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Abstract

Shotgun sequencing is the most powerful strategy for large scale sequencing.
Two main approaches exist: clone-by-clone and whole genome shotgun (WGS).
In the clone-by-clone strategy, overlapping clones are amplified and then sheared
in a random fashion. In the WGS approach, a sufficient amount of cells from
the target organism are obtained, and the random shearing is performed on
extracted DNA.

In both approaches, the resulting fragments are cloned and the fragment ends
are subsequently sequenced, producing sequence reads. If a sufficient amount
of sequence has been obtained, the reads will overlap in a way that makes it
possible to deduce their correct order. A number of computer programs have
been developed for this task. However, none of these programs are capable
of producing correct assemblies if the target sequence contains repeats. This
is because assembly algorithms in general are greedy, which means that when
faced with different alternatives for the positioning of a read, the algorithm
will fit the read at the first available position meeting the criteria for inclusion
into the assembly. The resulting assemblies typically have the repeat regions
degenerated, truncating the regions into a few copies with abnormally high
shotgun coverage. This phenomenon occurs even when the repeat copies differ
from each other, since the assembly programs are unable to distinguish the
subtle differences between repeat elements from the sequencing errors produced
by the sequencing apparatus .

The work presented here is aimed at solving the repeat problem by detecting
and utilizing single base differences between nearly identical repeats. In paper I,
a statistical method for detecting repeat differences in the presence of sequencing
errors was developed, implemented, and tested on simulated data. We showed
that it is possible to obtain high specificity as well as sensitivity compared to
other methods, by evaluating coinciding deviations from consensus in pairs of
columns in multiple alignments. In paper II, a finishing tool (DNPTrapper) that
visualizes the differences and enables manual and semi-automatic resolution of
repeat regions was constructed and tested with simulated data as well as real
data from the Trypanosoma cruzi WGS project. Results showed that using
DNPTrapper, it is possible to resolve and analyze complicated repeat regions
previously considered difficult or even impossible to resolve. Finally in paper
III, five repeated genes in T. cruzi were analyzed using DNPTrapper. Different
repeat characteristics in the parasite were described, and it was shown that
thorough analysis of repeat regions is required for correcting erroneous consensus
sequences of repeated genes in the assembly.
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Chapter 1

Repeated DNA

1.1 Genomes and Genomics

The genome of an organism is defined as its set of genes and non-protein-coding
sequences, as they appear in the DNA present in all of its cells. Genomics
is the study of genomes; after the sequencing of the first free-living organism,
Haemophilus influenzae in 1995 [1], genomics has emerged as a major field of
research in life sciences.

Before the advent of large scale, high-throughput methods for gene and
genome sequencing, genes were studied one or a few at a time by molecular
biologists. Assessing the function of a gene required considerable effort and
time. The gene had to be cloned and subsequently expressed in a suitable
system. The expressed protein could then be extracted and analyzed further for
activity, and different assays could be applied in order to find out if the protein
had functional similarities with previously known proteins.

The work leading up to the publishing of the draft genome sequence of
Homo sapiens [2, 3], and the still ongoing aftermath, has led to an explosion
with regard to improvements in sequencing techniques, the computer methods
and programs associated with them, and the number of genomes subjected
to sequencing. The number of sequenced genomes is growing exponentially
each year (see the Genomes OnLine Database (GOLD, [4]) for finished and
ongoing projects), and bacterial genomes are nowadays routinely sequenced and
assembled at genome centers within the course of a day. The task of determining
the probable function of a gene can now be performed in a matter of seconds
using a computer and an internet connection, provided that the sequence is
known. A database search against all known genes in all known species quickly
reveals if the gene is similar to something already characterized, and to what
degree. This is often all that is needed in order to make an educated guess about
the function of the gene, as high sequence homology usually implies similarity in
function. Although the laborious process of studying individual genes still comes
in handy when the intricate details of protein activity and function are being
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2 CHAPTER 1. REPEATED DNA

analyzed, or in the case that the gene of interest has no known counterparts in
other species, access to whole genomes has enabled a shift in focus to large scale
studies of genes and how they are expressed. Through the use of microarrays,
it is now possible to measure the expression levels of all genes of an organism
simultaneously in a single experiment. This allows for a system-wide approach in
molecular biology, complementing previously developed techniques for studying
specific pathways up close.

Through comparative genomics, the gene content of a sequenced genome can
immediately be estimated to a large part, by comparing the genome to that of
an already sequenced, related species. This has the effect that focus can be
directed at once towards the parts that are specific for that organism, under the
assumption that homologous regions essentially have the same function in both
species. Comparisons between species also makes it possible to track speciation
events and determine the evolutionary distance between species. In addition,
a rough estimate of the genome arrangement of an organism can be obtained
quickly at low cost using comparative sequencing.

All is not genes that is DNA. When the concept of introns was introduced for
eukaryote species [5], it was initially thought that genomes consisted of exons,
introns and RNA genes. As more non-coding sequence was discovered, it was
sometimes referred to as ”junk DNA”, essentially meaning ”we have no idea
what it does”. Through genome sequencing and genomics, continuous study of
genes and their genomic surroundings has revealed the presence of regulatory
elements such as promoters and enhancers, as well as sequence with structural
and spacing functions. It has become increasingly apparent that in order to get
a comprehensive understanding of the biology of humans and other species, it
is crucial to find out exactly what is present in their genomes, in addition to
the information contained in the genes.

However, the process of sequencing a genome is not completely straight-
forward, especially when it comes to higher organisms. Apart from biological
limitations that hinder preparation and cloning of DNA with particular traits
using current methods (such as the heterochromatin of higher eukaryotes), the
repeated sequences present in most genomes confound the commonly used com-
puter programs that aid in the process of putting the genomes together from the
raw data produced by sequencing machines. The problems arising from repeats
consitute the key obstacles in genome sequencing today. The work presented in
this thesis is aimed at solving some of these problems.

1.2 Repeated DNA

Repeated DNA is a prominent feature of the genomes of most higher organ-
isms, and exists in several types. The repeated elements can be anything from
large, several kilobases (kb) long segments, to short mono-, di- or trinucleotide
sequences. They can be repeated once or occur in thousands of copies, dis-
persed or in tandem. The repeated sequences can be decodable in the form of
protein-coding genes, RNA genes, and regulatory elements such as transcription
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factor binding sites, but also have purely structural functions related to DNA
conformation or spacing between coding sequences.

Different organisms have different types and amounts of repeated DNA in
their genome. As an example, the human genome is estimated to consist of
more than 50% repeated sequences [6], whereas the corresponding ratios in sweet
corn (Zea mays) and roundworm (Caenorhabditis elegans) are 77% and 16.5%
respectively [7]. The following sections will briefly describe some of the various
kinds of repeats that exist in different organisms, as well as their function and
origin, in more detail. It should be noted that definitions of different types of
repeats often overlap in the literature, and that a thorough characterization of
all kinds of repeated DNA would require a thesis in itself.

1.2.1 Short repeats

A large part of the repeat content in the genome of an organism is present in
the form of short elements of various kinds, repeated to varying degrees. For a
good review on short repeats, see [7], on which this subsection, as well as the
section on transposons, mostly is based.

VNTRs

Variable nucleotide tandem repeats (VNTRs) are units of length 2 - 100 bases,
repeated in tandem in varying copy numbers up to a thousand times. They can
facilitate gene expression by acting as enhancers and promoters, but also act as
silencers. Other functions include signals for recombination, chromatin packing
and other structural modifications of the DNA molecule. Sometimes referred to
as minisatellites, VNTRs are also found at the telomeres.

Tandem array satellites

Typically 100 - 200 bases long and often repeated thousands of times in tandem,
tandem array satellites are a major component of heterochromatin in higher
eukaryotes, coupled to centromere organization and function, where they inter-
act with histones and other chromatin packing proteins. It is however unclear
whether repeats at the centromere are essential for centromere function, or if
centromere function gives rise to repeats [8].

Microsatellites

Microsatellites consist of units that are 1 - 4 bases long, and are usually repeated
between 10 and 100 times. They can have gene silencing and spacing effects,
and copy numbers often vary between individuals which makes them usable for
genotyping and different kinds of population studies.
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1.2.2 Transposons and retrotransposons

Transposons are mobile genetic elements that can insert themselves at different
locations in the genome. They work either by ”cut and paste” (transposons)
or ”copy and paste” (retrotransposons), and can be anything from a few hun-
dred bases to several kb in length. They contribute greatly to the plasticity
of a genome due to their mobility, and are involved in processes as diverse as
transcription, post-transcriptional control, translation, DNA replication, and
chromatin organization.

Well known types of retrotransposons are LINEs and SINEs (Long/Short
Interspersed Nucleotide Elements), of which LINE-1 and Alu are important
examples in human.

1.2.3 Segmental duplications

In higher mammals, a common repeat phenomenon is segmental duplications,
usually defined as large segments of DNA (1 - 100 kb) occurring at two or more
locations in the genome with high (>90%) sequence similarity [9]. Segmen-
tal duplications are present in roughly 5% of the human genome [10] and are
considered to be a major driving force in the evolution of vertebrates. The
genomes of humans and other primates are especially enriched for duplica-
tions – compared to many other species, segmental duplications in human are
larger, more interspersed, more recent and more common [11]. Although hu-
man duplications involve similar genes as in rat and mouse (immunity/defense,
growth/development), duplications in these species more often occur in gene
poor regions [12, 13]. Recent events have given rise to novel genes expressed in
the human brain [14].

Segmental duplications are also features of plant genomes such as those of
Arabidopsis thaliana and rice [15, 16], that have very similar distributions of
tandemly duplicated genes often involved in stress reactions.

Duplications provide evolutionary possibilities to a genome through pro-
cesses of neofunctionalization and subfunctionalization [17]. The former term
describes the process where a duplicated copy is free to diverge into a differ-
ent protein or regulatory element, while the ancestral copy is maintained by
selective pressure, whereas the latter refers to a process where the function of a
protein is divided between several gene variants, thus providing modularity.

There are several models describing the formation of segmental duplication,
the two most important being transposition and unequal crossing-over (UCO).
For a description of these mechanisms, see [17], where it is also suggested that
combinations of transposition and UCO can be regarded as ”gene factories”,
according to the functionalization models described above.

1.2.4 Repeated genes

A special case of duplications is when a gene or a group of genes are repeated
several times in tandem. Several reasons have been proposed to explain why this
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arrangement might be beneficial to an organism. One is the ability to mobilize
high expression levels of different genes in different situations, such as histones
in DNA replication and rRNA during rapid cell growth [17].

A recently introduced concept is ”noise control” [18], where the idea is that
the presence of multiple copies of genes makes expression levels less sensitive to
stochastic fluctuations in other parts of the transcription machinery. This may
be especially important in organisms essentially lacking transcriptional control,
like Trypanosoma cruzi [19].

A third benefit, of which there are several examples of in biology, is micro-
functionalization [17], where an organism can keep several copies of the same
gene with subtle differences (such as with immunoglobulins and olfactory recep-
tors in human) and thereby maintain a high flexibility in antigen recognition.
Disease resistance genes in plants [20, 21], as well as the defensin system in
human [22, 23] also seem to follow this pattern.

Conversely, pathogens like different bacteria [24] as well as trypanosomatid
parasites [25, 26] appear to utilize this mechanism for drug resistance and evasion
of the host immune system at infection. They keep arrays of subtly differing
surface antigens unexpressed and transfer the suitable variant to an expression
site through gene conversion.

1.2.5 Genomic disorders

Various diseases are connected to duplications and other repeats in the hu-
man genome. Duplicated segments, duplicons, facilitate chromosomal rear-
rangements like duplications, inversions and deletions, through the process of
non-allelic homologous recombination. This can lead to disorders due to dosage
imbalance in gene expression. Disorders range from color blindness to serious
developmental and mental retardation syndromes, increased susceptibility to
panic disorders and phobias, and infertility [27]. Duplicons can be simple or
complex, i.e. consisting of duplicons within duplicons, and can cause rearrange-
ments within and between chromosomes [28].

Copy number variation is also implicated in cancer, where over-expression
due to an increased copy number of oncogenes has been observed. Examples
include ovarian cancer [29] and melanoma [30].

Expansion of short, simple repeats, often tri-nucleotide sequences but also
units of longer lengths, cause a number of hereditary disorders such as Hunt-
ington’s disease and fragile X [31]. In these kinds of diseases, the repeat array
expands over generations, with the disease often occurring in a mild form in the
generation before the severe version.
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1.3 Shotgun Sequencing

1.3.1 Sanger Sequencing

In 1977, Frederick Sanger et al. developed a method for determining a target
DNA sequence [32] that today, 30 years later, still is the prevailing sequencing
method. Current high-throughput implementations of the method, which essen-
tially is a chain termination and gel separation technique, are able to produce
high quality sequence spanning up to 1000 bases of DNA (adenine (A), thymine
(T), guanine (G), and cytocine (C)) in one run. Most genomes of interest are
obviously several orders of magnitude larger than this – e.g. the human genome,
which consists of approximately three billion bases.

1.3.2 The Shotgun Method

A solution to this problem was devised in 1980, also by Sanger [33], and is
referred to as shotgun sequencing. Inspired by techniques used when Holley et
al. for the first time in history determined the nucleotide sequence in a nucleic
acid (a yeast tRNA [34]), the main principle is to obtain an overlapping set of
subsequences and use the overlaps to puzzle the sequence back together. The
following sections decribe shotgun sequencing in more detail.

In shotgun sequencing, the sequence of interest is first amplified, e.g. by
growing transformed bacteria in culture. The amplified DNA is sheared in a
random fashion, producing a redundant set of fragments (spanning the target
sequence several times) that are cloned and can be sequenced from the ends.
An alternative to amplifying the sequence beforehand is used in whole genome
shotgun (WGS, described in more detail below), where an abundant amount of
the entire cellular DNA is extracted and sheared in the same way.

Each sequence obtained in this way is referred to as a read. Since there is
redundancy in the amount of sequence extracted, and the shearing is performed
in a random way, the reads will overlap to different extents. The overlaps can be
detected using string matching computer algorithms, and using this information
it is possible to deduce the positional layout of the reads in a multiple alignment.
Finally, a consensus sequence is computed at each column in the alignment,
resulting in a contigous sequence, contig, that ideally is identical to the original,
target sequence. This process is referred to as assembly (figure 1.1).

1.3.3 Shotgun Sequencing Assembly Programs

Numerous assembly programs have been developed over the years, e.g. SEQAID
[35], GAP [36], the CAP suite of programs [37, 38, 39, 40], ARACHNE [41,
42], Phrap (Phil Green, unpublished), and the Celera Assembler [43]. Phrap
(http://www.phrap.org) is, arguably, the most widely used assembly program
and is also the basis of more recent assemblers like Phusion [44] and RePS [45].

The programs differ in the details, but the main features of most of them can
be outlined as follows: 1. Preparation, 2. Computation of pairwise overlaps,
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3. Read layout, and 4. Consensus generation. An exception to this scheme is
EULER [46], which will be described in section 1.4.3.

Figure 1.1: Schematics of shotgun sequencing. I. Amplification of target se-
quence. II. Random shearing. III. Cloning, sequencing and base calling. IV.
Detection of pairwise overlaps. V. Assembly. VI. Computation of consensus
sequence.

Preparation

An initial step in the assembly stage is to screen the input reads for different
sequence features that render them unsuitable to include in the assembly in part
or completely. These features include contamination (e.g. by vector sequence or
host organism for fragment cloning) and the presence of low complexity regions,
e.g. a long stretch of the same nucleotide repeating itself over and over.

The reads are also quality trimmed, since the Sanger technique produces
reads that have a high quality in the middle, with rapidly increasing error rates
towards the ends. This procedure is simplified by methods of computing error
probabilities for each individual base in the reads, based on analysis of the
electropherograms obtained from the sequencing apparatus (figure 1.2). Phred
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[47, 48] and LifeTrace [49] are examples of software developed for this purpose,
Phred being the most widely used.

Furthermore, the reverse complement of each sequence needs to be computed
and added to the dataset, since there is no way of knowing from which strand
an individual read was sequenced.

Figure 1.2: A quality profile of a sequence read from a shotgun project. Quality
(y-axis) increases rapidly for increasing read index (x-axis) in the beginning of
the read, and decreases towards the end. A quality value q corresponds to an
error probability ǫ = 10−q/10.

Computation of pairwise overlaps

After preparation, pairwise overlaps between all reads are computed. This could
easily be a limiting step for shotgun assembly, since the number of necessary
comparisons grows quadratically with the number of input sequences. A com-
mon way to get around this problem is to scan all sequences and record the
positional occurence of each k -letter word in the data set. All reads sharing
k -tuples are then compared pairwise, using the position of the k -tuple as cen-
terpoint in a banded matrix [50], and the quality of the overlap (based on the
number of mismatches and gaps between the sequences) is computed using dy-
namic programming [51]. This technique is similar to the one used in BLAST
[52], and basically reduces the quadratic problem to a linear one. Additional
scoring of the overlaps can be performed using the sequencing error probabilities.

Read layout

In the layout stage, it is computationally infeasible to try all possible combina-
tions of overlaps and choose the one that appears to be best. This is because
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the layout problem is NP-complete [53], and analogous to the classic Travelling
Salesman Problem.

Instead, computation of the layout of reads is usually performed by a greedy
method, where the starting point of the assembly is the best scoring overlap.
The reads of this overlap are added to the assembly with their relative position
according to the overlap retained. Subsequently, the next read to be added is
chosen from the highest scoring overlap involving any of the reads already added
to the assembly. This is performed in an iterative fashion, until all overlaps in
the data set have been considered.

Different heuristic considerations are often coupled to this process, where
additional demands are required to be met by a candidate read before its in-
clusion. One such requirement can be that the read is required to have high
scoring overlaps with all reads that span the region where it is to be included.

An alternative and completely analogous way of describing the layout algo-
rithm is to view all reads as vertices in an undirected graph, where the edges
represent pairwise overlaps between reads. The task then becomes to prune and
divide the graph according to the following algorithm:

1. Start a new contig by picking the highest scoring edge in the dataset.

2. Add vertices connected by the new edge to a vertex list, if they are not
already present in the list.

3. Add edges emerging from newly added vertex/vertices to an edge list,
sorted by score.

4. Go through the edge list, removing all edges from the graph until an edge
connected to a vertex not already in the vertex list is encountered.

5. Use heuristics to decide if the edge should be kept or not. If yes, go to
step 2. If no, remove the edge from the graph and go to step 4.

This procedure is repeated until all edges in the edge list has been examined.
If there are still unexamined edges left in the data set, a new contig is started
by repeatedly picking the remaining highest scoring edge and going through the
algorithm, until all edges in the entire dataset have been considered. The result
is a division of the original graph into several, pruned subgraphs, which then
can be converted to alignments (contigs) of reads. This usually also entails a
step of optimizing the alignment locally, using algorithms such as ReAligner
[54].

Consensus generation

When the layout is complete, the consensus sequence is computed. This can
be performed in different ways. One strategy is a simple majority vote on each
column, where the most abundant base on the column is chosen as consensus.
Phrap divides the alignment into segments, where the consensus sequence of each
segment is defined as the sequence of the read with the highest mean quality
in that segment. Other programs use different statistical methods involving the
individual error probabilities for each base in the reads, usually also taking the
coverage on each strand into consideration.
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1.3.4 Mate Pairs and Scaffolds

Due to the random sampling of the target sequence, the read coverage across the
region is unevenly distributed. The coverage at a given position is distributed
according to the Poisson distribution, with the mean coverage of the shotgun
project as the mean variable [55].

The consequence is that, depending on the mean shotgun coverage, there
will be varying amounts of gaps in the contiguos sequence, where no read has
sampled the target sequence. In addition to gaps caused by the randomness of
the sampling, the target sequence may include regions that are hard to clone, re-
sulting in low or no coverage in these regions. The reads may thus be assembled
into several contigs instead of just one. The gaps can be closed by designing
PCR primers at the end of contigs, and obtaining additional sequence at these
positions. This process was greatly simplified in 1990, when Edwards et al. [56]
modified the fragment sequence protocol to read the sequence from both ends of
the shotgun fragment insert. Since the fragment insert size is known, additional
positional information regarding the reads can be obtained. Such paired frag-
ment reads are most often referred to as mate pairs, and can be used to order
contigs positionally. This is done by identifying contig pairs that have mutual
mates, and place them adjacent to each other in scaffolds(figure 1.3). Mate
pairs can also be used to verify the correctness of read placement within con-
tigs, since any read in a contig should have its mate placed at a known distance
in the alignment. It is common to create several libraries with different insert
sizes, in order to get different levels of resolution in the paired end analysis.

Scaffolding algorithms are built into all whole genome assemblers; in addi-
tion, separate scaffolding software exists that given a set of contigs and paired
end sequences creates scaffolds. Examples are Bambus [57] and GigAssembler[58].

Figure 1.3: Three contigs ordered horizontally in a scaffold using paired ends.
Dashed lines indicate pairs of different insert sizes.
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1.3.5 Finishing

As discussed in the previous section, uneven shotgun coverage across the genome
results in gaps between contigs where no sequence has been obtained. To com-
plete the target sequence, additional sequencing is required in these regions, in
a process referred to as finishing. This is a long and tedious process – the still
ongoing finishing of the human genome is estimated to constitute about 50% of
the total time and cost of the whole project [59]. Regions in need of finishing can
be pinpointed automatically by software such as Autofinish [60], but the task is
complicated by artificial gaps caused by the presence of repeated sequences as
described in the following sections.

Assembly problems that cannot be resolved automatically can in many cases
be worked out using manual analysis and editing. This is enabled by tools
that allow close-up inspection of the layout of individual contigs, as well as
birds-eye view of several contigs with potential paired end links between them.
Highlighting of problematic regions and suggestions for primer design where
extra sequencing is needed are also typical features of finishing software. Consed
[61] and the Staden Package [62] are the most popular finishing tools. There
are also other approaches in finishing – examples are CAAT-Box [63], where it
is possible to annotate the genome during the finishing process, and MGView
[64], which simplifies finishing of microbial genomes by allowing for comparisons
with already sequenced genomes during the finishing phase.

1.3.6 Shotgun Sequencing of large genomes

Two different strategies for shotgun sequencing of large genomes have been
used extensively in the past ten years, hierarchical shotgun (HS) and whole
genome shotgun (WGS). In the HS strategy, sometimes referred to as ”BAC
walking” or ”clone-by-clone sequencing”, the genome is mapped beforehand,
and a minimal set of overlapping clones, usually bacterial artificial chromosomes
(BACs), are sequenced and assembled individually, and finally merged. In the
WGS approach, the whole genome is randomly fragmented, and the assembly
is performed in a single step (figure 1.4).

The main advantage of WGS is that it is considerably less expensive than
HS. However, systematic errors, e.g. contamination, have global effects in WGS
and can remain undetected until after fait accompli, as the project reaches the
assembly stage. In HS, such complications can be detected at an early stage for
individual BACs, thus having local effects only. Similarly, repeated regions have
a global effect in WGS, complicating assembly to a higher degree than in HS.
HS, WGS and the repeat problem will be described in more detail in section
1.4.2.
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Figure 1.4: Hierarchical shotgun (HS, top) and whole-genome shotgun (WGS,
bottom). In HS, overlapping BACs (A, B, and C) covering the genome are
sequenced, assembled individually and subsequently joined. In WGS, the whole
genome is randomly sequenced and the assembly is performed in one step.

1.4 The repeat problem in shotgun sequencing

1.4.1 Repeats and the assembly algorithm

The key problem in shotgun sequencing is the presence of repeated sequences
in the target sequence, and the problem is purely computational. In the generic
assembly algorithm described above, repeated sequences cause severe problems
in the overlapping phase. The whole idea of shotgun sequencing is based on
the assumption that a pair of reads that overlap sample the same part of the
target sequence. For repeated regions, this is not true. Figure 1.5 illustrates the
problem. When identical or near-identical sequences are present at several loca-
tions in the genome, reads sampling these regions appear to overlap. When the
repeat units are organized in tandem arrays as described above (section 1.2.4),
the result is usually that the repeat units are collapsed into a smaller number
of copies. In the assembly, these regions are characterized by an unusually high
coverage of the region. When a consensus sequence is computed for the region,
the sequence of the collapsed copies will be a mixture of the different repeat
units present in the genome, and the resulting consensus sequence of a given
unit may not even exist in the target genome at all.

Moreover, if the repeat units are dispersed throughout the genome, large
artificial rearrangements may occur due to the greedy nature of the assembly
algorithm. When the assembly extends from unique sequence into the repeat,
and the next read for inclusion is chosen from the list of high scoring overlaps,
exactly which repeat unit the read actually samples becomes a matter of pure
chance. If the repeat unit is longer than a read length, any read sampling any of
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Figure 1.5: Misassembly of repeated sequences. Gray arrows indicate repeat
copies in the target sequence, gray bars indicate sequence reads sampling the
repeat region, black bars indicate reads sampling unique parts. I. Sequence reads
sampling different repeat copies appear to overlap. II. The resulting assembly is
erroneous, piling reads from different repeat copies. III. The consensus sequence
is erroneously computed, with repeat copies merged.

the repeat copies at the same coordinate in the repeat unit will match nicely as
the assembly progresses into the unit. The assembly coverage in this area will
typically be very high, as in the tandem example above, and as the assembly
approaches the end of the repeat unit, reads bridging into unique sequence will
be incorporated at random. Well past the repeat border, the assembly proceeds
normally, but there is a high risk that two completely disparate regions of the
genome have been connected (figure 1.6).

The problem with rearrangements can in many cases be solved with the use
of mate pairs and other paired end sequences, such as BAC ends. Using this
kind of information, it is possible to detect problematic areas since mate pairs
will be erroneously positioned in relation to each other in repeat regions. Such
positions in an assembly can be broken, and the mate pairs can be used to
rearrange the pieces correctly. However, if the repeat region is longer than the
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average shotgun fragment, mate pairs cannot be trusted either, since a region of
the repeat will exist where neither read in any mate pair is anchored in unique
sequence.

Figure 1.6: Misassembly due to highly similar repeats. A, B, and C are different
segments of the target genome, connected by highly similar repeats R and R’. In
assembly, the segments are erroneously joined, producing two incorrect contigs.

1.4.2 HS, WGS and Repeats

When the private initiative to sequence the human genome indepently from the
public effort was announced in 1998 by Craig Venter’s newly formed company
Celera Genomics [65], the company stated that it would use the WGS strategy.
Apart from the obvious competition with the public initiative, the choice of
strategy was quite controversial and had been preceeded with a few years of
debate regarding the merits of the WGS approach for higher eukaryotes [66, 67,
68, 69]. While the main arguments for the WGS approach are time and money
– Venter and colleagues estimated the total cost of their effort to one tenth
of that of the public initiative (300 million vs. 3 billion USD), and they also
projected to finish faster – the strongest arguments for the HS approach is that
it produces more accurate sequence. This is mainly because the effect of repeats
is compartmentalized to distinct BACs, as opposed to having an impact on the
whole assembly. Another argument against WGS that was brought forward was
that other kinds of errors, such as systematic contaminations at different labs or
data tracking errors, could not be detected until in the assembly step, where it
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was too late. These kinds of errors will only have a local effect in an HS scheme,
while they affect the entire project in the WGS approach.

After publication of both draft sequences, the debate arose again [70, 71, 72,
73, 74]. Celera’s assembly was not performed using Celera WGS data only; it
was completed with ”perfectly shredded BACtigs”, i.e. the consensus sequence
of the public BACs was divided into uniformly covering ”faux reads”, spanning
the genome at 2X, that were added to the Celera data. Critics claimed that the
adding of this data preserved the public layout for all intents and purposes, and
basically rendered the Celera data unnecessary. Celera strongly refuted this,
claiming that the public data had little or no effect on the overall layout, and
in some respects made the Celera assembly more difficult.

At present, there is wide consensus that the WGS approach alone is not
entirely suitable for mammalian sized genomes [75, 12]. The problems that re-
peats cause in WGS are now acknowledged also among the proponents of this
approach, and a common opinion is that a combination of the two approaches
is the most optimal – timewise, costwise and qualitywise [76, 77, 78]. A subse-
quent version [79] of the Celera assembler [43] was specifically designed for such
combined data, and more recent assemblers Atlas [80] and FASSI [81] also take
this approach.

1.4.3 Methods of dealing with repeats

Repeats at the local level

The most common way of dealing with repeats in sequencing projects (and
assembly programs, to some extent) is to try to detect which reads sample
repeated regions, and to exclude these reads from the dataset. In other words,
repeats are dealt with by deciding not to deal with them. This clearly has
computational benefits, since the assembly process is mostly straightforward in
the absence of repeats. Moreover, the presence of repeats leads to significantly
increased running times and memory requirements.

Most assembly software performs an initial comparison of all reads against
known repeats in the target genome. This can be centromeric and telomeric
sequence, retrotransposons, ribosomal DNA etc. Parts of reads matching known
repeats are masked and not used in subsequent steps. For the Celera Assembler
[43], this is the only type of repeat handling at the read level that is performed.

PCAP [40] attempts to discard reads from repeat regions from initial as-
sembly by computing an overlap coverage for each read, and excluding parts
of reads that have an overlap coverage exceeding a threshold. ARACHNE also
uses a similar scheme, where reads containing exact k -tuple matches to an extent
above a threshold are excluded.

Other assembly algorithms generally feature a step in the overlapping phase,
where attempts are made to weed out false overlaps due to repeats. Phrap com-
putes a log likelihood ratio (LLR) score for each pairwise overlap, where the
overlaps are screened for mismatches. Quality values are used to calculate the
probability of mismatches being due to sequencing errors, or due to single base
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differences between repeat units occurring at a predefined rate (the default is
95% similarity). ARACHNE [41, 42] uses a similar method to remove false over-
laps between reads that weren’t detected in the k -tuple screening (see above).

A major difference between the PCAP and Phrap approaches, is that while
PCAP attempts to exclude repeat reads from the dataset altogether, Phrap tries
to discard repeat overlaps. This is an important distinction, since the exclusion
of reads has the consequence that the sequence they sample will not make it
into the assembly at all. By keeping the reads and attempting to pinpoint the
false overlaps, Phrap at least has a theoretical chance to perform a realistic
reconstruction of the target sequence. It should be noted, however, that for
repeats more similar than 95-98%, Phrap is usually not able to separate them
correctly, resulting in erroneous and unreliable assemblies.

The EULER assembler [46, 82, 83] takes a completely different approach to
assembly and thereby also repeat handling. Instead of the traditional overlap-
layout-consensus method, EULER transforms the assembly problem into an
Eulerian path problem by dividing all reads into overlapping k-tuples that are
collapsed, treating all (k − 1)-tuples as vertices in a graph where the edges
then represent links between (k − 1)-tuples, i.e. k-tuples. Repeated sequences
appear as ”tangles” in the graph. The problem then becomes to visit all edges
in the graph exactly once, which can be done in linear time. Problems with this
approach are that it requires error free data, and that the division of reads into
k-tuples discards important positional information needed to resolve repeats.
These problems can partly be solved by inclusion of error correction algorithms,
the aligning of reads to the graph in order to resolve tangles, as well as the use
of paired end sequences (mate pairs) for further repeat resolution. Although
the authors of EULER claim that it solves the repeat problem, repeats longer
that the shotgun fragment insert length cannot be reliably resolved using this
method. However, a great benefit of the EULER algorithm is that it retains a
(basically) complete but significantly less complex version of the overlap graph,
and pinpoints repeated regions in a stringent and intuitive fashion.

Repeats at the global level

After initial assembly, a common strategy is to analyze contigs for unusually
high read coverage, and/or the presence of reads that match the consensus
sequence only in part. Finishing software (see section 1.3.5) can subsequently
be used to try to resolve repeated contigs. This is a very time consuming and
tedious process though, often requiring additional mapping and sequencing if
the goal is to produce completely accurate sequence – see [10] for an example
on how a 3 kb sequence, repeated four times interspersed by short tandem
repeats, on chromosome 11 in the human genome was resolved. A common
way to handle these kinds of problematic areas in the genome is to acknowledge
their existence, and exclude them from further analysis and finishing. In the HS
approach, repeats will only have local effects anyway, provided that the tiling
of BACs across the genome is correct.

In the WGS approach, repeats cause large, erroneous rearrangements of
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genomic sequence in addition to local problems such as collapsed sequence. The
solution to this is usually an iterative approach where mate pairs and other
paired end sequences are used in a heuristic fashion. Contigs and scaffolds are
broken and rejoined on the basis of paired ends, until no discrepancies exist. In
some programs (e.g. [40, 43]), repeat reads that were previously discarded are
assembled and used for gap closure. Separate software for mate pair analysis
and detection of erroneous rearrangements has also been developed [84, 85].



Chapter 2

Present investigation

The aims of this study were to develop algorithms and software for separation
of highly similar repeats in shotgun sequencing, and to apply these methods to
complex repeat regions that common assembly methods are incapable of resolv-
ing. Paper I describes a method for detecting single base differences between
repeat copies, as they appear in shotgun fragment reads distorted by sequencing
errors. In paper II, the method was implemented in a finishing and analysis tool
specifically designed for repeat data. This tool was used in paper III, where five
repeated regions of the Trypanosoma cruzi genome were studied.

2.1 Paper I – Separation of nearly identical re-

peats in shotgun assemblies using defined

nucleotide positions, DNPs

2.1.1 Main problem

Erroneous assemblies produced by commonly used assembly programs are often
caused by false overlaps between reads sampling different copies of a repeat
region. If the repeats are too similar, overlap methods will often fail to identify
false overlaps even when the reads are sampling unique sites that distinguish
one repeat copy from another, because of the problems of identifying these
sites in the presence of sequencing errors. Moreover, even if the sequencing
procedure was completely error free, and overlaps thus could be discarded on
the basis of single mismatches along the overlap, this would still be no guarantee
against misassemblies. This is due to the greedy nature of the layout algorithm
as described in section 1.3.3, and ultimately means that completely identical
repeats are inseparable, except under certain, limited conditions with the help
of paired end sequences.

However, if the repeats are not completely identical and instead contain
subtle differences, it should in theory be possible to assemble them correctly,
provided that they can be detected and that enough differences exist so that

18
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it is possible to sample more than one difference with one read. Figure 2.1
illustrates this principle; if an assembly has extended into a repeat region, it is
necessary for the differences to be spaced in a fashion that a read always can be
unambigously positioned. This requires two anchor points; one to anchor the
newly inserted read, and one to anchor further reads that extend the contig.

Figure 2.1: For correct assembly of repeats, detected differences must be explic-
itly used. Bars indicate reads; dots indicate detected differences. If no difference
is present along the alignment, it is impossible to determine which reads belong
together even if they overlap.

Although adding the above heuristic to the generic layout algorithm is fairly
simple, no current assembly program acknowledges this distinction between dis-
carding overlaps and explicitly utilizing single base differences in assembly. How-
ever, similar heuristics have recently been used for ”shotgun haplotyping” [86].

This lack of explicit identification and use of single base differences in assem-
bly was the primary motivation for the work presented in paper I. It should be
noted that requirements on specificity (here defined as the proportion of posi-
tions marked as true differences that actually are true) are high, if the purpose is
to use single base differences for assembly in the fashion described above. Since
the layout algorithm is greedy also with the extra requirement of matching bases
at unique sites, the incorrect incorporation of a single read at the wrong position
may render the assembly invalid. Similarly, requirements on sensitivity (defined
as the proportion of true differences that are actually detected) are also high,
since failure to detect enough differences will lead to insufficient amounts of the
anchor points needed to extend contigs within a repeat region.
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2.1.2 Analyzing multiple alignments instead of pairwise

overlaps

Paper I describes a method for detecting single base differences between repeat
copies, as they appear in reads sampling individual repeat copies in the presence
of sequencing errors. The ideas presented in the paper came out of a simple,
intuitive notion that, while it is hard to determine whether a mismatch between
two reads that appear to overlap represents a sequencing error or a real differ-
ence between repeats, the real differences are trivial to spot when looking at
an alignment of reads, since they appear as the same consensus-deviating base
multiple times on a column in the alignment. In other words, sequencing errors
should appear randomly distributed in an alignment, whereas single base differ-
ences are distributed in a systematic fashion. This idea has also been exploited
in SNP finding software such as PolyBayes [87] and PolyFreq [88].

2.1.3 One column

The first approach we tried was to use the error probabilities of individual
bases to compute the expected number of sequencing errors on a column in the
alignment, and to compare that to the number of deviations from consensus
that are observed on the column. The number of sequencing errors on a column
are distributed according to Poisson statistics, and by integrating the Poisson
distribution for a given expectation value (given by the base error probabilities)
from the observed number of deviations from consensus to infinity, the total
probability Pobs of observing that number of sequencing errors or more by chance
is obtained. A suitable threshold can be set, e.g. Pobs ≤ 0.001, to reach arbitrary
specificity.

The problem with this approach is that, under realistic conditions of coverage
and repeat copy numbers, the distribution of sequencing errors greatly overlaps
the distribution of true single base differences we expect to see on a true column.
This number follows the distribution of shotgun coverage, which is also a Poisson
variable. The overlap between distributions is basically not a problem if the
number of expected errors on a column is close to 0. However, inherent in the
repeat problem lies the fact that alignments of apparently overlapping reads
will be very deep, which increases the expected number of sequencing errors,
and pushes the Poisson distribution to the right. Consider the hypothetical
situation in figure 2.2; 20 repeat copies sequenced at coverage 5, with a mean
error rate of 0.01 for each base on the column, will give one expected error and
5 expected deviations from consensus. The distributions for these expectation
values overlap, and in order to maintain a high specificity, roughly half of the
true differences have to be discarded.

2.1.4 Two columns

We present a solution to this problem in paper I, where instead of computing
the expected number of sequencing errors on one column, the expected number
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Figure 2.2: The distributions of sequencing errors (left) and number of true
differences (right) on a column with 100 bases (20 repeats sequenced at coverage
5), each having an error probability of 0.01.

of coinciding deviations on two columns is computed, i.e. the expected number
of reads differing from the consensus in the same two positions. It turns out
that this variable is also Poisson distributed, but with a significantly lower
expectation value, effectively pushing the distribution to the left, and giving
it a shorter tail. The distribution of coinciding deviations also moves towards
the left, but to a much lesser degree. Therefore, it is possible to maintain a
high specificity, while keeping a high sensitivity. It could be argued that the
requirement of reads sampling two single base differences in order for them to
be detected imposes a limitation to this method. This may be true for other,
similar problems such as SNP detection; for assembly purposes, two single base
differences within a read length is required for proper assembly as described
above.

Two variants were implemented and tested – the basic method and the ex-
tended method. In the basic method, different thresholds Dmin of the number
of coinciding deviations required for marking deviant bases as defined nucleotide
positions (DNPs) were assessed with regard to sensitivity and specificity, with-
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out additional statistical computation. In the extended method, the thresholds
were maintained, with the addition that the probability of observing the ob-
served number of coinciding deviations or more was calculated, and weighted
with the probability of observing a high number of sequencing errors on either
column. The weighting was added to minimize the effect of erroneous DNP
calls due to a high number of sequencing errors on one column, which was a
phenomenon we observed when developing the method.

The results showed, predictably, that the difference in specificity between the
two methods decreases with increasing Dmin. This is because setting a higher
threshold has the exact effect of moving into a region where the distributions
no longer overlap. The effect of quality trimming the reads more stringently
has a similar effect, since eliminating low quality bases from analysis effectively
moves the distribution of sequencing errors, and thereby also the distribution
of coinciding deviations due to chance, to the left. We found that, by using the
extended method in combination with less stringent quality trimming, it is pos-
sible to achieve higher specificity without decreasing sensitivity under generous
trimming conditions.

2.1.5 Competition

Around the time of publication of paper I, three other methods were introduced
that exploit multiple alignments, rather than read pairs, for discriminating se-
quencing errors from single base differences .

The first method, used in the ARACHNE whole genome shotgun assembler
[41] considers one column at a time, locates deviations and evaluates them
according to base error probabilities as in our first, one column approach.

The second, presented by Kececioglu et al., [89] uses a k -star algorithm to
locate and discard false overlaps in contigs with an unexpectedly high coverage
characterized by repeat regions. The major difference between this method and
our DNP method is that although the k -star algorithm analyzes correlating
deviations from consensus in a multiple alignment, it only considers pairs of
reads at a time. This is, in some respects, comparable to our method with the
Dmin parameter set to 2, which in our case yielded a very high sensitivity at
the cost of very low specificity. The results in [89] were inconclusive, and the
method was only tested on repeats differing 5% and 10%, similarity levels which
are easily resolved by Phrap and other assembly software.

The third method also exploiting the multiplicity of single base differences
in several reads at the same time was introduced in the error correction step of
the EULER assembler [46]. In this method, all l -tuples occurring in the data set
are analyzed for multiplicity, and considered solid if they occur in a multiplicity
exceeding a threshold. Non-solid l -tuples are located and transformed into solid
ones iteratively, using a minimal number of substitutions. This method does
not consider base error probablilities at all, and is comparable to our initial
one column approach without statistics. Indeed, in a subsequent publication
(paper ii), we showed that the DNP method could be used for error correction
in shotgun data, and that it outperforms the EULER method.
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The advantage of the DNP method over these methods lies in the fact that
the DNP method considers two columns in an alignment, and all reads covering
these two positions, simultaneously. The ARACHNE and EULER methods
consider all reads but one column at a time, whereas Kececioglu’s method looks
at multiple columns but for read pairs. Consequently, these methods suffer from
the trade-off between specificity and sensitivity as described in section 2.1.3.

Since the publication of paper I, other multiple alignment based methods for
detecting single base differences have emerged. I will here briefly mention two
of them. The first [90] is completely heuristic and analyzes overlapping reads
in groups of four, attempting to find pairs or triplets of columns on the basis
of which the reads can be divided into two subgroups with complete agreement
within each subgroup. Although this method seems promising for large scale
overlapping before the layout stage, its merits for separation of nearly identical
repeats are unclear and remain to be thoroughly assessed.

Another recent method that seems very promising if raw data is available
considers one column at at time, but also performs a rigorous analysis of the
chromatogram positions corresponding to deviant bases [91]. The authors pro-
pose a scheme where shotgun reads are assembled into contigs, whereafter anal-
ysis is performed and errors corrected. This is performed in an iterative manner,
reassembling the data after each round. A similar approach is used in the mi-
raEST assembler [92], although the details of the trace data analysis in this
method is not disclosed.

An alternative to the iterative strategy could be to analyze all overlapping
reads before the layout stage, much like in our DNP method, to avoid overlook-
ing undetectable assembly errors and many iterations. Such an approach would
probably increase sensitivity but at high costs of running time, since initial
construction of alignments for all reads is very time consuming.

2.1.6 Subsequent use of the DNP method

The basic version of the DNP method was implemented in a prototype assembly
program (TRAP, paper i), where proof of principle for the extra heuristic for
treatment of repeat reads as decribed in section 2.1.1 also was shown.

The extended version was implemented in software for error correction (MisEd,
paper ii), tagging of .ace-files produced by Phrap (ReDiT, paper iii), and DNPTrap-
per – the repeat analysis and finishing tool described in paper II.
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2.2 Paper II – DNPTrapper: an assembly edit-

ing tool for finishing and analysis of complex

repeat regions

2.2.1 Main problem

The major bottleneck in sequencing projects is the finishing phase. Some fin-
ishing tasks, such as pinpointing where additional sequence is needed, are rel-
atively straightforward for non-repeated sequence and can be automated to a
large extent [60]. However, the problematic regions caused by repeats cannot
be resolved using automatic methods and need to be manually inspected and
curated. This is time consuming and costly, with the result that virtually all
sequencing projects except bacterial genomes are left in an unfinished state.

A number of different tools have been developed for aiding manual finishing
of complex regions. Most commonly used are Consed and the Staden package
[61, 62]. Again, these tools prove very useful for non-repeated sequence, e.g.
when dealing with regions of low sequence coverage or low sequence quality
due to high GC content, but have shortcomings when it comes to dealing with
repeats. The tools are not specifically designed with the repeat problem in
mind, which is somewhat of a paradox as the greatest obstacles in finishing are
due to repeated regions in the target sequence. Consequently, repeats are left
out of the entire assembly and finishing stages in many projects, deemed as
unsolvable.

Commonly used finishing tools have three major deficiencies when it comes
to repeated sequences. First, they lack the necessary overview that is needed
for analysis of repeat regions. Assembly finishing software generally offers a
view at the project level, where the relationship between different contigs can
be examined, and a view at the contig level, zoomed in on the alignment of
individual contigs. There is nothing in between, which is a problem since repeat
reads typically are assembled into contigs with very deep coverage. At a fixed
zoom level, the user has to scroll up, down, left and right in order to get a
survey of the region at hand, and has to analyze different parts of the alignment
separately.

A second feature of common finishing tools that decrease their usefulness
when dealing with repeats is their lack of flexibility. Although they often allow
correction of erroneous base calls and and removal of mistakenly included reads
from individual contigs, it is not possible to divide or manipulate the global
alignment by moving reads around as the user sees fit. Modifying the layout of
reads generally requires identifying false overlaps, instructing the software not
to use them, and rerunning the assembly in hope of an improved result – which
by no means is guaranteed.

Third, no current finishing tools have reliable methods of detecting DNPs
in reads sampling single base differences between repeat units. Features for
highlighting high quality mismatches against the consensus are usually included,
but as was shown in paper I, with this information the user has to make a choice
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between specificity and sensitivity, which makes the task of separating repeats
more complicated than it has to be.

2.2.2 DNPTrapper

We developed an assembly analysis and finishing tool, DNPTrapper, that is
described in paper II. The idea was conceived when we were asked by Najib
El-Sayed at The Institute for Genomic Research (TIGR) to take a look at a
BAC from the T. cruzi sequencing project, which contained an 8 kb sequence
repeated in tandem, with an additional short repeat within the repeat at the end
of the large unit. This type of arrangement is very common in the parasite, and
since T. cruzi shotgun data was produced also at our laboratory, we were already
familiar with the problems of traditional finishing software for analysis of repeat
regions. Sensing a general need for finishing software developed specifically for
repeats, we developed prototype software that in its original form had the three
key features of what later became DNPTrapper: overview, flexibility and DNP
detection and visualization. Alone, these are no revolutionary or novel concepts,
but combined they allow for effective resolution of repeats.

Overview

Overview is achieved by the simple feature of zooming out of the contig to a level
that enables simultaneous overlook of large parts of the alignment. In contrast,
other finishing tools have a fixed view at the contig level, which is set to where
individual bases in reads are readily intelligible. While this is very useful for
detailed analysis and editing of individual reads, it makes it very cumbersome
to study the deep alignments typical for repeat regions. Scrolling back and forth
ad nauseum is required to get a sense of what the region looks like, the depth
of coverage, the length of the repeat unit etc. By allowing the user to zoom
out, DNPTrapper enables easier understanding of the structure and layout of
the repeat.

Flexibility

Common finishing tools are rigid in the way the user can modify the layout.
It is reasonable to prevent manual moving of reads horizontally, since such
actions break the integrity of the alignment. However, when analyzing a repeat
region, it is quite useful to be able to move reads vertically, grouping reads
that share similar features such as DNP content. DNPTrapper allows such
drag and drop of reads, and also allows the user to cut, copy and paste reads
as they see fit, as well as creating new contigs. This is useful for trying out
different solutions and scenarios involving subsets of the reads sampling a repeat.
Additional flexibilty is provided in that different operations and algorithms, such
as exporting consensus sequence, sort according to DNPs, re-aligning reads,
and locating mate pairs, can be performed on all sequences in a contig as well
as on chosen subsets. The program also allows for horizontal movement of
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reads, which is useful when trying to order different repeat groups horizontally
using DNPs or mate pairs. Agreed, the use of these features imposes a higher
requirement of know-how on the user – on the other hand, resolution of repeats
in itself requires familiarity with fundamental properties of multiple alignments.

DNP visualization

DNPs are detected using the extended method as descibed in paper I, and are
visualized using colored dots. A DNP is defined by the deviant base type on
a column, combined with the consensus base type. There are twelve possible
pairwise combinations of four nucleotides, and thus twelve different colors for
DNPs. This makes it possible to spot DNP patterns by eye (figure 2.3), and to
use these patterns to assign reads to different groups according to DNP content.
DNPTrapper also features a näıve DNP sorting algorithm in which reads are
sorted according to DNPs using a greedy method. This can be useful as a
starting point for repeat resolution, decreasing the amount of drag and drop
operations that need to be performed in the subsequent analysis.

Figure 2.3: Zoomed in view of four reads with DNPs in DNPTrapper. Reads
are represented by boxes, DNPs appear as colored dots. Each color represents
one of twelve different DNP types.

Other features

Additional features of DNPTrapper include visualization of mate pairs, chro-
matograms, strand identity and quality trimming, as well as exporting to differ-
ent file formats. These are all standard features of finishing software and were
added for convenience. Future improvements may include additional features
present in other programs; however, the main purpose of DNPTrapper is not
necessarily to replace previous tools but rather to complement them.



2.2. PAPER II – DNPTRAPPER 27

Analysis of T. cruzi repeats

Apart from a simulated dataset which was included in paper II as proof of
concept, two repeat regions from T. cruzi were analyzed in order to illustrate
different kinds of repeat phenomena that can be observed using DNPTrapper.
Two different repeated genes were studied, showing different characteristics. In
the first, elongation factor 2 (EF2), the reads could be divided into two major
groups, with no further reliable division into subgroups possible. For both
groups, mate pair analysis showed that several mate pairs were located within
the group, while no mate pairs with reads in both groups were observed. This
strongly suggests that EF2 exists in two tandem arrays, one on each homolog,
with the repeat unit conserved within a homolog and more divergent between
homologs.

The second gene studied, monoglyceride lipase (MGL), showed completely
different characteristics. Unlike EF2, numerous groups of reads were found,
suggesting a number of different versions of the gene, present in different copy
numbers.

If possible at all, performing these investigations using e.g. Consed would
have been very cumbersome. The first and most time consuming part, which
probably would take days or even weeks for a data set with many DNPs like
MGL, would entail identifying which mismatches were due to sequencing errors
and which ones described single base differences. This would require scrutinizing
individual chromatograms in the absence of reliable DNP detection. The depth
of the alignment for MGL (258) would require tedious scrolling up and down, and
since some DNPs are present in several groups it would be virtually impossible to
keep track of the combinations of DNPs that uniquely define each group. Since
reads cannot be moved in Consed, the most reasonable approach would probably
be an iterative one: choosing one or a few DNPs at a time, noting which reads
have them, construct new data sets consisting of these reads and re-assemble
them, choose other DNPs in the new contig and repeat the procedure. The
result would be a large number of contigs, each representing a different repeat
group. This result would then not include the immediate information on how
the groups differ, which would have to be obtained by other tools.

In contrast, the division of reads from MGL into different repeat groups took
little over an hour’s work using DNPTrapper.

2.2.3 Subsequent use of DNPTrapper

Since its release, DNPTrapper has been downloaded approximately two times
a week, indicating that it fills a void not covered by other finishing tools. In
addition to being compatible with Phrap, the software is file compatible with
AMOS (see Discussion and concluding remarks, chapter 3), and work is in
progress to integrate DNPTrapper with its whole genome analysis tool Hawkeye.

During development, DNPTrapper was used to analyze two regions (heat
shock protein 70 (HSP70) and cruzipain(CP)) for the T. cruzi WGS project([25],
paper iv), as well as spliced leader sequences from Leishmania major (unpub-
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lished). An additional five repeated genes of T. cruzi were analyzed and de-
scribed in paper III.

2.3 Paper III – Database of Trypanosoma cruzi

repeated genes: 20 000 novel coding sequences

2.3.1 Main problem

The genome of Trypanosoma cruzi is estimated to consist of >50% repeated
sequences, and has many of its genes organized in tandem arrays [25]. Study
of the structure, evolution and function of these repeats is crucial for a com-
prehensive understanding of the parasite biology, and may also be fundamental
in developing drugs against Chagas’ disease, caused by T. cruzi. For instance,
the parasite’s ability to avoid the host immune system is known to be closely
coupled to the maintenance of multiple gene copies of surface antigens, subtly
differing and expressed as needed.

Unfortunately, the repetitive nature of the T. cruzi genome combined with
the decision to use the WGS approach in sequencing has resulted in an assem-
bly which is far from complete, and erroneous in several places. In addition,
the strain that was chosen for sequencing (CL Brener) is a hybrid between two
polymorphic strains, which has complicated the assembly further. The assem-
bler chosen for the task (Celera assembler, [43]) had severe initial problems in
the assembly stage, largely due to its inability to handle polymorphic homologs,
and had to be significantly reengineered before a reasonably acceptable assem-
bly could be carried out. Still, approximately 26% of the sequenced reads did
not make it into the assembly at all, indicating just how complex this parasite
genome is.

In addition to an incomplete understanding of T. cruzi biology, the unfin-
ished state of the project also has consequences that are purely practical. For
repeated genes, there are no guarantees of correctness of the reported consen-
sus sequence, since repeat copies may have collapsed resulting in a consensus
which is a mixture of merged copies. This means that an annotated gene in the
assembly may have a sequence that isn’t represented in the true genome at all,
which can have consequences for PCR and cloning of sequences that are chosen
for investigation. The erroneous assembly of repeats also makes it difficult to
distinguish between SNPs that are paralogous, allelic, or simply artefacts of
misaligned reads.

2.3.2 Genome-wide and in-depth analysis of repeats in T.

cruzi

In paper III, we describe a comprehensive study of repeated genes in T. cruzi,
and provide an in-depth study of five genes at a more detailed level, highlighting
different kinds of repeats that exist in the parasite. The genome-wide analysis
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will only briefly be described here, since this author’s main contribution was the
in-depth study.

Previous to paper III, two investigations into T. cruzi repeats based on
reads from the WGS project had been performed by Westenberger et al., where
two approaches were used to analyze rRNA genes and spliced leader sequences:
phylogeny [93] and linkage [94] analysis. While these approaches are reasonable
for studying sequences that are shorter than or equal to a read length, they
cannot be used for the longer sequences that most of the genes in T. cruzi
consist of. Phylogeny and linkage studies both require overlapping sequences
for analysis; polymorphisms separated by more than a read length cannot be
assessed using these methods.

2.3.3 Genome-wide analysis

The primary reason for performing the comprehensive repeat analysis in paper
III was to quantify and pinpoint the repeated genes, in order to enable further,
close-up investigations of these regions in a reliable manner. All annotated genes
were used as query sequences in a database consisting of all shotgun reads from
the WGS project, including the reads not present in the annotated assembly.
The reads were retrieved and aligned using GRAT, an in-house developed se-
quence similarity search tool. Copy number estimations were made based on the
depth of alignments and the known shotgun coverage. Furthermore, all anno-
tated coding sequences were collapsed at 95% sequence similarity level, in order
to determine which annotations are highly similar and may be subtle variations
of the same gene.

The analysis showed that repeated genes in T. cruzi range in function, in-
cluding metabolism, cell growth, DNA and protein synthesis, transport, and
surface antigens. The results were stored in a database available to the commu-
nity, where it is possible to query genes of interest to find out their repeatedness.
The purpose of the database is to enable studies as the one presented below.
The coverage analysis also revealed that the number of coding sequences may
be twice as many as previously estimated. This gives an indication of how much
information is missing from the published genome of T. cruzi.

2.3.4 In-depth study

Conserved tandem arrays divergent between homologs

Five regions were chosen for further analysis using DNPTrapper. The two first,
tyrosine aminotransferase (TAT) and flagellar calcium binding protein (FCB),
showed similar characteristics as those described for EF2 in paper II and HSP70
and CP in paper iv, namely conserved repeat arrays on each homolog, divergent
between homologs. However, unlike the previous regions, both TAT and FCB
could be further divided into several subgroups on each homolog. Paralogous
and allelic non-synonymous SNPs in the coding region were analyzed using SIFT
[95], which predicted no function-altering amino acid polymorphisms.
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Conserved gene

The analysis showed that heat shock protein 85 (HSP85) is extremely conserved,
with few occurrences of single base differences in the intergenic region and even
fewer in the coding region. All of the differences were in synonymous locations,
indicating that there is strong selective pressure to keep this gene intact in T.
cruzi. Due to the lack of DNPs, it was not possible to assign the reads to different
homologs based on this data alone. It is likely, however, that HSP85 indeed is
present in two arrays on different homologs like the regions described above
– in the annotated genome, which can be accessed and browsed at GeneDB
[96], there are three annotations of HSP85, one of which is present in a short
contig where HSP85 is flanked by a hypothetical protein. A highly similar (98%)
hypothetical protein flanks HSP on one of the remaining two, long contigs and
it is reasonable to assume that the short contig is constructed from reads that
due to assembly problems did not make it into the larger contig.

Surface antigen

Trans-sialidase (TS) is annotated at 1 430 locations in the T. cruzi assembly.
The different versions are highly divergent, and only a subset of twelve variants
have been identified as having trans-sialidase activity, containing a critical tyro-
sine at a specific site. A Tyr → His substitution at this position in the protein
has previously been shown to inactivate it [97], but this histidine is not present
in any of the inactive annotations in the assembly. Trans-sialidase has also been
proposed as having a role in host infection, as it is an antigen for cell receptors
[98].

In the DNPTrapper analysis, twelve read groups with different DNP patterns
were found that had reasonable coverage over the whole gene, three of which
contained the histidine previously not observed in the assembly. The remaining
nine contained the tyrosine crucial for activity. Out of these nine, five groups
had consensus sequences not in perfect agreement with any of the previously
annotated active copies. This is thus a case where consensus sequences in the
assembly are erroneous, probably due to collapsed repeat copies.

Hypothetical protein

Finally, a gene that is being studied at our laboratory in a proteomics project
was chosen for analysis. Mass spectrometry has shown that it is expressed in
the epimastigote stage of the parasite, and it has been annotated as one of many
hypothetical proteins. It is similar to transporter proteins in closely related L.
major and several other species, and contains several potential transmembrane
regions, as predicted by Phobius [99].

40 different DNP groups were identified, 17 of which had good shotgun
coverage over most of the coding region. Out of the 46 amino acid changes
resulting from single base differences that could be identified, 35 were located
in the transmembrane regions.
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2.3.5 Conclusions

The in-depth study shows that repeated genes in T. cruzi are organized in dif-
ferent ways. Some are highly conserved, while others contain numerous paralo-
gous as well as allelic SNPs. Many of these features are hidden in the assembly,
and are impossible to identify using publicly available data. This can lead to
nasty surprises and unexpected experimental complications for those intend-
ing to study these regions in more detail, especially as the T. cruzi genome
browser at GeneDB contains no information on depth of shotgun coverage at
specific locations in the genome, and little other information that might indi-
cate problematic regions due to repeats apart from links to locations of similarly
annotated genes. A database such as the one presented in paper III, along with
access to shotgun reads and the use of analysis tools like DNPTrapper, allows for
additional information to be obtained in silico before embarking on expensive,
experimental in vitro endeavours which may otherwise be severely slowed down
by using incomplete and inaccurate data as the starting point. In itself, the
database contains valuable information, but it is especially powerful combined
with DNPTrapper, as the combination allows anyone interested in a specific
repeated gene to analyze it thoroughly. This scheme is applicable to any other
genome, and similar efforts should be carried out for other genome projects in
order to enable studies of complex regions that remain unfinished.



Chapter 3

Discussion and concluding

remarks

As more and more genomes are being sequenced, it is increasingly apparent that
important information is lost in regions left unfinished [100, 101]. Apart from
problems caused by unclonable sequence, the major problem in sequencing is
computational and caused by highly similar sequences appearing at numerous
locations in the target sequence.

Novel approaches to sequencing emerge, closely followed by novel variants
of repeat problems. The recent concept of metagenomics [102], where entire
communities appearing in distinct ecosystems, such as soil or deep water, are
sequenced simultaneously, carries with it its own set of problems related to
sequence homology within and between species. Sequencing of highly heterozy-
gous organisms is another example where special consideration has to be taken
to repeats [103], as is comparative sequencing [104].

Another emerging trend is the move towards more high-throughput meth-
ods producing short reads without mate pairs. In order to achieve the next
major sequencing goal – the ”$1 000 genome”, where the human genome of
individuals can be sequenced from scratch at a reasonable cost – throughput
needs to improve several orders of magnitude. The cost per finished base is
in 2006 approximately $0.01, which means that the cost of sequencing needs
to decrease by a factor of 30 000 before this dream comes true. Consequently,
there is an increasing interest in methods such as MALDI-TOF, pyrosequenc-
ing and sequencing by hybridization, where large amounts of short reads (<200
nt) can be produced at low costs. Companies such as 454 Life Sciences [105]
and Solexa [106] have recently launched platforms able to produce millions of
bases in a few hours, with the aim set to billions. However, the repeat problem
is increasingly severe with shorter read lengths [107], and a combination with
traditional Sanger sequencing may ultimately be required [108].

These new sequencing approaches and technologies will require further de-
velopment of previous methods, as well as novel approaches to repeat handling.
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Instrumental in developing such methods is access to reliable, finished assem-
blies against which newly developed algorithms can be benchmarked. So far,
the lack of reliable tools for evaluation of different strategies has been a serious
obstacle in the efforts of solving the repeat problem. This is inherent in the prob-
lem; since most complex regions are left unfinished due to the repeat problem,
there is no gold standard against which a novel method can be benchmarked.
Software for generating random, genomic sequence (e.g. GenRGenS [109]), and
programs that simulate the shotgun procedure (e.g. GenFrag [110]) are of great
help in the development of improved algorithms, but still fall short compared
to real data. The need for benchmark datasets has been increasingly recognized
and they are emerging (see e.g. http://www.tigr.org/tdb/benchmark), along
with tools for assembly-to-assembly comparisons [111]. The Assembly Archive
[112], where the read layout can be deposited in addition to the consensus se-
quence and raw data, may also become an important resource for development
of assembly algorithms in the future.

Another promising development is the emergence of Open Source assembly
software. Two major projects are in the workings, AMOS (A Modular Open
Source-Assembler, http://amos.sourceforge.net) and BOA (Berkeley Open As-
sembler, [113]). This may have great benefits to the community, since it will
promote modularity in problem solving – with open access to the source code of
an entire assembler, it becomes possible to focus on particular problems without
having to implement all the other parts required in assembly.

To conclude, repeats still remain a major and important problem in sequenc-
ing, which will require continuous development and improvement of methods
such as those presented in this thesis.

A complete understanding of the biology of humans and other species will
require precise knowledge of the genome, down to the last nucleotide.

Repeated or non-repeated.
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