). Low 
concentrations of ROS are required for certain cellular processes such as regulation of 
protein functions, apoptosis, activation of transcription factors and regulation of genes 
(3-8). However, excess of ROS may disturb important cellular processes and cause 
damage to DNA, proteins and lipids (9-12). The most common type of ROS are 
superoxide (O2

•-), hydrogen peroxide (H2O2) and hydroxyl radical (HO•). Superoxide 
anions are formed when oxygen gains a single electron. This free radical lacks the 
ability to penetrate membranes and is not highly reactive per se, but it is the precursors 
of other reactive species (13). Hydrogen peroxide is not a free radical, but an 
intermediate for production of the very reactive hydroxyl radical. When hydrogen 
peroxide is reduced by either Cu+ or Fe2+ (Fenton reaction), hydroxyl radicals are 
formed and these free radicals may be deleterious to a wide range of molecules 
including lipids, DNA, amino acids and carbohydrates (Figure 1).   
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  Figure 1. The formation of reactive oxygen species. 
 
 
1.1.1 Redox imbalance and diseases 

  ROS may cause damage to a variety of molecules, thereby affecting many 
physiological processes resulting in the development of various diseases such as cancer, 
neurodegenerative and metabolic disorders (14-21).  
 
1.1.1.1 Cancer 

  Redox imbalance has been found in cancer cells and it is therefore believed that 
oxidative stress is closely linked to oncogenic stimulation (22). For instance, when 
DNA is damaged the tumor suppressor proteins p53 and PTEN (phosphatase and tensin 
homologue deleted on chromosome 10) prevent the cell from dividing until either the 
damage is repaired or the cell undergoes apoptosis (23,24). However, both p53 and 
PTEN are very sensitive to oxidative damage and ROS could inactivate these proteins 
resulting in uncontrolled cell growth (25,26). 
 
1.1.1.2 Neurodegeneration 

  Alzheimer's disease is a classic example of a neurodegenerative disease linked to 
ROS. Copper is an important source for free radical production in the brain (27) due to 
its interaction with amyloid-beta (Aβ) peptide. Aβ is a redox active metallopeptide that 
binds copper and becomes electrochemically active which leads to the conversion of 
oxygen into hydrogen peroxide, setting up conditions that could promote Fenton 
reaction (Figure 2) and thus the production of hydroxyl radicals (28). 
 

 

 

  Figure 2. Model of Aβ-mediated oxidative stress in 

Alzheimer's disease. In the presence of oxygen, Cu+ is oxidized to 

Cu2+ by the peptide Aβ and producing H2O2 which reacts with 

another Cu+ producing hydroxyl (HO•) via the Fenton reaction.  
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1.1.1.3 Metabolic disorders 

  Risk factors such as an unhealthy diet, obesity and increased age may contribute to an 
oxidative environment that may alter insulin sensitivity either by impairing glucose 
tolerance or increasing insulin resistance. A metabolic disorder that is often linked to 
oxidative stress is diabetes mellitus (29). Diabetes mellitus is characterized by impaired 
glucose uptake in musculature and adipose tissue.  
 
The majority of diabetes mellitus patients are capable of producing insulin but with 
time become increasingly insulin resistant (diabetes mellitus type 2) consequently 
increasing blood glucose levels which leads to chronic hyperglycemia. Hyperglycemia 
is known to generate ROS (30), which may lead to pancreatic β-cell dysfunction, 
impaired glucose tolerance, mitochondrial dysfunction and ultimately cause the 
development of diabetes mellitus and diabetes related organ complications (31).  
 
  Another interesting link between ROS and diabetes is the ROS-dependent activation 
of nicotinamide adenine dinucleotide phosphate oxidase (NOX) caused by 
hyperglycemia. Nicotinamide adenine dinucleotide phosphate (NADPH), the substrate 
of NOX, plays a major role in the defense against oxidative stress. When NADPH is 
oxidized via NOX, electrons are released. These electrons may be coupled to oxygen to 
generate superoxide, hydrogen peroxide and subsequently hydroxyl radical (Figure 3) 
(32). 
 

 
  Figure 3. Formation of oxygen radicals by hyperglycemia. Hyperglycemia stimulates the 

formation of ROS. NOX is activated and electrons are continuously released from the oxidation of 

NADPH, enhancing the formation of more oxygen radicals. 
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1.1.2 Antioxidants 

  Antioxidants are molecules that serve as defense against excessive ROS formation and 
oxidative stress by preventing oxidation. Vitamin A, vitamin C, vitamin E, ubiquinol or 
coenzyme Q 10 (CoQ10) and glutathione are examples of non-enzymatic antioxidants 
while superoxide dismutase, catalase, various peroxidases, thioredoxin and 
glutaredoxin, among others, are enzymatic antioxidants. 
 
1.1.2.1 Vitamins 

  Carotenoids (vitamin A-analogues) are lipid-soluble molecules found in dietary 
products such as poultry, fish meat, fruits and vegetables. Vitamin A can also be found 
in dietary supplements in the form of α- or β-carotene. β-Carotene is cleaved in the 
human intestine to retinal, which is an active antioxidant that prevents lipid 
peroxidation (33).  
 
  Ascorbate (vitamin C) is the most efficient antioxidant in human plasma known for 
its capacity to scavenge ROS. Vitamin C has been described to be an abundant 
antioxidant in many cell types participating in the reduction of superoxide and 
peroxides. Its main function is to prevent damage to lipoproteins such as low density 
lipoproteins (LDL), in human plasma, or to the lipids on the cell membrane (34). 
 
  α-Tocopherol (vitamin E) is a lipid-soluble antioxidant that is produced by plants and 
anchored to biological membranes. α-Tocopherol can turn into a radical (tocopheroxyl 
radical) capable of sequestering the free electron from a reactive radical. Tocopheroxyl 
is then be reduced to α-tocopherol by another antioxidant including vitamin C and 
ubiquinol among others (35). 
 
1.1.2.2 Ubiquinone / Ubiquinol (CoQ10) 

  Ubiquinone (oxidized form) and Ubiquinol (reduced form) are ubiquitously expressed 
in aerobic organisms. Its main function is to transfer electrons between mitochondrial 
complex II and III during oxidative phosphorylation. CoQ10 is a lipid-soluble molecule 
that can be found in low concentrations in plasma, bound to cell membranes and to 
LDL affording protection against lipid peroxidation (36).  
 
1.1.2.3 Glutathione 

  Glutathione, a tripeptide composed of the amino acids glutamic acid, cysteine and 
glycine, is the most abundant antioxidant in mammalian cells and crucial for 
maintenance of the redox balance in cells. Glutathione exists both in reduced (GSH) 
and oxidized (GSSG) form whose function depends on its reactive thiol (SH) in the 
cysteinyl moiety (Figure 4). The GSH form exist in a 100 times higher molar ratio than 
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GSSG, uses its thiol for detoxification of ROS (37). Glutathione is an antioxidant that 
can either neutralize ROS per se or be a cofactor of other ROS scavengers such as 
glutathione-S-transferase (GST) and glutathione peroxidase (GPx) (38,39). The 
antioxidant capability of GSH lies in its thiol which is able to accommodate the loss of 
a single electron in reduction reactions. The reaction leads to the formation of thiyl 
radicals (GS•) which can dimerize to form GSSG. 
 

 GS-SG   GSH HSG 

 
  Figure 4. Glutathione. Glutathione disulfide (left panel) and two reduced glutathione molecules 

(right panel). 

 
  In addition to its ability to act as an antioxidant, glutathione is involved in 
posttranslational modifications of proteins via S-glutathionylation which regulates the 
activity of proteins that are crucial in maintaining cellular functions such as 
metabolism, differentiation and cell growth (40). S-glutathionylation refers to the 
addition of GS- to cysteine (Cys) residues in proteins thus forming mixed disulfides 
(Figure 4). S-glutathionylation is not only a mechanism for inactivation of proteins via 
"oxidation" of the Cys-residue, but also a way to protect proteins from other unwanted 
modifications or irreversible damage as result of oxidative stress. For instance, there are 
protein modifications caused by ROS such as irreversible oxidation to sulfinic and 
sulfonic acid that may lead to irreparable damage of the protein or proteosomal 
degradation (41). Therefore, S-glutathionylation is effective in protecting the Cys-
residue of proteins from irreversible oxidation and overcomes the effects of oxidative 
stress conditions. Furthermore, S-glutathionylation can be reversed via reverse thiol-
disulfide exchange reactions that may occur either spontaneously or catalyzed by a 
number of oxidoreductases such as glutathione-S-transferase, thioredoxin, glutaredoxin 
and sulfiredoxin (Figure 5) (42-45).  
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Figure 5. Protein glutathionylation and deglutathionylation. 
 
 
1.1.2.4 Superoxide dismutases and catalases  

  Within a cell, superoxide dismutases (SOD) constitute the first line of defense against 
ROS. They catalyze the dismutation of superoxide into oxygen and hydrogen peroxide 
(reaction 1). SODs are metal-containing enzymes that exist in different compartments 
of the cell and in different forms. Cytosolic SOD contain copper and zinc (Cu/Zn-SOD) 
while mitochondrial SOD has manganese bound (Mn-SOD) (46).  
 

           (1) 
 
  Much like SOD, catalase is a metalloprotein that catalyzes dismutation of hydrogen 
peroxide into water and oxygen (reaction 2). Thus, catalases reduce the risk of 
formation of hydroxyl radicals (47). 
 

    (2) 
 
1.1.2.5 Peroxidase 

  Peroxidases are enzymes that utilizes H2O2 as substrate (48). Glutathione peroxidases 
are the most studied peroxidases. These are tetrameric proteins where each monomer 
contains a selenium atom at the catalytic site in the form of selenocysteine. In its 
selenol form (protein-Se), GPx reacts with peroxide (H2O2) (reaction 3) or lipid 
peroxide (LOOH) (reaction 4) forming selenenic acid (protein-SeOH). The selenenic 
acid group is then reduced back to a selenol by two GSH which in turn are oxidized to 
GSSG while LOOH is reduced to its corresponding alcohol (LOH) (39). 
 

                (3) 
    (4)  
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1.2 THE THIOREDOXIN FAMILY 

  Thioredoxins (Trxs), Trx-like proteins, glutaredoxins (Grxs), PDI, GST and GPx are 
members of the thioredoxin family (49-53). These proteins participate in post-
translational modification of proteins, redox-state regulations and catalysis of protein 
reduction (54-57). Members of the thioredoxin family are characterized by a common 
structural motif known as the thioredoxin fold comprised of a central core of four-
stranded β-sheet surrounded by three α-helices (Figure 6) (58-60). All members of the 
Trx family share a well conserved active site (-Cys-X-X-Cys-) which catalyzes the 
reversible reduction of disulfides (49,61,62). The active site Cys residues are located 
proximal to the N-terminal and exposed towards the surface while the C-terminal Cys-
residues are buried in the structure (63)  
 
 

 
  Figure 6. The thioredoxin fold. Bacterial Grx1 displays the typical Trx fold composed of four-

stranded β-sheet surrounded by three α-helices (left panel). The right panel presents the arrangement 

of the β-sheet (arrows), the α-helices (barrels). The position of the active site is shown by the 

asterisk.  

 
  Trx and Grx are part of the thioredoxin and glutaredoxin systems, respectively. 
Together with GSH, these systems are important for the maintenance of a reduced 
intracellular milieu via redox regulation through reduction of disulfides to sulfhydryl 
groups (44). These two systems have both specific and shared functions. The Trx 
system is often described as an antioxidant (64), but has also been demonstrated to be 
crucial for the regulation of transcription factors, modulation of intra- and extracellular 
signaling pathways and to be involved in immune response (65-69). The Grx system 
has multiple functions in maintaining intracellular GSH-disulfide-dithiol exchange, 
apoptosis, cellular differentiation and, like Trx, defense against oxidative stress (70-74).  
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1.2.1 The thioredoxin system 

  The thioredoxin system is composed of thioredoxin (Trx), thioredoxin reductase 
(TrxR) and NADPH (Figure 7). It was discovered in 1964 as the hydrogen donor of 
ribonucleotide reductase (RNR), the enzyme that catalyzes the formation of 
deoxyribonucleotides from ribonucleotides, in Escherichia coli (E. coli) (75). In the Trx 
system, electrons are transferred from the coenzyme NADPH to TrxR and on to Trx 
which in turn is capable of reducing a wide range of proteins (76). Additionally, the Trx 
system is ubiquitous hence it exists in basically all life forms and is one of the most 
important systems that regulate cellular redox signaling and maintain the delicate redox 
homeostasis (77-83). Moreover, it is actively involved in the regulation of cell 
proliferation and growth, apoptosis, activation of transcription factors and defense 
against oxidative stress (64,84-89). 
 

  Figure 7. The mammalian thioredoxin system. Thioredoxin (Trx) is reduced by thioredoxin 

reductase (TrxR) using electrons from nicotinamide adenine dinucleotide phosphate (NADPH). 

 

 
1.2.1.1 Thioredoxin reductase 

  Thioredoxin reductase is a flavoenzyme that belongs to the pyridine nucleotide-
disulfide reductase family, originally purified from E. coli. (90-92). The mammalian 
TrxR is a 112 kDa homodimer, arranged in a head-to-tail conformation, with a redox 
active dithiol/disulfide in each unit that contains a NADPH, a flavin adenine 
dinucleotide (FAD) and an interface domain (93). In addition, mammalian TrxRs share 
a conserve N-terminal active site composed of -Cys-Val-Asn-Val-Gly-Cys- whereas 
the C-terminal comprises a selenium containing active site that is not present in lower 
organisms. TrxRs has been characterized in various species including rat, calf and 
human displaying a broad substrate specificity including thioredoxin, vitamin K, and 
5,5´-dithiobis(2-nitrobenzoic acid) (DTNB) (94-96). There are so far three known 
mammalian TrxRs: cytosolic TrxR1, mitochondrial TrxR2 and the testis-specific 
thioredoxin-glutathione reductase (TGR) (95,97,98). TGR differs markedly from 
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TrxR1 and TrxR2 because it has an extended N-terminal site that is composed of a 
monothiol glutaredoxin domain thus TGR possess the unique ability to not only reduce 
Trx but also GSSG and Grx.  
 
1.2.1.2 Thioredoxin 

  Thioredoxin is a small protein with a molecular mass of 12 kDa first isolated in pure 
form as the hydrogen donor for ribonucleotide reductase from Escherichia coli (85,99). 
Trx is a ubiquitous protein that exist in different species and tissues with a conserved 
redox-active dithiol/disulfide in the active site Cys-Gly-Pro-Cys (56,100). Trx is well 
known for participating in regulation of the enzyme activity of many proteins via thiol 
redox control involving reversible thiol-disulfide exchange (101,102). The structure of 
Trx is that of a globular protein, composed of five strands of β-sheets that are 
surrounded by four α-helices with an active site located at the N-terminal (Figure 8) 
(58). In contrast to lower organisms, mammalian Trx has three additional cysteine 
residues (Cys-62, Cys-69 and Cys-73), apart from Cys-32 and Cys-35 that forms the 
active site of the protein (103). 
 
 

 
  Figure 8. Human thioredoxin. Human thioredoxin is a globular protein with the typical 

thioredoxin family Cys–X–X–Cys active site motif (left panel). The protein is composed of five β-

sheets (arrows), the four α-helices (barrels) (right panel). The active site located at the N-terminal is 

indicated by the asterisk. 
 
  Trxs are important oxidoreductases involved in redox regulations via thiol-disulfide 
exchange reactions to protect against oxidative stress and uphold the intracellular redox 
homeostasis (104). The active disulfide in the oxidized form of Trx is reduced by 
electrons transferred from NADPH through TrxR (reaction 5) and consequently Trx 
may reduce the Cys-residues of other proteins (reaction 6) (105).   
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                 (5) 
 

    (6) 
 
 
  There are three known Trxs in human: cytosolic Trx1, mitochondrial Trx2 and 
spermatozoon specific spTrx (106-108).  
 
  Trx1 is the most studied of the Trxs. Even though Trx1 is mainly cytosolic, it may 
translocate to the nucleus during oxidative stress (109). In addition, Trx1 is also known 
to exists in the extracellular milieu acting either as a co-cytokine displaying chemokine-
like activity or electron donor for plasma glutathione peroxidase (110,111).  
 
  The function of Trx1 goes beyond being an oxidoreductase. Besides regulating the 
activity of other proteins via thiol-disulfide reduction, Trx may also regulate other 
proteins via protein-protein complex formation. Even though the mechanism for 
binding is not completely known, it is believed to occur via formation of mixed 
disulfides through cysteine-cysteine interaction. One example is the binding of Trx1 to 
apoptosis signaling kinase 1 (ASK1) (67) where reduced Trx1 forms a complex with 
the N-terminal portion of ASK1 resulting in suppressed kinase activity of ASK1 while 
oxidation of Trx1 leads to dissociation and activation of ASK1. 
 
  The activity of Trx1 is regulated by Thioredoxin interacting protein (Txnip), a 46 kDa 
protein, whose main function is to act as negative regulator of Trx1 (112). Txnip is 
ubiquitously present and its expression regulated by oxidative stress (113). Like ASK1, 
Txnip binds to reduced Trx1 via disulfide bonds (114).  
 
  Human Trx2 has a molecular size of 18 kDa with extension at the N-terminal where 
the mitochondrial translocational signal is located. Trx2 shares the catalytic active site 
of Trx1, but lacks the structural cysteines. It has an important role in preventing 
mitochondrial dysfunction and regulating mitochondrial-mediated mediated apoptosis 
(115,116).  
 
  SpTrx is a testis specific Trx. SpTrx is homologous to cytosolic Trx1 with a conserved 
CGPC active site and the three additional structural cysteines, but lacks oxidoreductase 
activity (117).   
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1.2.2 The glutaredoxin system 

  The glutaredoxin system (Grx system) comprises glutathione reductase (GR), 
glutathione (GSSG/GSH), glutaredoxin (Grx) and NADPH (Figure 9). In the Grx 
system, electrons are transferred from NADPH to GR, on to GSH and finally to Grx 
which reduces proteins (118). The reduction of protein disulfides via the Grx system 
may occur via dithiol or monothiol mechanisms. In the dithiol mechanism, two 
electrons are transferred from the active site of Grx to the disulfide of another protein. 
The monothiol mechanism utilizes only one active cysteine to catalyze either the 
formation or reduction of glutathione mixed disulfides; hence the monothiol 
mechanism implies the catalysis of both glutathionylation and deglutathionylation of 
proteins (119). 
 
 

 
  Figure 9. The glutaredoxin system. Glutathione reductase (GR) reduces GSSG to two GSH 

molecules by transferring electrons from NADPH. The disulfides in the active site of Grx are 

reduced by the two GSH molecules to dithiol in a two-step reaction. Subsequently, dithiol 

glutaredoxin reduces a disulfide (P-S2) to its dithiol form (P-(SH)2). In a monothiol mechanism, Grx 

uses a single active site Cys residue to reduce a glutathionylated protein (PS-SG) to its monothiol 

form (P-SH). 

 
1.2.2.1 Glutathione reductase 

  Glutathione reductase is the enzyme responsible for maintaining the GSH supply, 
since it reduces GSSG using electrons transferred from NADPH. Like thioredoxin 
reductase, glutathione reductase is a homodimeric, flavin-containing protein that 
belongs to the pyridine nucleotide-disulfide oxidoreductase family. There are two 
isoforms of glutathione reductase: one cytosolic and one mitochondrial (120). 
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1.2.2.2 Glutaredoxin 

  Glutaredoxin (Grx) is a small oxidoreductase with a molecular size of 12 kDa, 
discovered as a glutathione (GSH)-dependent hydrogen donor for RNR in an E. coli 
mutant lacking thioredoxin (Trx) (70,121,122). Different glutaredoxins are involved in 
monothiol or dithiol mechanisms, which are distinct but functionally connected since 
both rely on the N-terminal Cys-residue in the CXXC/S active site and on the affinity 
for GSH (123,124). Grx1 and Grx2 are well characterized glutaredoxins in mammalian 
cells. These Grxs differ in cellular localization and substrate specificity. Grx1 acts 
through a dithiol oxido-reductase mechanism and is predominately localized in the 
cytosol, but may also be localized in the nucleus (125). Grx2 with the active site CSYC, 
was identified as the first iron-sulfur [Fe–S] thioredoxin family protein and acts as a 
dithiol Grx. Grx2 is mainly localized in the mitochondria (Grx2a) but other isoforms 
have been localized in the nucleus and the cytosol (Grx2b and Grx2c) (126,127). There 
are a total of four glutaredoxins described in humans: two dithiol (Grx1 and Grx2), a 
multidomain monothiol (Grx3) (128) and a mitochondrial single-domain monothiol 
(Grx5) (129). 
 
  A unique characteristic of glutaredoxins is their ability to catalyze glutathione 
dependent redox regulations via glutathionylation and reverse-S-glutathionylation 
(130). While the mechanism for catalyzed protein glutathionylation is not well 
understood, reverse-S-glutathionylation is well known to be catalyzed by many 
members of the Grx family (131). As mentioned above, reverse-S-glutathionylation 
involves a thiol-disulfide exchange reaction between glutathione and a protein. During 
the catalysis, the thiolate moiety of Grx attacks the protein-mixed (protein-SSG), 
resulting in glutathionylated Grx (Grx-SSG) and the reduced protein (protein-SH) 
(Figure 9). Subsequently, the glutaredoxin-glutathione mixed-disulfide intermediate 
can either be reduced by another glutathione molecule, forming reduced Grx and 
GSSG, or alternatively, a dithiol Grx may form an intra-molecular disulfide and release 
GSH. 
 
  Even though glutaredoxins contain two cysteines in the active site, catalysis of 
reverse-S-glutathionylation occurs via monothiol mechanism. For instance, Grx1 has 
Cys22-Cys25 in the active site, but only Cys22 participates in the reverse-S-
glutathionylation mechanism due to its low pKa, hence acting as a thiolate at 
physiologic pH, which is prone to attack a disulfide bond (132).  
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1.2.2.3 The role of thioredoxin and glutaredoxin in diseases 

  As already adumbrated, oxygen radicals may have a strong impact on redox-sensitive 
transcription factors which modulate diverse cellular processes and could trigger the 
conditions required for the development of various diseases. In addition, the redox-
regulation of these transcription factors may be controlled by the thioredoxin and 
glutaredoxin systems (133).  
 
  For instance, there is evidence that activation of ASK1 may play an important role in 
Aβ peptide toxicity and the development of Alzheimer’s disease (134). As mentioned 
earlier, Trx1, as well as Grx1, may regulate the activity of ASK1 via protein-protein 
interaction inhibiting the proapoptotic MAPK cascade (135). Additionally, it has been 
shown that levels of Trx1 decrease, while levels of Grx1 and TrxR increase in brain 
tissue from Alzheimer’s patients (136,137). Hence, it is believed that there is a loss of 
function or direct inhibition of Trx1, which might be compensated by the elevated 
levels of Grx1 as previously demonstrated in Escherichia coli (70). However, the loss 
of Trx1 results in ASK1 dysregulated activity and consequently enhanced apoptosis. 
Therefore suggesting that the compensatory increase of Grx1 and TrxR levels is not 
sufficient to cope with the decrease of Trx1 levels. 
 
  Transcription factors are important gate keepers preventing the radical transformation 
of a healthy tissue into a malignant tissue. Various antioxidant systems, including the 
thioredoxin and glutaredoxin systems, help maintaining the function of some of these 
transcription factors. As mentioned earlier, the tumor suppressor protein p53 is an 
important transcription factor because it prevents severely damaged cells from dividing 
until repaired or triggers apoptosis if the cellular damage is beyond repair. The binding 
of p53 to DNA occurs via Cys-residues located at it DNA binding domain. The thiol-
redox status of these Cys-residues may be regulated by Trx. Thus Trx, via supporting 
the binding of p53 to DNA, promotes gene activation to either trigger DNA repair or 
apoptosis (138).  
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  As previously mentioned, the activity of Trx is regulated by Txnip. In fact, the 
interaction between ASK1 and Trx1 is consequently regulated by Txnip, via binding to 
the catalytic cysteines of Trx1, which inhibits Trx1 activity and its ability to bind to 
ASK1 (139,140). In addition, glucose has been shown to trigger the expression of 
Txnip in a variety of cells and tissues, thus pointing Txnip as glucose- and insulin-
sensitive homeostatic regulator of the glucose uptake (141,142). Hence, insulin 
deficiency or hyperglycemia may increase Txnip levels in cells, resulting in impaired 
peripheral glucose uptake (143). In the pancreas, β-cells compensate the impaired 
glucose uptake by secreting more insulin. However, if this compensation fails, the 
resulting hyperglycemia may lead to increased cellular expression of Txnip and 
consequent inhibition of Trx1-ASK1 binding and triggering β-cell apoptosis (144). This 
vicious cycle would eventually trigger a cascade of events that may result in the 
development of diabetes mellitus type 2. 
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2 PRESENT INVESTIGATION 
 
2.1 AIMS OF THE THESIS 

  Our primary goal was to develop sensitive assays to assess the activity of thioredoxin, 
thioredoxin reductase and glutaredoxin, respectively, to enable analysis of clinical 
patient samples. We modified known substrates for the Trx and Grx systems by 
labeling these molecules with fluorescent probes. After further method development 
and optimization, these methods were applied to analyze Trx, TrxR and Grx in various 
types of patient samples. Listed below are the individual aims of this thesis.  
 

� To develop highly sensitive fluorescent assays for characterization of Trx in 
Trx-dependent disulfide reduction and activity determinations of Trx in samples 
used in biochemical research. 

 
� To characterize Grx catalyzed protein glutathionylation and reverse 

glutathionylation and develop a sensitive activity assay for Grx activity 
determination by using a novel fluorescent disulfide substrate. 

 
� To describe the biochemical profile of two subjects with mutated SBP2 gene in 

respect to selenoproteins including TrxR. 
 

� To establish the physical properties of Grx5 by crystallization and characterize 
its catalytic properties as thiol-disulfide reductase and electron donor properties 
for ribonucleotide reductase. 
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2.2 RESULTS AND DISCUSSION 

 
2.2.1  Paper I - Sensitive activity assays of mammalian thioredoxin and 

thioredoxin reductase: Fluorescent disulfide substrates, 
mechanisms and use with tissue samples 

 
  The Trx system is central for regulation of cell redox signaling and redox environment 
and is closely linked to various human diseases (133). In fact, Trx and TrxR are 
suggested biomarkers for disease monitoring. Thus, new techniques are needed to 
determine and monitor Trx and TrxR activity in human patient samples. Traditionally, 
the methods that have been used to determine Trx activity are spectrophotometric either 
using consumption of NADPH at 340 nm or determination of SH-groups with DTNB at 
412 nm (145). However, these methods display several limitations related to 
background, specificity and sensitivity. 
 
  We optimized the synthesis of two fluorescent substrates, dieosin-diglutathione (Di-E-
GSSG) and fluorescein labeled insulin (FITC-insulin) to develop novel assays for Trx 
and TrxR activity. Di-E-GSSG and FITC-insulin substrates have been described as 
disulfide substrates for protein disulfide isomerase (PDI) in the presence of 
dithiothreitol (DTT) (146,147). Our findings suggest that the native characteristics of 
these substrates of the thioredoxin system are changed after chemical modification. 
Hence, the fluorescent emission of these substrates is quenched due to the proximity of 
the two fluorochromes attached to the N-terminal of the molecule. However, upon 
reduction, the fluorochromes are separated and the fluorescence emission is increased.  
 
  Di-E-GSSG was initially a promising fluorescent substrate for Trx because it 
displayed a major fluorescence increase upon reduction and displayed high affinity to 
Trx compared to GSSG. However, Di-E-GSSG proved to be a weak substrate of TrxR 
consequently yielding a background reaction when measuring more complex biological 
samples, thus it was disqualified for further use.  
 
  Conversely, FiTC-insulin showed high substrate specificity for Trx with higher 
affinity than insulin. This substrate was the key component to develop novel highly 
sensitive assays in 96 well microtiter plates for activity determination of both Trx and 
TrxR. We were thus able to follow the oxidation state of Trx and quantify Trx and 
TrxR activity in the picomole range. The assay in turn facilitated measurements of Trx 
from various types of blood cells such as peripheral blood mononuclear cells (PBMC), 
lymphocytes or monocytes which until today has only been possible with ELISA. 
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2.2.2 Paper II - Determination of glutaredoxin enzyme activity and S-
glutathionylation using fluorescent glutathione 

 
  While Di-E-GSSG seemed to bind or react non-specifically with thiols, it was highly 
probable that mixed disulfides were being formed. Despite its very low substrate 
activity with glutathione reductase, we discovered that Di-E-GSSG was instead an 
excellent substrate for Grx activity measurements and developed two alternative assays.  
One of the assays is based on the classical HED assay (148), but replacing HED with 
Di-E-GSSG. This alternative assay consist in reduction of Grx driven by lipoamide 
dehydrogenase and lipoamide (149) using Di-E-GSSG as substrate. This new method 
allows the quantification of Grx1 and Grx2 activities in nanomolar concentrations.  
 
  The distinctive feature of Di-E-GSSG to react with thiols suggested that this molecule 
in addition to behave as a disulfide substrate could potentially be also used to study 
protein glutathionylation. One protein that is commonly used for glutathionylation 
studies is albumin, thus we tested glutathionylation with Di-E-GSSG using albumin 
from bovine serum (BSA). BSA consists of 577 amino acid residues, of which 35 are 
cysteines, forming 17 disulfide bridges between 34 of them, rendering only one free 
cysteine residue, Cys34, which is located in the crevice on the protein surface of 
domain I 33. Upon reaction with BSA, Di-E-GSSG formed a mixed disulfide with the 
free thiol of residue Cys34, forming a covalent bond and yielding albumin 
glutathionylated with eosin-glutathione (E-GS-BSA). E-GS-BSA showed a quantum 
yield fluorescence that increased 20-fold upon reduction with DTT.  
 
  Given that glutathionylated proteins are good substrates for glutaredoxins, we tested 
de-glutathionylation of E-GS-BSA through the electron transport chain of NADPH, GR 
and GSH in the presence of Grx. The results obtained suggested that E-GS-BSA was an 
excellent molecule for Grx catalyzed de-glutathionylation reactions, which facilitated 
the determination of the catalytic activity of Grx. We developed a new assay using E-
GS-BSA as key component where we were capable of detecting as low as 30 fmol 
Grx1 and 70 fmol of Grx2. Furthermore, we were able to quantify Grx1 in plasma 
which so far only been performed with ELISA, but with the additional advantage of 
quantifying the amount of active protein which was not possible with former 
immunoassay techniques.  
 
  Di-E-GSSG was also used for S-glutathionylation studies. Di-E-GSSG was utilized to 
glutathionylate Grx and we were able to follow how a fluorescently labeled monothiol 
Grx containing E-GS- was reversibly transferred from BSA.  
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2.2.3 Paper III - Mutations in the selenocysteine insertion sequence–
binding protein 2 gene lead to a multisystem selenoprotein 
deficiency disorder in humans 

 
  Two subjects with heterozygous defects in the selenocysteine insertion sequence–
binding protein 2 presented a clinical profile with elevated circulating levels of 
thyroxine (T4) in addition to low concentrations of selenium and selenoproteins; 
selenoprotein P (SEPP) and glutathione peroxidase 3 (GPx3). The biochemical profile 
of the subjects suggested deficiency of T4 deiodinase enzymes as well as other 
selenoproteins, and similar or equivalent to the phenotype of childhood cases with 
defects in SBP2 (150). The subjects also demonstrated clinical symptoms including 
azoospermia, axial muscular dystrophy, skin photosensitivity, abnormal immune cell 
function, and marked insulin sensitivity in addition to cellular features such as 
increased ROS production, membrane lipid peroxidation and oxidative DNA damage, 
and accelerated telomere shortening, which were directly attributed to loss of 
selenoprotein function.  
 
  Azoospermia has been linked to selenium deficiency (151). Our findings suggested 
that deficient spermatogenetic development in the subjects was closely associated with 
insufficient activity of thioredoxin-glutathione reductase, glutathione peroxidase 4 and 
selenoprotein V, which resulted from failure to efficiently incorporate selenium into 
selenoproteins. 
 
  Both subjects presented axial muscular dystrophy. Selenoprotein N1 mutation was 
reported to cause rigid spine muscular dystrophy (152) and tissue analysis from the 
subjects showed features that were similar to selenoprotein N related myopathies. 
Additionally, dermal fibroblast protein analysis from both subjects demonstrated 
decreased proteins levels selenoprotein N. Hence, the findings suggest that the 
muscular dystrophy was likely caused by selenoprotein N deficiency. 
 
  TrxR is a scavenger of free radicals generated from ultraviolet radiation (UVR) in the 
human skin (153). Since these subjects presented skin photosensitivity, we tested TrxR 
activity in skin biopsies from one of the patients. The TrxR activity in the skin biopsy 
showed significant decreased activity as well as increased levels of ROS when 
compared to healthy tissue.  
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  It has been reported that mice whose T-cells are devoid of selenoproteins produce an 
excess of ROS upon activation resulting in inhibited T-cell proliferation (154). One 
might assume that the SBP2 defect would affect TrxR activity in the T-cells of the 
subject. To test this, blood samples were obtained and PBMCs were isolated from the 
patients in order to determine TrxR activity in these cells. These results showed low 
levels of TrxR activity compared to healthy controls thus suggesting loss of antioxidant 
defense in the immune cells.  
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2.2.4 Paper IV - The crystal structure of human GLRX5: iron−sulfur 
cluster co-ordination, tetrameric assembly and monomer activity 

 
  Grx5 plays an important role in mitochondrial iron-sulfur cluster biosynthesis and iron 
metabolism (155). However, little was known about the structure of human [2Fe-2S]-
bound Grx5 and its catalytic properties to reduce disulfides or mixed disulfides with 
GSH. 
 
  We successfully managed to purify and characterize the physical and the catalytic 
properties of human Grx5. The molecular mass analysis revealed that Grx5 had a 
molecular size of 12851 Da with intra-molecular disulfides while holo-Grx5 was 
determined to be 12946 Da.  
 
  Crystallized Grx5 showed that [2Fe-2S] clusters were coordinated by two GSH 
molecules and two protein chains in a tetrameric organization.  Each monomer 
displayed the classical Trx fold composed of five α-helices and four β-sheets. The 
active site Cys67 was located to the vicinity of helix α2 at the N-terminus. 
 
  The catalytic properties of human Grx5 were determined by measuring the reduction 
of mixed disulfides in a system coupled with GSH while compared with human Grx2. 
Both Grx5 and Grx2 are localized in the mitochondria and their stability is dependent 
on the assembly of [Fe-S]-cluster. When GSH was used as an electron donor, 
micromolar concentrations of Grx5 catalyzed the reduction of E-GS-BSA while Grx2 
reduced E-GS-BSA at nanomolar concentrations under the same conditions. These 
results indicated that the relative catalytic activity of Grx5 was approximately 500-fold 
lower than Grx2. We also studied the reduction of the Grx−GSH intermediate of Grx5 
and Grx2. The results revealed that GSH−Grx5 mixed disulfide is reduced at least 100-
fold lower rate than GSH−Grx2. Furthermore, Grx5 did not only catalyze the reduction 
of mixed disulfides, it could also catalyze transfer electrons from GSH to 
ribonucleotide reductase (RNR). In this regard our data showed that Grx5 transferred 
electrons to R1-R2 subunits but only in the presence of high amounts of GSH (>10 
mM). 
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3 CONCLUSIONS 
 
  Thioredoxin, thioredoxin reductase and glutaredoxin are essential enzymes for 
regulation of the redox homeostasis. They have all been linked to diseases thus 
emphasizing the importance of the study of these proteins in order to improve 
understanding for its enzymatic mechanism and their associated signaling pathways.  
 
Even though there are currently well established methods to analyze the activity of 
these systems, they present major drawbacks such as high background and lack of 
sensitivity which, may occur particularly in samples with limited amount of protein or 
samples that are highly oxidized. Sometimes when working with clinical sample, there 
is only certain amount of material available, which is a very important limiting factor to 
carry out certain experimental approaches. Based on this fact, there is an evident need 
for novel tools that require very small amount of sample and generate highly 
reproducible results when studying Trx, TrxR and Grx in a clinical context. 
 
  Our pursue to obtain novel tools to study thioredoxin, thioredoxin reductase and 
glutaredoxin lead us to modify insulin and glutathione disulfide, which are two natural 
substrates of thioredoxin and glutaredoxin, respectively, by attaching fluorescent 
molecules. Therefore, we were able to improve the biochemical characteristics of these 
substrates to develop new measurement techniques for this family of redox enzymes. 
 
  As a result of the chemical modification of the free amino groups of insulin or 
glutathione disulfide, with either FITC or EITC to yield FiTC-insulin and Di-E-GSSG, 
respectively, we managed to obtain two excellent substrates of the thioredoxin system 
with improved substrate characteristics compared with the native form. These 
observations set the platform for developing novel assays for the thioredoxin system 
thus facilitating further characterization of thioredoxin and thioredoxin reductase. Of 
the two substrates, Di-E-GSSG displayed valuable substrate characteristics, but it was 
not suitable for enzymatic assays of the thioredoxin system due to its lack of specificity. 
On the other hand, FiTC-insulin, was utilized to develop fluorescent 96 well plate 
assays to measure the enzymatic activity of thioredoxin and thioredoxin reductase, 
respectively. The assays enabled quantitative determination of very low concentrations 
of human thioredoxin (≥ 0.4 picomoles) or thioredoxin reductase (≥ 40 femtomole). We 
were able to quantify thioredoxin in samples that are commonly used in biomedical 
research from cell, tissue (biopsies) and blood plasma.  
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  Nevertheless, even though Di-E-GSSG was unspecific for thioredoxin measurements, 
it was an excellent disulfide substrate of glutaredoxin and, like glutathione disulfide, 
Di-E-GSSG could glutathionylate cysteine residues resulting in glutathionylated 
proteins. Therefore it was possible to perform protein-glutathionylation studies by 
measuring the fluorescence or to detect this process when fluorescent glutathionylated 
proteins are subjected to SDS-PAGE and exposed to ultraviolet light. Additionally, 
glutathionylated proteins are good substrates for glutaredoxins hence fluorescent 
glutathionylated albumin showed to be an outstanding substrate. We were positively 
surprised when we were able to detect glutaredoxin activity in plasma samples which 
had not been achieved or reported before as far as we are concerned.  
 
  Thus, we can state that: 
 

� Di-E-GSSG can be utilized as a tool to study other molecules that 
hypothetically could be glutathionylated. 

 
� If a protein is glutathionylated it can also be deglutathionylated hence enabling 

experiments on proteins that are hypothetically capable of catalyzing reverse 
glutathionylation reactions.  
 

� Di-E-GSSG may set the foundation for tools that could be used for further 
analysis around the mechanisms of catalyzed protein glutathionylation. 

 
  Our enrollment in the clinical analysis of the unique case of two patients with a 
mutation provided a great opportunity to test our new assay. The mutation of these 
patients featured many physiological alterations that resulted from impaired cellular 
antioxidant defense. It was therefore expected that the catalytic activity of thioredoxin 
reductase would be affected. However the true challenge from our study was not only 
to assess the activity of thioredoxin reductase but the limited amount of sample from 
the subjects and healthy controls. Hence, these experiments required the most accurate 
measurement technique and sensitive tools in order to obtain highly reproducible 
results. Our novel FiTC-insulin assay for thioredoxin reductase turned to be a valuable 
tool for this type of studies, providing results that were accurate and convincing due to 
its sensitivity. Therefore providing evidence that our novel methodology is suitable for 
these difficult analyses, which are highly relevant in biomedical research. 
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  The usefulness of E-GS-BSA extended to a sensitive substrate for reverse-S-
glutathionylation catalysis studies. When characterizing the catalytic properties of 
human Grx5, one might not have been able to decipher its catalytic properties if was 
not for the sensitivity of the substrate. Our results revealed that E-GS-BSA presented 
evident substrate features that were optimal for studying enzymes that catalyze reverse 
glutathionylation.  
 
  In conclusion, since Trx, TrxR and Grx have been suggested as potential biomarkers 
for several diseases such as: cancer, diabetes, neurodegenerative and cardiovascular 
diseases; the actual relevance of the novel methodologies presented here, goes beyond 
the enzymatic measurements performed, as we are describing methods which might 
assist the detection or/and in the analysis of disease progression with clear biomedical 
applications. 
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