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ABSTRACT 
Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders characterized by impairments in 

socialization and communication accompanied by repetitive and stereotypic behaviors. ASDs are highly heritable 

and heterogeneous with a complex genetic etiology. Numerous candidate genes have been suggested by linkage, 

association and candidate gene studies and recurrent submicroscopic deletions and duplications have been identified 

using array technology. In order to screen for deletions and duplications in ASD candidate genes and regions, we 

developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay (paper I). Screening of 26 genes in 

148 individuals we found a 15q11-13 interstitial duplication, which had escaped detection by conventional 

karyotyping, in 1.3% of the patients. Synthetic MLPA showed to be an easy, reliable and cost-effective method for 

the identification of Copy Number Variants (CNVs) in selected candidate regions. In order to screen the whole 

genome for CNVs in ASD patients and identify alterations associated with susceptibility for ASDs we used high 

resolution array-based comparative genomic hybridization (array-CGH). In 4-year-old girl we identified a 7.1 Mb 

interstitial deletion of chromosome band 6p22.3 (paper II). The patient had cognitive delay, specific language 

impairments and dysmorphic features. The deletion overlapped with six previously reported cases with a 6p22–24 

interstitial deletion. Developmental delay was present in all cases, while heart defects, short neck and/or redundant 

skin folds, eye abnormalities, and ear anomalies were present in the majority of cases. By our finding we could 

narrow down the critical region for the 6p22 deletion phenotype to 2.2 Mb comprising twelve genes including the 

ATXN1 gene previously reported susceptibility gene for learning difficulties. In the whole genome screening of 223 

ASD patients by array-CGH (paper III), clinically significant CNVs were identified in 18 individuals (8%) and 

CNVs of unclear clinical relevance in 20 individuals (9%). Among the latter cases, 13 individuals carried rare 

inherited CNVs, while parental samples were unavailable in the remaining seven cases. All patients were classified 

into different phenotype and inheritance subgroups. Rare inherited CNVs were present in a higher proportion of 

ASD cases having first- or second-degree relatives with an ASD related neuropsychiatric phenotype in comparison 

with cases without reported heredity (P=0.0096). We concluded that rare CNVs, encompassing potential candidate 

regions for ASDs, increase the susceptibility for ASDs and related neuropsychiatric disorders. In 514 ASD patients 

screened by array-CGH (paper IV), an exonic PARK2 deletion was found in three cases (~0.6%). No such deletion 

was identified in 149 control subjects. In a summary of comparable CNVs reported in the Database of Genomic 

Variants (DGV), 9/5141 controls had a deletion within the PARK2 gene (~0.2%). Compared with the DGV controls, 

deletions in the PARK2 gene were significantly more common in our ASD patient cohort (p=0.019). PARK2 

deletions have previously been reported in autism and our results further support that PARK2 deletions may be a risk 

factor for the development of ASDs. PARK2 encodes for the E3 ubiquitin-protein ligase Parkin, which belongs to 

the Ubiquitin proteasome system (UPS). UPS operate pre- and postsynaptic compartments demonstrating a direct 

link between these two major systems that may be important in the pathophysiology of autism.  

The future challenge will be to, in combination with the increased usage of high resolution array-CGH and whole 

genome sequencing identifying genetic alterations, create useful analysis systems in which the co-occurring 

pathways and gene-gene interactions in ASDs can be linked together and the different genes involved identified. 
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1 INTRODUCTION 
Autism Spectrum Disorders (ASDs) [Mendelian Inheritance in Man (MIM) 209850] comprise a 

heterogeneous group of disorders including autistic disorder, Aspergers syndrome and pervasive 

developmental disorder – not otherwise specified (PDD-NOS). Common for ASDs are reduced 

abilities in social- and communicational interaction together with behavioral problems such as 

stereotypic and repetitive behaviors as well as specific interests.  

 

Dr. Leo Kanner (1894–1981) described infantile autism already in 1943. He noted that in most of 

the cases the altered behaviors were discovered very early in life and suggested that the condition 

is inborn and presumably due to a genetic cause (Kanner 1943). Only one year later, pediatrician 

Hans Asperger (1906-1980) described children with similar conditions but with much higher 

cognitive abilities. Aspergers work remained largely unknown outside German speaking 

countries until Lorna Wing brought it to attention almost 40 years later (Wing 1981). Asperger 

had noted that the childrens fathers often had similar disabilities as their children. However, 

during the 1950s these conditions were described to be of a psychogenic nature and assumed to 

be the result of poor parenting (Kanner 1949). The term “refrigerator mother” was coined and 

Bruno Bettelheim, among other leading psychologists, championed the notion that autism was 

the result of a cold, distant and rejecting mother (Bettelheim 1967). These theories remained 

from the 1950s throughout the 1970s. Today, there are convincing data indicating a strong 

genetic component in autism. These data together with the lack of convincing evidence for 

environmental factors causing autism have lead to an increasing number of genetic studies within 

these disorders. 

 

1.1 CLINICAL FEATURES 
ASDs manifest early in life, often before three years of age. Individuals with autism display 

impairments in social interaction encompassing impairments in the use of nonverbal behaviors 

such as eye contact, facial expression, body postures, and gestures as well as failure to develop 

appropriate peer relationships and lack of social sharing or reciprocity. Patients with autism also 

have impairments in communication, such as a delay in, or total lack of, the development of 

spoken language. In patients who develop adequate language, there often remains a marked 
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impairment in the ability to initiate or sustain a conversation, as well as stereotyped or 

idiosyncratic use of language. In addition to the social and communication interaction 

impairments, individuals with autism also exhibit restricted, repetitive and stereotyped patterns 

of behavior, interests, and activities, including abnormal preoccupation with certain activities and 

inflexible adherence to routines or rituals.  

 

ASDs encompass broader phenotypes including Asperger syndrome and pervasive 

developmental disorder - not otherwise specified (PDD-NOS). Individuals with Asperger 

syndrome do not exhibit delay in language skills and PDD-NOS is a subthreshold condition 

where some but not all diagnostic features of autism are displayed. The Diagnostic and Statistical 

Manual of Mental Disorders, 4th edition (DSM-IV) (American Psychiatric Association, 

Washington, D.C. 1994) specifies the diagnostic criteria for the autism spectrum disorders (Table 

1).  

 

A large proportion of individuals with ASDs also have intellectual disabilities, physical/visible 

malformations and/or dysmorphic features. The patient group is very heterogeneous with regard 

to cognitive abilities and daily life skills. 

 

The prevalence for these disorders is higher than previously believed and is now estimated to be 

at least 1% when the whole autism spectrum is included (Baron-Cohen et al. 2009; 2003; 

Gillberg and Wing 1999). In a recent comprehensive study of autism prevalence using a total 

population sample, an international team of investigators from the U.S., South Korea, and 

Canada estimated the prevalence of ASDs in South Korea to be 2.64%, or approximately 1 in 38 

children (Kim et al. 2011). There is also a sex bias within the ASDs with a male-female ratio of 

4:1, and with an increase in this ratio as the intelligence of the affected individuals increases 

(Folstein and Rosen-Sheidley 2001). 
 

1.1.1 Treatment 
There is today no known cure for autism but medical treatment and educational interventions can 

be used to reduce some of the challenges associated with the condition. Pharmacological 

treatment can be used to improve specific aspects of the disorders such as aggressive-, self-



 

destructive-, and overactive behaviors as well as anxiety, depression and sleep disturbances. In 

order to enhance communication skills, teach social skills and reduce maladaptive behaviors, 

different educational interventions are used (for review see Myers and Johnson 2007). 
 

Table 1. Diagnostic criteria for ASDs according to DSM-IV. 

 
Diagnostic criteria for Autistic Syndrome 299.00 

 
(I) A total of six (or more) items from (A), (B), and (C), with at least two from (A), and one each from (B) and 
(C): 
(A) qualitative impairment in social interaction, as manifested by at least two of the following:  
1. marked impairments in the use of multiple nonverbal behaviors such as eye-to-eye gaze, facial expression, 
body posture, and gestures to regulate social interaction 
2. failure to develop peer relationships appropriate to developmental level 
3. a lack of spontaneous seeking to share enjoyment, interests, or achievements with other people, (e.g. by a 
lack of showing, bringing, or pointing out objects of interest to other people)  
4. lack of social or emotional reciprocity ( note: in the description, it gives the following as examples: not 
actively participating in simple social play or games, preferring solitary activities, or involving others in 
activities only as tools or "mechanical" aids ) 
(B) qualitative impairments in communication as manifested by at least one of the following: 
1. delay in, or total lack of, the development of spoken language (not accompanied by an attempt to compensate 
through alternative modes of communication such as gesture or mime) 
2. in individuals with adequate speech, marked impairment in the ability to initiate or sustain a conversation 
with others 
3. stereotyped and repetitive use of language or idiosyncratic language 
4. lack of varied, spontaneous make-believe play or social imitative play appropriate to developmental level 
(C) restricted repetitive and stereotyped patterns of behavior, interests and activities, as manifested by at least 
two of the following: 
1. encompassing preoccupation with one or more stereotyped and restricted patterns of interest that is abnormal 
either in intensity or focus 
2. apparently inflexible adherence to specific, nonfunctional routines or rituals 
3. stereotyped and repetitive motor mannerisms (e.g. hand or finger flapping or twisting, or complex whole-
body movements) 
4. persistent preoccupation with parts of objects 
 
(II) Delays or abnormal functioning in at least one of the following areas, with onset prior to age 3 years: 
(A) social interaction 
(B) language as used in social communication 
(C) symbolic or imaginative play 
 
(III) The disturbance is not better accounted for by Rett's Disorder or Childhood Disintegrative Disorder 
 

 
Diagnostic criteria for Asperger Syndrome 299.80 

 
(I) Qualitative impairment in social interaction, as manifested by at least two of the following: 
(A) marked impairments in the use of multiple nonverbal behaviors such as eye-to-eye gaze, facial expression, 
body posture, and gestures to regulate social interaction 
(B) failure to develop peer relationships appropriate to developmental level 
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(C) a lack of spontaneous seeking to share enjoyment, interest or achievements with other people, (e.g. by a lack 
of showing, bringing, or pointing out objects of interest to other people) 
(D) lack of social or emotional reciprocity 
 
(II) Restricted repetitive & stereotyped patterns of behavior, interests and activities, as manifested by at least 
one of the following: 
(A) encompassing preoccupation with one or more stereotyped and restricted patterns of interest that is 
abnormal either in intensity or focus 
 
 
(B) apparently inflexible adherence to specific, nonfunctional routines or rituals 
(C) stereotyped and repetitive motor mannerisms (e.g. hand or finger flapping or twisting, or complex whole-
body movements) 
(D) persistent preoccupation with parts of objects 
 
(III) The disturbance causes clinically significant impairments in social, occupational, or other important areas 
of functioning. 
 
(IV) There is no clinically significant general delay in language (e.g. single words used by age 2 years, 
communicative phrases used by age 3 years) 
 
(V) There is no clinically significant delay in cognitive development or in the development of age-appropriate 
self help skills, adaptive behavior (other than in social interaction) and curiosity about the environment in 
childhood. 
 
(VI) Criteria are not met for another specific Pervasive Developmental Disorder or Schizophrenia. 
 

 
Diagnostic criteria for PDD-NOS 299-80 

 
This category should be used when there is a severe and pervasive impairment in the development of reciprocal 
social interaction or verbal and nonverbal communication skills or when stereotyped behavior, interests, and 
activities are present but the criteria are not met for a specific pervasive developmental disorder, schizophrenia, 
schizotypal personality disorder, or avoidant personality disorder. For example, this category includes "atypical 
autism" presentations that do not meet the criteria for autistic disorder because of late age at onset, atypical 
symptomatology, or subthreshold symptomatology, or all of these. 
 

 

1.2 GENETICS IN AUTISM SPECTRUM DISORDERS 
The highly genetic component in autism was first revealed through twin- and family studies. The 

concordance rate in autism has been estimated to approximately 70-90% in monozygotic twins 

and between 2-10% in dizygotic twin pairs (Folstein and Rosen-Sheidley 2001), making autism 

one of the most genetically influenced disorders of all developmental neuropsychiatric disorders 

(Kumar and Christian 2009). During the first years of the autism genetics research era, mainly 

linkage, association and candidate gene screening studies were performed in order to identify 

genetic regions or genes for the disorders. Numerous interesting loci and genes have been 



 

identified but the support for association has in most cases been weak and it has shown difficult 

to obtain consistent results in independent samples (Levy et al. 2009; Pinto et al. 2010b; 

Veenstra-Vanderweele et al. 2004) indicating a complex genetic disorder involving multiple 

interacting genes as well as epigenetic and environmental effects. The complex genetics of ASDs 

is most likely due to the high degree of heterogeneity present within this patient group. 

 

However, a few recurrent aberrations are well-known to cause ASDs. Maternal duplications of 

chromosome band 15q11.2-13 are identified in 0.5-3% of ASD cases (Hogart et al. 2008) (see 

chapter 1.3.2.1). In addition, autism or autistic features often occur in the single gene disorders 

Fragile X syndrome, Tuberous Sclerosis, and Retts syndrome (Gillberg and Coleman 2000; 

Zafeiriou et al. 2007). Reversely, these disorders explain around 2%, 0-4% and 0.5% of autism 

cases, respectively (Abrahams and Geschwind 2008; Kumar and Christian 2009; Zafeiriou et al. 

2007). In the table below (Table 2), additional conditions in which autistic traits have shown to 

co-occur are listed. Furthermore, alterations in several highly interesting genes have been 

reported in a small number of individuals with ASDs (see chapter 1.3) (Ching et al. 2010; Jamain 

et al. 2003; Laumonnier et al. 2004; Moessner et al. 2007).  
 

Table 2. A presentation of several genetic conditions were co-occurrence with autistic traits have been 

reported (Ekstrom et al. 2008; Fombonne 1999; Gillberg and Coleman 2000; Laje et al. 2010; Moss and 

Howlin 2009; Niklasson et al. 2002; Roubertie et al. 2001; Skuse et al. 1997). 

Genetic condition 

Maternal 15q11-q13 duplication 16p11.2 microdeletion/microduplication  

Fragile X syndrome Tuberous Sclerosis 

Retts syndrome Phenylketonuria 

15q13.3 microdeletion/microduplication  Potocki-Lupski Syndrome 

Down syndrome Angelman syndrome 

22q11 deletion syndrome Neurofibromatosis 

CHARGE syndrome  Joubert syndrome 

Williams syndrome  Goldenhar Syndrome 

Hypomelanosis of Ito  Noonan syndrome 

Sotos syndrome Myotonic Dystrophy 

Leber’s amaurosis  Turner syndrome 

Smith-Magenis syndrome 2q37 deletion syndrome 
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Until recently, karyotyping has been the standard method for the detection of cytogenetic 

aberrations in patients with developmental disorders. The development of whole-genome 

screening methodologies for the detection of CNVs, such as Array-based Comparative Genomic 

Hybridization (array-CGH), provides a much higher resolution than karyotyping. This has lead to 

the identification of novel microdeletion- and microduplication syndromes often associated with 

an autism phenotype (Ballif et al. 2007; Miller et al. 2009; Weiss et al. 2008). The constantly 

increasing resolution of the arrays has further improved the detection of copy number 

abnormalities down to single genes and is likely to provide new advances in the autism genetics 

field. 

 

1.3 GENETIC STUDIES IN AUTISM SPECTRUM DISORDERS 
1.3.1 Linkage- Association- and Candidate Gene Studies 
In linkage studies genetic markers are used in family samples in order to investigate if there are 

any shared genetic regions within the affected family members that can be linked to the disease. 

In association studies, markers are used to compare allele differences or genotype frequencies 

between cases and controls. The genetic markers can be distributed throughout the whole 

genome or in a specific chromosome of interest. In candidate gene studies, specific genes, 

located in linked or associated regions, are selected and screened for alterations in a group of 

patients. Genes encoding proteins involved in brain development and function or proteins for 

which the level in patients has shown to be disturbed compared to controls are examples of 

candidate genes. There have been reports of linkage to almost all chromosomes in ASD. There 

are no regions with particularly strong evidence of linkage, but there are a few chromosomal 

regions in which the linkage has been consistently replicated (for review see Bacchelli and 

Maestrini 2006 and Kumar and Christian 2009). From these studies, several loci and genes have 

been suggested to be involved in the etiology of ASDs and below some of the most interesting 

genes are presented.  

 

1.3.1.1 The RELN gene 

The RELN gene encodes for a large secreted extracellular matrix protein believed to control cell-

cell interactions critical for cell positioning and neuronal migration during brain development. 



 

The RELN gene maps to chromosome band 7q22 which is located in a linkage region 7q22-36 

[MIM 209850] reported in multiple genome scans and association studies and RELN has shown 

to be a likely candidate gene in this locus (IMGSAC 2001a; b; Serajee et al. 2006; Skaar et al. 

2005; Ullmann et al. 2007). Furthermore, mice with deletions of the RELN gene have been 

reported to show abnormal positioning of neurons in the cerebral cortex, cerebellum, and 

hippocampus regions where alterations have been found in autistic brain (Bailey et al. 1998; 

D'Arcangelo et al. 1995). It has also been demonstrated that there are impairments in the Reelin 

signaling system in individuals with autism which were shown to have reduced Reelin protein 

levels and elevated numbers of Reelin receptors (Fatemi et al. 2005). Although there are many 

reports on an association between the RELN gene and autism, there are also several replication 

studies in which no association have been identified (Bonora et al. 2003; Krebs et al. 2002; Li et 

al. 2004; Zhang et al. 2002). 
 

1.3.1.2 The FOXP2 gene  

The FOXP2 gene is located within chromosome band 7q31, within the most susceptible locus of 

7q22-36 reported in autism. Initially, FOXP2 was shown to be mutated in patients with language 

and speech disorders (Lai et al. 2001). Even though impairments in language and speech are core 

features of the autistic phenotype, indicating an involvement in autism of this gene, none of the 

above mentioned patients had an ASD. However, the identification of a breakpoint disrupting the 

FOXP2 gene in an autistic individual and CNVs in individuals with speech and language 

impairments that in addition had an ASD diagnosis confirmed the presumed involvement of 

FOXP2 (Feuk et al. 2006; Scherer et al. 2003). FOXP2 encodes for a member of the 

forkhead/winged-helix (FOX) family of transcription factor mRNAs. These transcription factors 

are known to regulate the expression of a variety of genes. In embryogenesis, FOXP2 has shown 

to be strongly expressed in the central nervous system and highly enriched in various brain 

structures (Lai et al. 2001). A recent study suggested FOXP2 to act as a regulator in many 

networks important for the development of neural connections in the brain (Vernes et al. 2011). 

However, several studies have presented a lack of association between FOXP2 and autism and 

specific language and speech impairments concluding that FOXP2 unlikely plays a major role in 

the onset of these disorders (Gauthier et al. 2003; Newbury et al. 2002). Furthermore, Feuk et al 
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(2006) reported a very specific phenotype of language and speech impairments present in 

patients with FOXP2 alterations.  

 
1.3.1.3 The Serotonin Transporter, SLC6A4  

The serotonin transporter gene SLC6A4 map to chromosome band 17q11, a locus which has been 

associated with autism in several studies [MIM 609378]. SLC6A4 has been suggested as a strong 

candidate gene for several reasons. The neurotransmitter serotonin has been shown to regulate 

brain development and is involved in many psychiatric conditions. It has also been shown that 

patients with autism have elevated levels of serotonin in blood. Furthermore, treatment with 

serotonin reuptake inhibitors (SSRIs) is sometimes effective for some of the symptoms in autism. 

In many studies an association between variants in SLC6A4 and autism has been identified while 

other studies have been unable to replicate the association (reviewed by Huang and Santangelo 

2008). 

 

1.3.1.4 GABA receptor genes 

The gamma-aminobutyric acid (GABA) neurotransmitters are a group of inhibitory 

neurotransmitters in the central nervous system which play a major role in regulating neuronal 

excitability throughout the nervous system. Multiple lines of evidence indicate that the receptors 

of the GABA neurotransmitters may be involved in autism. First, one of the receptor subunit 

genes is located on chromosome band 15q11-q13 within the PW/AM syndrome region that is 

recurrently duplicated in a proportion of ASD cases. Furthermore, studies have shown the 

GABA receptor density to be reduced in the brain in ASD (Blatt et al. 2001; Oblak et al. 2010). 

In multiple studies, an association between GABA receptor genes on chromosome 15 and 

chromosome 4 have been reported (Buxbaum et al. 2002; Collins et al. 2006; Cook et al. 1998; 

Ma et al. 2005). A report of an inversion in chromosome 4p with a breakpoint disrupting the 

GABRG1 gene (Vincent et al. 2006). Many reports have been published indicating an association 

between autism and the GABA receptor genes, but many reports in which no association has 

been identified have been published as well (Curran et al. 2005; Maestrini et al. 1999; Martin et 

al. 2000; Salmon et al. 1999).  

 



 

1.3.1.5 Genes encoding cell-adhesion molecules  

The involvement of the cell-adhesion molecules (CAMs) neuroligins was indicated by linkage 

(Auranen et al. 2002; Philippe et al. 1999), the identification of deletions in chromosome band 

Xp22.3 (Thomas et al. 1999) and expression studies (Jamain et al. 2003). These results 

encouraged the screening of NLGN4 on band Xp22.3 and its homolog NLGN3 on band Xq13, 

two chromosome regions linked to ASD, and deleterious- and protein altering mutations were 

identified in patients while absent in controls (Jamain et al. 2003; Laumonnier et al. 2004). 

CAMs such as NLGN4 and NLGN3 are critical within the contact between pre- and post synaptic 

cells and the formation of a functional synapse. The CAMs maintain the adhesion which enables 

scaffolding proteins to assemble signaling molecules, neurotransmitter receptors and proteins in 

the cytoskeleton. The CAMs and their associated proteins work together in maintaining the 

development and plasticity of synapses. 

 

Neurexins are another group of CAMs associated with ASDs. It was shown that the postsynaptic 

neuroligins involved in ASDs bind to the presynaptic neurexins. Therefore, Feng et al. (2006) 

suggested that neurexins may also be involved in ASDs and screened ASD patients for mutations 

in the NRXN1 gene. Mutations were identified in several patients while absent in the control 

population. Further evidence for altered neurexins being involved in ASDs was shown by 

Szatmari et al. (2007), Kim et al. (2008) and Yan et al. (2008) (Kim et al. 2008; Szatmari et al. 

2007; Yan et al. 2008). More recent studies have also confirmed the implication of neurexin in 

ASDs (Gauthier et al. 2011; Sanders et al. 2011) 

 

Other CAMs associated with the pathogenetics in ASDs are the cadherin (CDH), protocadherin 

(PCDH) and contactin (CNTN) protein families (Marshall et al. 2008; Morrow et al. 2008; Roohi 

et al. 2009; Wang et al. 2009). 
 

1.3.1.6 Genes encoding CAM related proteins 

The SHANK3 gene was suggested as a candidate gene in autism since it was a strong candidate 

for the 22q13.3 deletion syndrome including ASDs (Anderlid et al. 2002; Bonaglia et al. 2001; 

Bonaglia et al. 2006; Durand et al. 2007; Manning et al. 2004; Wilson et al. 2003). In several 
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studies, mutations leading to heterozygous deletions of the gene in patients with ASDs have been 

identified suggesting that the SHANK3 gene may be one synaptic pathway that can be altered in 

ASDs (Durand et al. 2007; Moessner et al. 2007). Shank proteins are scaffolding proteins in the 

synapse formation and connect membrane proteins to the actin cytoskeleton and G-protein-

coupled signaling pathways. Shank proteins also play a role in dendritic spine maturation 

(Roussignol et al. 2005). Further, SHANK3 is able to bind neuroligins which interact with 

neurexins indicating that this network is a strong candidate for being altered in ASDs.  

 

The CNTNAP2 gene, encoding a contactin associated protein that shows structural similarity to 

neurexins, has also been suggested to be involved in autism. The gene is located on chromosome 

7q35 within the most susceptible locus of 7q22-36 reported in autism. Linkage- and association 

studies indicated variations within the CNTNAP2 gene to be associated with ASDs (Alarcon et 

al. 2008; Arking et al. 2008). However, it has also been reported that common variants were not 

significantly increased in ASD individuals and that alterations in CNTNAP2 only may have a 

modest contribution in ASDs (Bakkaloglu et al. 2008).  

 

1.3.1.7 The PTEN gene 

The PTEN gene is a tumor suppressor gene localized to chromosome band 10q23. Individuals 

with Cowden syndrome (a cancer syndrome) and other related disorders are characterized by 

PTEN mutations. Many of these patients have neurobehavioural features including mental 

retardation, autism, seizures as well as overgrowth and macrocephaly. Mutations in the PTEN 

gene have been found in a subgroup of autism patients recognized by having extreme 

macrocephaly (Butler et al. 2005). A remarkable finding concerning the PTEN gene is that 

neurological abnormalities in PTEN knockout mice have shown to be reversed by treatment with 

rapamycin (Zhou et al. 2009). 
 

1.3.1.8 Circadian rhythm regulation genes 

A consistent finding in autism patients is low levels of melatonin (Kulman et al. 2000; Melke et 

al. 2008; Tordjman et al. 2005). Melatonin is a hormone secreted by the pineal gland serving as 

the signal for darkness in the body. It’s involved in various physiologic functions, including 



 

sleep induction, circadian rhythm regulation, and immune response (Simonneaux and Ribelayga 

2003). The cause of decreased levels of melatonin in autism patients has been shown, at least 

partly, to be due to low activity of the acetylserotonin O-methyltransferase (ASMT), which is the 

last enzyme in the melatonin synthesis (Melke et al. 2008). Detection of various mutations in the 

ASMT gene, such as splice site and stop mutations and duplications within the gene or in the 

promoter sequence, has been identified and shown to be significantly more common in ASD 

patients than in healthy controls (Cai et al. 2008; Melke et al. 2008). In addition, other genes 

involved in circadian rhythm regulation and central effects of melatonin, have also been 

associated with autism. This indicates that the melatonin signaling pathway and the ASMT gene 

may play an important role in the etiology of ASDs (Melke et al. 2008; Nicholas et al. 2007).  
 

1.3.2 Chromosomal Studies 
By using traditional cytogenetic analysis, chromosomal G-banding techniques and fluorescent in 

situ hybridization, chromosomal abnormalities can be identified in 3-7% of ASD cases 

(Veenstra-Vanderweele et al. 2004; Vorstman et al. 2006; Xu J 2004). There are several 

chromosome syndromes in which ASDs often are present and the majority of these syndromes 

are presented in Table I (Chapter 1.2). 

 

1.3.2.1 Maternal duplications in chromosome band 15q11-q13  

The most frequent cytogenetic anomaly in ASD is duplications of chromosome band 15q11-

15q13 of maternal origin. Duplications of paternal origin give no or possibly a very mild 

phenotype.  However, ASDs are not fully penetrant in the 15q11-q13 duplication syndrome but 

the majority of cases fulfill the criteria for an ASD diagnosis or show ASD-like behaviors 

(Battaglia et al. 2010; Rineer et al. 1998). In ASD cases, maternal duplications of chromosome 

band 15q11-13 are identified in 0.5-3%. The phenotypes of patients with a 15q duplication are 

highly variable and include hypotonia, hypogonadism, fine motor delays, speech and language 

delays, moderate to severe mental retardation, epilepsy, and other behavioral problems (Hogart 

et al. 2008).  
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1.3.2.2 Potocki-Lupski syndrome 

The reciprocal duplication of the deletion syndrome Smith-Magenis on chromosome band 

17p11.2 is referred to as the Potocki-Lupski Syndrome. The clinical features of the duplications 

are milder than the features present in the deletions and include dysmorphic features, 

developmental delay, mental retardation, language impairment, and ASDs (Potocki et al. 2000). 

The most likely candidate gene within this region is the dosage sensitive gene RAI1 mainly 

responsible for the phenotype outcome in the Smith-Magenis Syndrome (Potocki et al. 2007). 

The RAI1 gene is expressed at high levels in neuronal tissues. In both mice and humans, 

decreased or increased dosage of RAI1 causes distinct neurobehavioral and craniofacial features 

(Carmona-Mora and Walz 2010; Walz et al. 2006).  

 

1.3.3 Whole-genome screening studies 
The usage of high-resolution whole genome screening methodologies such as array-CGH has 

shown that de novo and rare CNVs are significantly more common in individuals with ASDs 

than in healthy controls (Bucan et al. 2009; Levy et al. 2011; Marshall et al. 2008; Pinto et al. 

2010a; Sebat et al. 2007). Many of these variants are unique and include many different genes 

making it difficult to sort out what genes and pathways in fact are involved in the development 

of ASDs. The future challenge will be to create useful analysis systems in which the co-

occurring pathways and gene-gene interactions in ASDs can be linked together and the different 

genes involved identified. Actually, just recently the first study in which such a method had been 

developed and implicated on de novo and rare CNVs identified in a cohort of ASD individuals 

was published (Gilman et al. 2011). The results showed support for the hypothesis that autism 

primarily is due to malfunctions within the synaptic and neuronal connectivity. However, several 

CNVs including only one or a few genes have been identified in the majority of the whole 

genome screening studies previously published (Bucan et al. 2009; Glessn er et al. 2009; Levy et 

al. 2011; Marshall et al. 2008; Pinto et al. 2010a; Sanders et al. 2011; Szatmari et al. 2007). Most 

of these reports support the involvement of genes encoding proteins important for correct 

neuronal and synaptic development. Nevertheless, the increased usage of array-CGH has lead to 

the identification of novel microdeletion- and microduplication syndromes associated with 

ASDs. 



 

 

1.3.3.1 Microdeletions and microduplications in chromosome band 15q13.3  

Through usage of array-CGH, microdeletions and microduplications in chromosome band 

15q13.3 were discovered to recurrently occur in ASD patients (Miller et al. 2009; Pagnamenta et 

al. 2009; Sharp et al. 2008). This region is located distally to the Prader-Willi/Angelman region. 

Patients with the deletion or duplication show phenotypes including minor dysmorphic features, 

seizures, cognitive impairments, ASD, language delay, ADHD, anxiety disorder and mood 

disorder. ASDs are not always, but commonly represented in this syndrome. The 15q13.3 CNVs 

are often inherited and the duplications seem much less penetrant than the deletions (Helbig et al. 

2009). Interestingly, many of the patients reported have been adopted and their biological parents 

have been reported to show psychiatric conditions including the above mentioned phenotypes as 

well as bipolar disorder and schizophrenia (Ben-Shachar et al. 2009). The CHRNA7 gene is one 

of the at least six genes located in this region. It encodes the α-subunit of the neuronal nicotinic 

receptor, which is a synaptic ion channel protein. The CHRNA7 gene is considered a compelling 

candidate gene since it has been associated with epilepsy and broader phenotypes of 

neuropsychiatric and neurological disorders (Miller et al. 2009). 

 

1.3.3.2 Microdeletions- and microduplications in chromosome band 16p11.2  

Chromosome band 16p11.2 deletions and duplications, identified by array-CGH, have been 

associated with mental retardation, ASDs, behavioral problems such as ADHD, seizures, and 

schizophrenia (Kumar et al. 2008; McCarthy et al. 2009; Shimojima et al. 2009; Shinawi et al. 

2010; Weiss et al. 2008). In ASD patients, these deletions and duplications have shown to be 

present in approximately 1% of individuals and the variants are significantly more common in 

patients than in healthy controls (Kumar et al. 2008; Weiss et al. 2008). Over twenty genes are 

located in this region. Several of these have shown to be expressed in the brain and considered 

good candidates for being responsible for the phenotypes present in this syndrome (Kumar et al. 

2008; Weiss et al. 2008). 
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1.3.4 Whole-genome sequencing studies 
During recent years, new methodologies in which the whole genome can be sequenced have 

been developed. These methods can be used either for sequencing the whole genome, or only the 

coding sequences within the whole genome referred to as exome sequencing, or sequencing of 

selected candidate regions. In contrast to arrayCGH, which identifies CNVs that most often 

include several genes, this approach has greater potential to implicate single genes in ASDs. The 

first study of exome sequencing in ASD patients was recently published (O'Roak et al. 2011). 

The exome was sequenced in 20 individuals with sporadic ASD and their parents. The authors 

found several de novo and protein altering mutations. Four of these were considered potentially 

causative and involved the genes FOXP1, GRIN2B, SCN1A and LAMC3. In the FOXP1 mutation 

carrier, the authors also observed a rare inherited CNTNAP2 missense variant and suggested a 

multi-hit model for disease risk being involved. Such a model has previously been predicted for 

ASDs and other conditions and is described elsewhere (see chapter 4.2.1 and the discussion in 

paper III) (Girirajan et al. 2010).  

 
1.4 MECHANISMS IN CNV FORMATION 
This thesis comprises studies mainly exhibiting the involvement of CNVs as alterations in the 

genome leading to the development of ASDs. CNVs are structural variations of the genome that 

results in the cell having an abnormal number of copies of one or more sections of the DNA. 

CNVs are either inherited or caused by de novo mutations. CNVs have like other genetic 

mutations been associated with the susceptibility to disease and have in previous studies been 

associated with autism, schizophrenia and idiopathic learning disability. There are three 

mechanisms that most likely generate the majority of CNV rearrangements in the human 

genome. These include Nonallelic Homologous Recombination (NAHR), Nonhomologous End 

Joining (NHEJ) and Fork Stalling and Template Switching (FoSTeS) (for review see 

Stankiewicz and Lupski 2010 and Zhang et al. 2009). 

 

NAHR is caused by the alignment of and the following crossover between two nonallelic Low-

Copy Repeats (LCRs) of high similarity. NAHR can mediate the formation of deletions and 



 

duplications as well as inversions and translocations. This mechanism has shown to be 

responsible for the majority of recurrent reciprocal deletions and duplications. 

 

In contrast to NAHR, NHEJ does not require LCRs for the recombination but may also be 

stimulated by genome architecture since the breaks often are located within repetitive elements 

such as long interspersed nuclear elements (LINE), short interspersed nuclear elements (SINE) 

and long terminal repeat (LTR) retroposons. In NHEJ, double stranded breaks of broken DNA 

ends are first detected, then bridged, modified, and finally ligated together. NHEJ often leave a 

“molecular scar” in the form of loss or addition of several nucleotides at the DNA end junction. 

The NHEJ mechanism mediates nonrecurrent genomic rearrangements. 

 

The FoSTeS mechanism is based on DNA replication error. In this model, the DNA replication 

fork stalls and the strand disengage from the original template and anneals to another replication 

fork in physical proximity on which the DNA synthesis restarts. Further, a template-switch 

model has been proposed called the microhomology-mediated break-induced replication 

(MMBIR) model. The identification of a new template in the FoSTeS mechanism has been found 

to be utilized by nucleotide microhomology at the new template sequence. FoSTeS/MMBIR 

seems to be a major mechanism for generating nonrecurrent CNVs and complex genomic 

rearrangements. 

 

1.5 EPIGENETICS AND ENVIRONMENTAL FACTORS IN ASDs 
Autism spectrum disorders are multifactorial, with many risk factors acting together to produce 

the phenotype. The concordance rate of 70-90% in monozygotic twins suggests that the main 

cause is genetic but that there may exist other risk factors as well. Both epigenetic and 

environmental factors have been suggested to be involved in ASDs. Epigenetic modifications 

include DNA methylation, RNA modification, and histone and non-histone protein modifications 

(methylation, acetylation, phosphorylation, ubiquitination). Interestingly, several of the linkage 

peaks found in ASDs overlap or are in close proximity to regions that are known to be subject to 

imprinting (chromosomes15q11–13, 7q21–31.31, 7q32.3–36.3) (Schanen 2006). Furthermore, 

the increased susceptibility for ASDs in males than in females has been argued to depend on 
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epigenetic effects such as an increased vulnerability for dysregulation of methylation of brain-

expressed genes on the X-chromosome and sex-specific responses to different hormones (Carter 

2007; Jones et al. 2008). However, males may also be more vulnerable to minor variations in 

ASD susceptibility genes located on the X-chromosome (Noor et al. 2010). Paternal age has also 

been shown to act as a risk factor for autism in several studies. De novo germline mutations and 

epigenetic alterations have been suggested to act as possible biological mechanisms increasing 

with paternal age and thereby increasing risk for ASDs (Hultman et al. 2010). Environmental 

factors that have shown to contribute to causing autism are exposure of alcohol or medicine, such 

as valproate and thalidomide, during pregnancy (Williams et al. 2001). 
 



 

2 AIM OF THE THESIS  
The aim of the thesis was to identify genetic alterations and susceptibility genes involved in the 
development of ASD in order to gain a better understanding of the underlying genetic 
mechanisms of as well as improve the genetic diagnostic tools for this group of disorders. 
Specifically we wanted to address the following questions: 

‐ Are CNVs common in ASD candidate genes previously identified with association-, 
linkage-, candidate gene- and whole-genome screening studies (Paper I and III)? 

‐ How common are CNVs in patients with ASD discovered by array based whole 
genome screening methods and are there phenotypic differences with regard to CNV 
presence (paper III)? 

‐ How common are alterations in potential ASD candidate genes in patients with ASD 
when compared to healthy controls (paper I and IV)? 

‐ Is MLPA a suitable and successful screening method for the discovery of CNVs 
involving ASD candidate genes and how does it compare to whole genome array based 
screening (Paper I and III)? 

‐ Can we expand the knowledge of lesser known microdeletion syndromes (Paper II and 
III)? 
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3 MATERIAL AND METHODS 
For detailed descriptions of materials and methods, please see the individual papers. 

 

3.1 PATIENT MATERIAL 
In all studies, blood samples from ASD patients were collected for DNA extraction at the 

Karolinska University Hospital. DNA was isolated from peripheral blood samples using standard 

procedures. All patients were tested negative for Fragile-X syndrome and the majority of cases 

were investigated by conventional karyotyping (see papers for more information). 

 

In paper I, we received additional DNA samples from our collaborators at the Uppsala 

University, Sweden and the John F Kennedy Institute, Denmark.  

 

In paper III, the 223 patients collected at the Karolinska University Hospital were divided into 

different subgroups regarding their family history of ASDs and related broader neuropsychiatric 

phenotypes (BNPs) and into different subgroups depending on phenotypic expressions. BNPs 

included autistic traits and related neuropsychiatric disorders such as attention-

deficit/hyperactivity disorder (ADHD), mental retardation (MR), dyslexia, and/or other speech 

and language disorders. The phenotypic subgrouping was made with regard to syndromic 

features and cognitive ability. Patients with dysmorphic features and/or growth disorders and/or 

malformations were classified as syndromic, and mental retardation was defined as an IQ below 

70 (measured by Weschsler scales sometimes in combination with Leiter or Wechsler non-verbal 

scale) in conjunction with significant limitations in the adaptive functioning.  

 

‐ There were four different types of family history- or inheritance subgroups. Of the 

223 participating ASD individuals, 164 cases were sporadic – they had no relatives 

with ASDs or BNPs, 27 cases were familial – they had one or several first degree 

relatives with ASDs, 25 cases were BNP-familial – they had one or several first 

and/or second degree relatives with BNPs and/or one or several second degree 

relatives with ASDs, and the seven remaining cases had an unknown family history 



 

due to adoption in three of the cases and due to lack of information in the four 

remaining cases (Table in chapter Results and discussion).  

 

‐ There were four different types of phenotypic subgroups. Of the 223 patients 

participating, 25 cases were syndromic with an IQ within the normal range, 45 cases 

were syndromic and had MR, 60 cases were nonsyndromic with a normal IQ, and 93 

patients were non-syndromic but had MR (Tables in chapter Results and discussion). 

 

 

3.2 MULTIPLEX LIGATION-DEPENDENT PROBE AMPLIFICATION 
Multiplex ligation-dependent probe amplification (MLPA) is a method where the copy number 

of many loci can be investigated in a single reaction. In MLPA, the two oligonucleotide half-

probes hybridize with the target DNA sequence adjacently permitting ligation between the half-

probes creating one whole probe. The MLPA half-probes are designed in such way that the 

length of each ligation product has a unique size between 87 and 130 nucleotides. The ligation 

products are amplified in a subsequent PCR amplification and by using fluorescently labeled 

primers the PCR-product can be separated and measured by capillary electrophoresis. 

Comparison of the relative peak area of each amplification product to a normal control reflects 

the relative copy number of the target sequence. MLPA is a method well suitable for screening 

many loci in a large group of patients. (Paper I, III and IV) 
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Figure 1. A schematic presentation of the different reaction steps in MLPA. In the first step, the MLPA 
half-probes (red, yellow and orange), with a universal sequence attached at the end (blue and green), 
hybridize to the target sequences. Second, by adding ligase enzyme, the two half-probes located 
adjacently to each other ligate together creating one whole probe. In step 3, the whole probes are 
amplified by adding polymerase and universal primers annealing to the universal end sequences of 
the probes. The primers are fluorescently labeled and each probe has a unique size enabling 
measurement of the PCR product by electrophoresis. The amounts measured reflect the copy 
number of the target sequences.  

 

3.3 ARRAY-BASED COMPARATIVE GENOMIC HYBRIDIZATION (ARRAY-CGH) 
Array-CGH is a method permitting simultaneous detection of gene dose imbalances throughout 

the whole genome. The microarray contains immobilized DNA segments corresponding to 

regions of the human genome, and the resolution of this technique depends on the content and 

coverage of the microarray. Differently fluorescently labeled test and reference DNA are 

competitively hybridized to the immobilized DNA fragments. By measuring the fluorescent 

signal intensity from the array, the ratio between hybridized test and reference DNA is achieved. 

This allows detection of gene dose imbalances in the test DNA. In collaboration with Åke Borg 

(Swegene Lund University) we used the tiling path BAC array with complete genome coverage 

containing 38,370 large insert clones, resulting in a resolution of ~300 kb. We have also used the 
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commercially available 244k and 180k arrays from Agilent technologies containing 244 000 and 

180 000 oligos with an average resolution of 30-50 kb. The clones on the BAC arrays have a size 

of 150-350 kb while the oligonucleotides on the Agilent arrays are short sequences of 60 bases. 

Array-CGH analysis was used for genome wide screening of genomic imbalances at high 

resolution in ASD patients. (All papers) 

 

 
 

 

 

 

 

Figure 2. An outline of the different steps in array-CGH. First the test DNA and the reference DNA 
samples are differently labeled and then the sample is mixed together and added on to the probe area 
of the array-CGH glass slide. The mixed sample is allowed to hybridize on to the probes of the array 
for one or two days. After the hybridization, the glass slide is washed and scanned. The image is 
loaded into a computer program measuring the ratio between the two labels in each probe. An uneven 
ratio between the different labels indicates a loss or gain of genomic material in the test sample. 

 

3.4 FLUORESCENCE IN SITU HYBRIDIZATION (FISH) 
FISH visualizes genetic alterations, including deletions, translocations and more complex 

rearrangements, directly on interphase nuclei and metaphase chromosomes. FISH is based on the 

use of chromosome region specific fluorescent-labeled DNA probes hybridizing the DNA of 

denatured metaphase chromosomes air-dried on a glass slide. The signal from the labeled probes 

is subsequently visualized by a fluorescent microscope and allows visualization of the location of 

the target probes on the chromosomes. FISH can outline rearrangements larger than 50 kb but is 
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not optimal for the detection of small tandem duplications. In addition, the number of loci 

investigated is limited and the method is not suitable for a multiple assay. This technique was 

used to confirm chromosome rearrangements detected by array-CGH. (Paper II and III) 

 

3.5 DNA SEQUENCING 
DNA sequencing analysis is a method that detects sequence alterations such as base substitutions 

and small insertions or deletions. In dye-terminator sequencing, dideoxynucleotides (ddNTPs) 

labeled with different fluorescent colors, one for each nucleotide type (A,T,G,C), are mixed with 

deoxynucleotides (dNTPs), sequencing enzyme polymerase, primer sequence and the double 

stranded PCR product of interest. The double stranded PCR product is denatured and hybridized 

with the sequencing primer, which allows the polymerase enzyme to incorporate additional 

nucleotides. Each time a ddNTP is incorporated, the chemical properties of the ddNTP disallow 

further incorporation of nucleotides. The final product contains DNA strands of different length 

with a labeled ddNTP at the 3’end. Size separation of the DNA strands is performed with capillary 

electrophoresis and fluorescence is detected with and a CCD camera in an automatic DNA 

sequencer. The differently labeled nucleotides are presented as peaks of different colors, and 

sequence alterations are seen as overlapping peaks in generated chromatograms. (Paper I) 

 

3.6 GENOTYPING USING MICROSATELLITE MARKERS 
Microsatellites consist of di, tri, or tetra repeats. They are highly polymorphic, dense and spaced 

across the whole genome and easy to amplify by PCR by using different fluorescently labeled 

primers and allele length PCR products. The PCR-product is separated and measured by 

capillary electrophoresis revealing the number of repeats within the different alleles. 

Microsatellite markers were used to trace inheritance patterns. (Paper I) 

 

 



 

4 RESULTS AND DISCUSSION 
Two methods for detecting genetic alterations in patients with ASDs have mainly been used in 

this thesis; MLPA and array-CGH. By using these methods we have screened cohorts of ASD 

patients by two different types of approaches. MLPA for screening selected candidate genes and 

regions for CNVs and array-CGH for screening of the whole genome for rare CNVs susceptible 

for ASDs. 

 

4.1 GENETIC ALTERATIONS 
 

Table 3. A presentation of the methods used and the different findings identified in each paper. 

 

Method Study Genetic alterations 

MLPA Paper I Two cases with a 15q11-q13 duplication 

Three cases with a RELN SNPs 

Array-CGH Paper II One case with a 6p22.3 deletion 

Paper III Eighteen cases with causative CNVs 

Seven cases with CNVs of unclear relevance 

Thirteen cases with rare inherited CNVs 

Paper IV Four cases with a deletion- and two cases with a duplication 
within the PARK2 gene 

 

4.1.1 Alterations identified with MLPA (paper I) 
 

4.1.1.1 15q11-q13 duplications of maternal origin 

29 

In the screening study of 26 autism candidate genes (Table I, paper I) by MLPA in 148 ASD 

patients, we detected chromosome 15q11.2-13.1 duplications in two cases (1.3%). This finding is 

in accordance with the previously estimated frequency of such duplications occurring in 

approximately 1-3% of ASD cases. The phenotypes of the two patients were variable. One of the 

patients, a young adult male, had autism, neurodevelopmental delay and minor dysmorphic facial 

features, while the other patient, a young female, had a diagnosis of Asperger syndrome and no 

   



dysmorphic features. Both duplications were further investigated with BAC array-CGH analysis 

in order to narrow down the accurate breakpoints. The array analysis showed the size of the 

duplications to be 5.4 and 6.6 Mb, respectively, and they extended from the centromere to 

position 26681850 (clone RP11-550A14) and position 27911013 (clone RP11-680F8), 

respectively (genome assembly build 36). Microsatellite analysis performed in DNA samples 

from the patients and their parents showed that both duplications were of maternal origin. 

Almost all 15q duplications reported in ASD patient has been of maternal origin, while only one 

or a few cases of very mildly affected individuals has been reported to be of paternal origin.  

 

 
Figure 3.  The figure displays MLPA results for case 1 and 2 in paper I. A duplication of the 

UBE3A and GABRB3 genes located on chromosome 15q was detected in both cases since 

the ratio values of the probes located in these genes exceed the threshold of 1.2. 

 

 

 

 

 

4.1.1.2  Single nucleotide polymorphism in the RELN gene 

A deletion in one of the three probes targeting the RELN gene on chromosome band 7q22.1 was 

seen in three out of 148 ASD patients and one positive control in the screening study of autism 
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candidate genes using MLPA (paper I). Direct DNA sequencing analysis revealed a single 

nucleotide substitution in the ligation site of the MLPA probe (c.533C>T) resulting in a missense 

mutation (p.Ser1719Leu) in all four individuals. This substitution had not been reported as a SNP 

in the UCSC Genome Browser (2006) but had previously been reported by Bonora et al. (2003) 

who observed this variant in 0.5% of healthy controls. We screened 192 healthy control samples 

obtained from blood donors for this variation and identified it in one individual (0.5%). In 

addition, the single nucleotide substitution was inherited from a healthy parent in two of the 

cases in which parental samples were available indicating that this SNP is likely a rare 

polymorphism. 

 

4.1.2 Alterations identified with array-CGH (paper II, III, IV) 
  

4.1.2.1  6p22.3 deletion (paper II) 

When we started to screen ASD patients by whole genome BAC array-CGH we identified an 

interstitial deletion located on chromosome band 6p22.3 in a 4-year-old girl. The patient was 

referred for whole-genome screening due to a general developmental delay and a suspected ASD 

diagnosis along with syndromic features including eye abnormalities, short neck, and a 

ventricular septum defect. However, after having undergone a complete neuropsychiatric 

assessment she didn’t fulfill the criteria for ASD, but was diagnosed with expressive speech 

disorder (delay of expressive language development with only a few spoken words). 

 

Searching the literature, interstitial deletions involving the chromosome 6p22.3 region had only 

been reported in seven cases. An accurate genotype–phenotype correlation was complicated 

since all patients had large deletions of variable sizes and locations, resulting in somewhat 

variable phenotypes. However, developmental delay was present in all cases, while heart defects, 

short neck and/or redundant skin folds, eye abnormalities, and ear anomalies were present in the 

majority of cases (Table 1, paper II).  

 

Comparison of the location and size of the deletions in our and the previously reported cases 

revealed an overlapping region of 2.2 Mb, located between genomic position 16.13 and 18.33 

Mb on chromosome 6p (UCSC Genome Browser 2006), in seven of the eight cases (Fig. 4). In 
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the eighth case the deletion breakpoints reported were uncertain due to the low-resolution 

technologies used and it was therefore not possible to distinguish whether the deletion really 

overlapped with the deletion in our case. However, the overlapping region identified in the seven 

remaining cases involved twelve genes; the MYLIP, GMPR, ATXN1, RBM24, CAP2, FAM8A1, 

NUP153, KIF13A, KIN13A, NHLRCI, TPMT, and AOF1 gene. The ATXN1 (ataxin-1 protein)  

and MYLIP (themyosin regulatory lightchain interacting protein) genes had previously been 

reported as likely candidate genes involved in the cognitive delay in patients with a deletion 

encompassing chromosome band 6p22. Mice with homozygous deletions in the ATXN1 gene are 

phenotypically normal but show learning deficits and the MYLIP gene has been shown to be 

expressed in both developing and adult rat brain and it suppresses neurite outgrowth. In addition, 

we proposed the CAP2 (adenylyl cyclaseassociated protein 2) gene as a plausible candidate gene. 

The CAP2 gene is expressed in brain, heart- and skeletal muscle, and in the skin. The function of 

CAP2 is unknown, but it has been shown that the amount of CAP2 is strongly enriched in 

developing cardiomyocytes. A heterozygous deletion of this gene could therefore be involved in 

both the heart defects as well as the cognitive dysfunctions present in patients with an interstitial 

deletion involving chromosome band 6p22. 

 

After publication of the paper, we got information of another patient with a similar deletion (Dr. 

Shen, Children's Hospital Central California, USA). The patient, a young girl, had a deletion 

comprising almost only the overlapping region presented in our publication. The phenotypic 

features of the patient included global developmental delay – predominantly in speech -, an atrial 

septal defect, hypotonia and strabismus. We performed an Agilent array-CGH analysis on this 

patient in order to accurately distinguish the breakpoints and compare them with the breakpoints 

in our patient. The analysis revealed a 4.1 Mb deletion between genomic position 15.08 and 

19.17 Mb on chromosome 6p (Fig. In addition, the deletion in our patient was reanalyzed by 

Agilent array and showed a 7 Mb deletion between position 16.21 and 23.21 Mb. The 

overlapping region of approximately 3 Mb was located between position 16.21 and 19.17 Mb on 

chromosome 6 and included almost only the critical region we suggested in our publication. This 

finding further confirms that the overlapping region in our publication indeed is a critical region 

that includes one or more of the causing genes in the 6p22 deletion syndrome. 



 

 

 
 
 

 

 
 
 
 
 
 
 
 
 

USA patient
c 

Figure 4. a) The array-CGH result of the patient presented in paper II. The CGH plot presents the log2 

ratio of all clones located on chromosome 6 detecting a 7.1 Mb deletion on band 6p22.3. (b) A closer 

view of chromosome band 6p24.2-p22.1 is displayed along with a schematic representation of the 

overlapping deletions in previously reported cases and our case (referred to as present patient). The 

overlap of previous cases together with our patient narrows down the overlapping critical region from 4.1 

Mb down to a maximum size of 2.2 Mb located on chromosome band 6p22.3. One of the previously 

reported cases had to be excluded from the comparison since it was uncertain whether the deletion 

really overlapped with our deletion due to the low-resolution technologies used at the time not allowing 

accurate mapping*. c) The black bar presents the deletion detected in a patient from USA with a 6p22 

deletion phenotype. This finding further confirms that the overlapping region presented in b) indeed is a 

critical region including causing genes. 
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4.1.2.2  Microdeletion- and microduplication syndromes and recurrent   alterations (paper III) 

In the screening of 223ASD patients in paper III, 18 (8%) cases were identified with causative 

alterations. Twelve (5.4%) of these cases had microdeletion- and microduplication syndromes or 

alterations that included regions containing genes in which deletions or duplications have 

previously been reported to cause ASDs. These alterations involved chromosome band 2p16.3, 

3q27.2q29, 15q13.2q13.3, 16p11.2, 16p13.3, 17p11.2, 17p13.3, 22q11.2, 22q13.3, and Xq28 

(Table 1 in paper III).  

 

The alteration in chromosome band 2p16.3 was a partial heterozygous, partial homozygous 

deletion including the NRXN1 gene. Deletions in the NRXN1 gene have been reported as causing 

genetic alterations recurrently occurring in patients with ASDs (see chapter 1.3.1.5). In our case, 

the patient had inherited a heterozygous deletion from each parent which had lead to the partial 

heterozygous, partial homozygous deletion including the NRXN1 gene.  

 

One case had a 25 kb de novo deletion involving the SHANK3 gene and the ACR gene. Deletions 

in SHANK3 have recurrently been reported to cause neurodevelopmental disorders (see chapter 

1.3.1.6). Interestingly, the patient’s father had behavior problems and her half-brother had 

neurodevelopmental delay, but none of them had the deletion in the SHANK3 gene. All three 

individuals on the other hand had a 50 kb deletion including the ASTN2 gene located on 

chromosome band 9q33.1. The ASTN2 gene has also been associated with ASD and is known to 

be involved in neuronal development (Glessner et al. 2009). However, the girl was more severely 

affected with a more moderate developmental delay compared with her father and brother.  
 

4.1.2.3  Sporadic alterations (paper III) 

In the screening of 223ASD patients in paper III, six cases (2.7% of all cases) had deletions and 

duplications that were not located within any specific genetic syndrome regions, but within 

regions with previously described larger or partly overlapping aberrations. These six aberrations 

appeared in chromosome bands 1q25.3q31.1, 3p25.3-pter, 7p22.1, 9q13q21.31, 17p13.2, and 

18q22.2-qter. The four aberrations within chromosome 1, 7, 13 and 18 were shown to be de 

novo, while one or both parental samples were unavailable for the two remaining cases with 

aberrations in chromosome 3 and 17. In the case identified with a duplication in chromosome 



 

band 3p25.3, an unbalanced translocation between chromosome 3 and 13, 

46,XX,der(13)t(3;13)(p25.3;qter), was identified by FISH analysis (Table 1 in paper III).  

 

4.1.2.4 Genomic alterations of unclear clinical relevance and rare variants (paper III) 

During the array-CGH screening, not only cases with clear causative alterations were identified, 

but also seven cases with genomic alterations of unclear relevance in which the parental origin 

could not be investigated and thirteen cases with rare but inherited variants that most likely are 

benign but possibly could increase the risk for ASDs.  

 

4.1.2.5 Copy number variations in the PARK2 gene (paper IV) 

In the first cohort of 160 patients screened in paper II, two of the cases had deletions within the 

PARK2 gene. PARK2 gene deletions have been reported as a plausible cause of ASDs. The gene, 

located on chromosome band 6q26, encodes for the E3 ubiquitin-protein ligase Parkin, which 

belongs to the Ubiquitin proteasome system (UPS) proteins that process proteins for proteasomal 

degradation. UPS operate pre- and postsynaptic compartments, such as CAMs and CAM related 

proteins, demonstrating a direct link between these two major systems that may be important in 

the pathophysiology of autism (Glessner et al. 2009; Lehman 2009). An additional case with a 

PARK2 deletion was collected through collaboration with the Sahlgrenska University Hospital, 

Gothenburg (Dr Peder Rasmussen and colleagues). In a second ASD cohort of 354 ASD patients 

collected from the clinic (Clinical Genetics, Karolinska University Hospital, Solna, Sweden), we 

identified one patient with a deletion and two patients with duplications in the PARK2 gene. 

Parental samples are being collected for the cases identified in our two ASD cohorts. We are also 

screening healthy controls for CNVs in the PARK2 gene by MLPA with probes designed in all 

exons of the gene. So far, 149 control samples have been screened and no variation in copy 

number has been identified.  
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Figure 5. A presentation of the results from Agilent array analysis on chromosome 6. Within the   

PARK2 gene there is a cluster of probes showing decreased values indicating a deletion. 

 

In order to further explore the frequency of heterozygous CNVs in PARK2 in healthy controls we 

summarized all comparable CNVs reported in the DGV. The cohorts in the DGV studies were 

combined and the frequency of cases with deletions and duplications were compared with the 

frequency in our combined patient cohort. Cases with deletions were shown to be significantly 

more common in our patient cohort (3/514 had deletions, 0.58%) than in the DGV controls 

(9/5141 had deletions, 0.18%) (P=0.019), while there was no significant difference between 

cases with duplications. The overall results from the comparisons have shown to be in agreement 

with the findings by Glessner et al. (2009) but we included larger deletions located within the 

whole gene. The accumulation of PARK2 deletions in ASD patients compared with healthy 

controls indicates that these may play a role and increase the risk for the development of ASDs. 

 

In a previous report by Kay et al. (2010), in which the presence of CNVs in PARK2 was 

examined in individuals with Parkinson disease (PD) and in healthy controls selected against PD, 

the authors concluded that heterozygous CNVs in the first exons, without presence of any other 

mutations in the gene, are common and well tolerated. CNVs between exon 5-12, which include 
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the coding region for the highly conserved functional domains of Parkin, on the other hand 

seemed rare or absent in healthy individuals but present in PD patients and may plausibly be 

deleterious. Interestingly, the trend of CNV location within the PARK2 gene identified by Kay et 

al. (2010) is consistent with our CNV summary of healthy control populations reported in the 

DGV (Fig 1, 22 exonic and six non-exonic CNVs were located between exon 1-4 while two 

CNVs were located in exon 3-6 and exon 10-12 respectively, and three non-exonic CNVs were 

located between exon 5-12). However, in order to further understand the significance of 

heterozygous CNVs in the PARK2 gene and what role the location of CNVs within the gene may 

play, investigations in larger sample cohorts are needed, including both patients with ASDs as 

well as large size populations of healthy controls. 
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Figure 6. A schematic presentation of the deletions and duplications identified in the ASD patient cohort 

and CNVs reported in the DGV. The DGV CNVs have been marked with their DGV Report Number. 
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4.2 CNV DISTRIBUTION IN DIFFERENT ASD SUB-POPULATIONS (PAPER III) 
In the array-CGH study (paper III), all patients were divided into different subgroups regarding 

their family history of ASDs and related BNPs and into different subgroups depending on 

phenotypic expressions. The patients were also divided into to two groups depending on  gender. 

The distribution of CNVs was shown to vary between different subgroups. 

 

4.2.1 CNVs and ASD inheritance 
Out of the 18 cases identified with a clinically significant alteration, 14 were sporadic (8.5% of 

164) and 4 were familial (14.8% of 27) (Table 4). Of the seven cases with CNVs of unclear 

significance, four were sporadic (2.4% of 164), one was familial (3.7% of 27), one was BNP-

familial (4% of 25), and one had an unknown inheritance pattern (adoption) (Table 4). Of the 13 

cases identified with rare CNVs inherited from a healthy parent, 6 were sporadic (3.7% of 164), 

2 were familial (7.4% of 27), and 5 were BNP-familial (20.0% of 25) (Table 4). Separate 

comparison of CNV distribution between the three inheritance subgroups (excluding all cases 

with another type of CNV than the CNV compared) using two-tailed Fisher exact P-tests (2x2 

tables) showed that rare inherited CNVs were significantly more common in BNP-familial cases 

(in 5/24 cases) compared with in sporadic cases (in 6/146 cases) (P=0.0096, the 95% confidence 

intervals lied between 1.5 and 8.7% and 7.1–42.2% in respective group). It has been suggested 

that two or several CNVs could interact in predisposing individuals for neuropsychiatric disorder 

(Stankiewicz and Lupski 2010) and furthermore a two-hit model has been reported in which a 

second CNV in patients with 16p12.1 deletions lead to a more severe phenotype outcome of the 

syndrome (Girirajan et al. 2010). It has also been reported that rare CNVs containing ASD or 

BNP associated genes are enriched in ASD cases compared with healthy controls (Bucan et al. 

2009). These findings together with our result of a significantly higher presence of rare inherited, 

potentially neuropsychiatric disorder related CNVs in BNP-familial cases than in sporadic cases, 

may indicate that these types of CNVs, rather than being directly causative, increase 

susceptibility for the development of ASDs and ASD related phenotypes. This may also, at least 

in part, explain the complex genetics underlying ASDs and the difficulties we face in finding 

recurrent genetic causes. Hence, CNVs currently hypothesized to be clinically benign, may play 

an important role in the development of ASDs and ASD-related phenotypes as well as in other 



 

complex diseases and should be judged with caution. Our finding further illustrates the complex 

genetics underlying ASDs and the importance of reporting rare variants concerning these 

disorders. 
 

Table 4. Distribution of different types of CNVs identified in the patient subgroups recognized by having 
different inheritance patterns regarding first and second degree relatives. 

 Inheritance pattern 

Sporadic cases Familial cases 
BNP-familial 

cases 
Cases with unknown 

inheritance 

Patients n 164 27 25 7 

Patients with clinically relevant CNVs % (n) 8.5% (14) 14.8% (4) 0 0 

Patients with unclear CNVs % (n) 2.4% (4) 3.7% (1) 4.0% (1) 14.3% (1) 

Patients with rare inherited CNVs % (n) 3.7% (6) 7.4% (2) 20.0% (5) 0 

 
4.2.2 CNVs in different phenotype subgroups 
When comparing the frequency of clinically relevant aberrations across phenotypically different 

patient groups, non-syndromic patients without MR had a lower number of pathogenic CNVs 

compared with the other phenotypic subgroups, especially compared with the syndromic patient 

groups (Table 5). However, no difference in frequency of aberrations was statistically 

significant.  

 

Dividing the groups with regard to presence of syndromic features alone showed clinically 

relevant CNVs to be present in ~13% in the syndromic patients versus ~6% in the non-

syndromic (Table 6). The latter finding was not statistically significant but in line with previous 

studies (Jacquemont et al. 2006; Sebat et al. 2007). However, as genomic abnormalities were 

identified in a significant number of non-syndromic patients with ASDs it is advisable to 

clinically investigate all ASD patients with whole-genome screening methodologies.  

 

When patients were categorized according to intellectual disability, no clear difference in 

pathogenic CNV frequency was noted between the two patient groups (Table 6). 
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Table 5. Distribution of the patients, male/female ratio and CNV findings into all the different phenotypic 
subgroups. 

Phenotype  

Syndromic, 

IQ>70 

Syndromic, 

MR 

Non-syndromic, 

IQ>70 

Non-syndromic, 

MR 

Total  

Patients (n) 25 45 60 93 223 

Male/female ratio 2.13:1 1.65:1 3.29:1 2.72:1 2.48:1 

Patients with clinically relevant CNVs (n) 4 5 2 7 18 

Patients with clinically relevant CNVs (%) 16.0% 11.1% 3.3% 7.5% 8.1% 

 

 

 

Table 6. Distribution of the patients, male/female ratio and CNV findings within subgroups of syndromic 
and nonsyndromic patients and in subgroups when patients were divided depending on if they had MR   
or IQ>70. 

 

 Phenotype 

 Syndromic Non-syndromic  MR IQ>70  Total  

Patients (n)  70 153  138 85  223 

Male/female ratio  1.80:1 2.92:1  2.29:1 2.86:1  2.48:1 

Patients with clinically relevant CNVs (n)  9 9  12 6  18 

Patients with clinically relevant CNVs (%)  12.9% 5.9%  8.7% 7.1%  8.1% 

 

4.2.3 CNV distribution and gender 
Out of the 18 patients with clinically significant CNVs, 10 were males (6.3% of the male cases) 

and 8 were females (12.5% of the female cases) giving a male/female ratio of 1.25:1 compared 

with the initial whole patient cohort male/female ratio of 2.48:1 [nonsignificant (n.s.)]. The 

probability of finding a clinically significant CNV in a female was almost twice that of a male in 

our cohort. Similar findings have been reported in previous studies but with even larger 

differences (Qiao et al. 2009; Sebat et al. 2007). The increased risk in males for developing 

ASDs (Fombonne 2003) together with the higher presence of clinically relevant CNVs in 

females with ASDs may point toward factors other than CNVs being responsible for the 
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increased susceptibility for ASDs in males. It has been argued to depend on epigenetic effects 

such as an increased vulnerability for dysregulation of methylation of brain-expressed genes on 

the X-chromosome and sex-specific responses to different hormones (Carter 2007; Jones et al. 

2008). Males may also be more vulnerable to minor variations in ASD susceptibility genes 

located on the X-chromosome (Noor et al. 2010). 
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5 CONCLUDING REMARKS AND FUTURE PRESPECTIVES 
The project has lead to the identification of a genetic diagnosis in many patients. Parents to 

children with a chronic condition like ASD often experience great grief, not just because of the 

condition itself, but also because they may not understand what the condition involves and what 

their expectations should be. It has earlier been reported that medical knowledge about a specific 

diagnosis affects the parents reactions and enhance their sense of control (Cunningham et al). 

Our own experience together with this report infer that getting an explanation of why the child 

has been affected is very important and meaningful for the parents and that parents are helped by 

receiving a genetic explanation to their child’s disorder. The identification of the genetic cause in 

families also gives them the opportunity to an adequate genetic counseling and makes prenatal 

diagnosis possible. 

 

MLPA and array-CGH where the main tools for genetic screening used in this thesis. MLPA 

showed to be a fast and cost-effective method for screening several selected loci in many patients 

simultaneously. At the time of the study, MLPA was a good alternative as a screening tool for 

alterations in previously described candidate genes in ASDs, partly because it was much cheaper, 

and partly because it could detect smaller alterations than early array-CGH methodologies. 

However, there has been a rapid advancement in the development of whole-genome screening 

array-CGH methodologies which has lead to a great increase in resolution and a large decrease in 

usage expences making the usage of MLPA in these types of studies lose its advantage. Today, a 

suitable use for MLPA is confirmation of identified CNVs. This is excellently demonstrated in 

one of the related publications (I), where MLPA probes were designed for several alterations 

identified by array-CGH and thereby confirmed. Another suitable area for the usage of MLPA is 

screening of controls for particular CNVs which have been identified in one or more patients, as 

has been done in paper IV. However, during the MLPA screening study, two out of 148 patients 

were identified with a duplication of the maternal chromosome band 15q11-15q13, the same 

region that is deleted in Prader-Willi- and Angelman syndrome. Such duplications are recurrent 

in 0.5-3% of ASD cases which was confirmed in our study. 

 



 

Trough the identification and publication of the patient with a chromosome band 6p22 deletion a 

communication with the parents of our patient and of the girl in California was established. They 

are now exchanging experiences with each other, which have led to a great sence of support for 

the two families. 

 

In the third study, several genetic alterations were identified including both recurrent aberrations 

known to cause ASD, sporadic causative alterations, variants with unclear clinical relevance and 

rare inherited variants. All patients were divided into different subgroups depending on their 

family history and their phenotype. In previous reports, patients have only been divided into 

sporadic and familial cases. We introduced a third inheritance group reffered to as BNP-familial 

cases – a group that included patients with relatives that had BNPs. Rare but inherited CNVs 

were significantly more common in this group compared with the sporadic inheritance group. 

Such CNVs may therefore have a significant influence in increasing the risk for development of 

ASDs and related neuropsychiatric disorders. This finding did not only illustrate the genetic 

complexity in ASD but also presented new insights into what may be one of the underlying 

causes of the genetic complexety. It also reminds us of the importance of reporting rare variants 

in these disorders since we in the future may be able to see enrichments of certain CNVs or CNV 

patterns that can reveal further genetic causes in ASDs. Concerning the CNV distribution of 

causative CNVs in the phenotypic subgroups, we found that they were more common in 

syndromic patients than in non-syndromic and in females compared with males. None of these 

findings were statistically significant but in line with previous reports. However, causative CNVs 

were found in a significant proportion in all phenotypic subgroups and it is therefore 

recommended to clinically investigate all ASD patients with whole genome screening 

methodologies.  

 

The last study was generated from the results in the whole genome screening study discussed 

above. The identfication of two PARK2 gene deletions in paper III lead to the screening of more 

patients in which one additional case with a deletion and two cases with a duplication were 

identified. Comparison of CNV frequency in the PARK2 gene between our ASD cohort and 

DGV controls indicated an enrichment of deletions in ASD patients compared with healthy 
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individuals. The association between deletions in the PARK2 gene and ASDs has only been 

reported once before by Glessner et al. (2009). Our results confirm the association but we 

included larger deletions located within the whole gene. Further studies, in larger patient cohorts 

and with matched large size control populations, are needed in order to evaluate the true 

significance of PARK2 deletions in ASDs. The results of this particular study is a good  example 

of and in line with the emerging evidence which begins to identify the biological networks in 

which the affected genes operate and in many cases have shown to alter synaptic connectivity 

and function. 

 

During the first years of the autism genetics research era, mainly linkage, association and 

candidate gene screening studies were performed. Multiple loci and genes have been reported to 

be linked or associated with autism but the association has in most cases been weak in it has 

shown difficult to obtain consistent results in independent samples. The usage of high-resolution 

whole genome screening methodologies has revealed that rare or de novo CNVs are significantly 

more common in ASD individuals than in healthy controls. It has also lead to the identification 

of novel microdeletion- and microduplication syndromes often associated with an autism 

phenotype and to the identification of alterations in genes likely to be involved in ASDs. 

Altogether, there are indications for several different pathways and genes to be involved in the 

development of ASDs. Neuronal migration and cell growth influenced by for instance PTEN are 

strong candidates for being causative in ASDs. Genes involved in excitatory and inhibitory 

neurotransmission such as GABA and glutamate receptors are other strong candidates. One of the 

most genetically evident tracks is alterations in cell-adhesion molecules (CAMs) and related 

proteins working in this pathway system. 

 

The increased resolution of array-CGH together with the development of new technologies such 

as whole genome sequencing, in which new genetic alterations already have started to be 

reported in ASDs, will most likely lead to the detection of even smaller rare variants affecting 

single genes. The future challenge will be to, in combination with the increased usage of high 

resolution array-CGH and whole genome sequencing, create useful analysis systems in which the 



 

co-occurring pathways and gene-gene interactions in ASDs can be linked together and the 

different genes involved identified. 

 

Furthermore, it has recently been shown that the phenotypes in Fragile X syndrome and Rett’s 

syndrome mice models can be altered after birth through administration of metabotophic 

glutamate antagonists and reinstatement of MECP2 (Dolen et al. 2007; Guy et al. 2007; Yan et 

al. 2005). Similarly, neurological abnormalities in TSC1 and TSC2 knockout mice (tuberous 

sclerosis) and PTEN knockout mice (macrocephaly and ASD) can be reversed by treatment with 

rapamycin (Ehninger et al. 2008; Zhou et al. 2009). This is highly encouraging implying that the 

identification of causative targets in ASDs, as well as in other neuropsychiatric disorders, may 

lead to the development of therapeutic strategies. 
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